• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lagrange Type Duality and Saddle Point Optimality Criteria for Mathematical Programs with Vanishing Constraints

    2019-06-27 09:59:08HUQingjie胡清潔DONGRongen董榕恩ZHANGHaiqi張海琦
    應(yīng)用數(shù)學(xué) 2019年3期

    HU Qingjie(胡清潔)DONG Rongen(董榕恩)ZHANG Haiqi(張海琦)

    ( 1.Guangxi Key Laboratory of Automatic Detecting Technology and Instruments,Guilin 541004,China; 2.Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation,Guilin 541004,China; 3.School of Mathematics and Computing Science,Guilin University of Electronic Technology,Guilin 541004,China)

    Abstract: In this paper,based on the structure characteristic of vanishing constraints,we propose a Lagrange type dual model which does not include the unknown index sets for the mathematical programs with vanishing constraints and establish the weak,strong duality results between the primal problem and the Lagrange type dual model under mild assumptions.We also investigate the optimality criteria of the saddle point problem to the mathematical programs with vanishing constraints under some conditions.Finally,we also verify the validity of these results through some examples.

    Key words: Mathematical programs with vanishing constraints; Lagrange duality;Saddle point optimality criteria

    1.Introduction

    We consider the following mathematical program with vanishing constraints (MPVC for short):

    wheref: Rn→R,g: Rn→Rm,h: Rn→RpandG,H: Rn→Rlare all continuously differentiable functions.In this paper,Xdenotes the feasible region of (1.1).

    The mathematical programs with vanishing constraints was firstly introduced to the mathematical community in[3].It originated from the optimization topology design problems in mechanical structures.Recent researches show that it can be served as the mathematical model such as a robot path-finding problem with logic communication constraints in robot motion planning[15],scheduling problems with disjoint feasible regions in power generation dispatch[12]and mixed-integer nonlinear optimal control problems [13][17].The major difficulty in solving problem (1.1)is that it does not satisfy most of the standard constraint qualifications,such as Linear Indenpendent constraints qualification and Mangasarian-Fromovitz constraints qualification,at any optimal solution so that the standard optimization methods are likely to fail for this problem[3].It has attracted much attention in the recent years.Several theoretical properties and different numerical approaches for MPVC can be found in[1-11,14-18].However,at present,little attention is paid to dual results for the mathematical programs with vanishing constraints.Until recently,Mishra et al.[19]studied the Wolfe and Mond-Weir type dual models for the mathematical programs with vanishing constraints.They established the weak,strong,converse,restricted converse and strict converse duality results under some convexity assumptions between the primal mathematical program with vanishing constraints and the corresponding Wolfe type dual.They also derived the weak,strong,converse,restricted converse and strict converse duality results between the primal mathematical program with vanishing constraints and the corresponding Mond-Weir type dual under the corresponding convexity assumptions.However,there exist some unknown index sets in their duals.This makes it not easy to solve the dual problem.

    In this paper,we propose a Lagrange type dual model and establish some saddle point optimality criteria for the mathematical programs with vanishing constraints by exploiting the structure characteristic of vanishing constraints.The weak,strong duality results between the primal problem and the Lagrange type dual model are derived under mild assumptions.The optimality criteria of the saddle point problem to the mathematical programs with vanishing constraints are established under some conditions.We also verify the validity of these results through some examples.It is worth noting that our dual model does not contain some unknown index sets.

    The rest of the paper is organized as follows.In Section 2,we review some results of the MPVC.In Section 3,we give the Lagrange type dual model.In Section 4,we establish some optimality criteria of the saddle point problem to the MPVC.We close this paper with some final remarks in Section 5.

    2.Preliminaries

    Forx ∈X,we firstly give the following index sets for MPVC.

    In order to get our Lagrange type duality,we will use the following Lagrange function for the MPVC:

    Obviously,the above Lagrange function is different from the ordinary one which is widely used in the classical nonlinear programming.

    Along the lines of[3],we introduce the following modified Abadie constraint qualification(VCACQ) for MPVC by exploiting the special structure of vanishing constraints.

    Definition 2.1Letx?∈X.The VC-ACQ is said to hold atx?,if

    where

    and

    In [3],the following VC-KKT conditions which is weaker than the standard KKT conditions of the MPVC (1.1) were derived under the VC-ACQ.

    Theorem 2.1Ifx?∈Xis a local minimum of the MPVC(1.1)such that the VC-ACQ holds atx?,then there existu?∈Rm,v?∈Rp,ηG?∈Rl,ηH?∈Rlsuch that

    In the above theorem,x?is called as a VC-KKT point of MPVC (1.1),and (u?,v?,ηG?,ηH?)is the corresponding multiplier vector.

    The following concept of convexity plays a vital role in the subsequent analysis.

    Definition 2.2LetS ∈Rnbe a nonempty set andf: Rn→R be continuously differentiable.Then,fis said to be convex atx?∈Sif and only if for anyx ∈S,one gets

    3.Lagrange Type Duality for MPVC

    In this section,we will present the Lagrange type dual model for MPVC and disscuss the corresponding duality results.

    Let

    We firstly give the Lagrange type dual model to the MPVC (1.1) for a feasible point∈X,denoted by VCLD(),as follows.

    We denote bySD()={(u,v,ηG,ηH,ρ,ν) :ui≥0,i=1,2,··· ,m,ηGi=νiHi(),νi≥0,i=1,2,··· ,l,ηHi=ρi?νiGi(),ρi≥0,i=1,2,··· ,l}the feasible set of the VCLD().Obviously,the above dual model depends on the primal MPVC (1.1).In order to make it independent of the primal MPVC,we present another duality problem (VCLD) as follows:

    Remark 2.1Obviously,the above dual does not contain the unknown index sets.This implies that it is more easier to deal with the above dual than the one in [19] from algorithm point of view.

    The following index sets will be used in the sequel.

    Now,we establish the weak duality and strong duality theorems between the VCLD(x)and the MPVC (1.1).

    The following theorem is a weak duality result,which indicates the relationship between a feasible point of the MPVC (1.1) and a feasible point of the Lagrange duality (VCLD(x)).

    Theorem 3.1(Weak duality) Ifx ∈Xand (u,v,ηG,ηH,ρ,ν)∈SD(x) is the feasible points for the MPVC (1.1) and the VCLD(x),respectively,then

    ProofIn view ofx ∈Xand (u,v,ηG,ηH,ρ,ν)∈SD(x) being the feasible points for the MPVC (1.1) and the VCLD(x),respectively,we can obtain that

    The proof is completed.

    Based on the above theorem,we can get easily the following three corollaries.

    Corrollary 3.1Ifx ∈Xand (u,v,ηG,ηH,ρ,ν)∈XDis the feasible points for the MPVC (1.1) and the VCLD,respectively,then

    Corrollary 3.2Ifx?and(u?,v?,ηG?,ηH?,ρ?,ν?)is the optimal solution for the MPVC(1.1) and the VCLD,respectively,then

    Corrollary 3.3If x?and (u?,v?,ηG?,ηH?,ρ?,ν?) is the feasible point for the MPVC(1.1)and the VCLD,respectively,and f(x?)=θ(u?,v?,ηG?,ηH?),then x?and(u?,v?,ηG?,ηH?,ρ?,ν?) is the optimal solution for the MPVC (1.1) and the VCLD,respectively.

    In order to prove the strong duality theorem,the following lemma is necessary.

    Lemma 3.1If x?is a local optimal solution of the MPVC(1.1)such that the VC-ACQ holds at x?,then there exists(u?,v?,ηG?,ηH?,ρ?,ν?)which is the feasible point of VCLD(x?).

    ProofTaking into account that x?is a local optimal solution of the MPVC (1.1) and the VC-ACQ holds at x?,from Theorem 2.1,we can know that there are u?∈Rm,v?∈Rp,ηG?∈Rl,ηH?∈Rlsuch that(2.1)and(2.2)hold.The next object is to prove that there exist ρ?,ν?such that (u?,v?,ηG?,ηH?,ρ?,ν?) is the feasible point of VCLD(x?).

    Case 1 i ∈I+?(x?).Since Hi(x?) > 0,Gi(x?) < 0,from (2.2),we know that=0,=0.According to (3.1),we may choose ρ?i=0,ν?i=0.

    Case 2 i ∈I+0(x?).In view of Hi(x?) > 0,Gi(x?)=0 and (2.2),we know that ηiG?≥0,ηiH?=0.From (3.1),we may choose ρ?i=0,νi?≥0.

    Case 3 i ∈I0?(x?).Noting that Hi(x?)=0,Gi(x?) < 0 and (2.2),we know thatAccording to (3.1),we may choose ρ?i≥0,ν?i≥0.

    Case 4 i ∈I0+(x?).In view of Hi(x?)=0,Gi(x?) > 0 and (2.2),we know thatis free.By using (3.1),we may choose ρ?i≥0,ν?i≥0.

    Case 5 i ∈I00(x?).In view of Hi(x?)=0,Gi(x?)=0,from (2.2),we know thatAccording to (3.1),we may choose ρ?i≥0,ν?i≥0.The proof is completed.

    The following theorem presents a strong duality relation between the MPVC and the VCLD(x) at a local optimal solution of the MPVC.

    Theorem 3.2(Strong duality) Let x?be a local optimal solution of the MPVC (1.1)such that the VC-ACQ holds at x?.Assume that one of the following conditions holds:

    (i) φ(·,u,v,ηG,ηH) is convex at x?for all (u,v,ηG,ηH,ρ,ν)∈SD(x?);

    (ii) f,gi(i ∈I+g(x?)),hi(i ∈I+h(x?)),?hi(i ∈I?h(x?)),?Hi(i ∈I++(x?)∪I+0(x?)),Hi(i ∈I0?(x?)),?Gi(i ∈I0?+(x?)∪I0?0(x?)∪I+?0(x?)),Gi(i ∈I0+0(x?)∪I0+?(x?)∪I++0(x?)∪I++?(x?))are all convex at x?.

    ProofTaking into account the facts that x?is a local optimal solution of the MPVC(1.1) and the VC-ACQ holds at x?,from Theorem 2.1,we can know that there are u?∈Rm,v?∈Rp,ηG?∈Rl,ηH?∈Rlsuch that (2.1) and (2.2) hold.Hence,from Lemma 3.1,we know that there exist ρ?,ν?such that (u?,v?,ηG?,ηH?,ρ?,ν?) is the feasible point of VCLD(x?).Noting that the definitions of the index sets,we know that the following equality holds:

    (i) In view of the fact that φ(·,u,v,ηG,ηH) is convex at x?for all (u,v,ηG,ηH,ρ,ν) ∈SD(x?),we get for all x ∈Rn,

    From (2.1)(3.3)(3.4),one gets

    By the weak duality theorem,it follows that

    Combining the above two relationships,we obtain that

    that is,(u?,v?,ηG?,ηH?ρ?,ν?) is a global optimal solution of the VCLD(x?).Obviously,the optimal value of the MPVC and VCLD(x?) is equal.

    (ii) By using the convexity of

    Noting that the definitions of those index sets,we obtain that

    Similar to the proof of (i),a required result can be also obtained.

    We will verify the validity of the Weak duality theorem and Strong duality theorem through the following example.

    Example 3.1We consider the following two-dimensional MPVC problem

    The feasible region of the above MPVC problem is given by

    Let

    Since

    is positive definite,φ(·,ηH1,ηG1) is a convex function.Hence,

    For anyx ∈X,the VCLD(x) for the above MPVC problem is formulated as

    In view of the fact that

    we get that the weak duality theorem between the above MPVC problem and VCLD(x)holds true.

    The next objective is to verify the validity of the strong duality theorem.Sincex?=(0,0)is an optimal solution of the above MPVC problem,and VC-ACQ holds atx?,andφ(·,ηH1,ηG1)is a convex function atx?,by the Strong duality theorem,there existSD(x?) such thatis a global optimal solution of VCLD(x?) and

    We now verify the validity of the above Strong duality results.Since

    then the VCLD(x?) is given by

    Obviously,the optimal solution of theMoreover,

    4.Saddle Point Optimality Criteria for MPVC

    In this section,we will discuss the saddle point optimality criteria of the MPVC (1.1).Firstly,we give the definition of the saddle point about the MPVC.That is to say,there exists a pair of (x?,u?,v?,ηG?,ηH?,ρ?,ν?) withx?∈Xand (u?,v?,ηG?,ηH?,ρ?,ν?)∈SD(x?) such that

    holds for allx ∈Rnand (u,v,ηG,ηH,ρ,ν)∈SD(x?).We call (x?,u?,v?,ηG?,ηH?,ρ?,ν?) as a saddle point ofφ(x,u,v,ηG,ηH).

    The following theorem proposes the conditions under which an optimal solution of the MPVC generates a saddle point ofφ(x,u,v,ηG,ηH).

    Theorem 4.1Ifx?is a local optimal solution of the MPVC,and the conditions of the strong duality theorem hold,then there exists (u?,v?,ηG?,ηH?,ρ?,ν?)∈SD(x?) such that(x?,u?,v?,ηG?,ηH?,ρ?,ν?) is the saddle point ofφ(x,u,v,ηG,ηH).

    ProofSince the conditions of the strong duality theorem hold,from Theorem 2.1,we can obtain that there areu?∈Rm,v?∈Rp,ηG?∈Rl,ηH?∈Rlsuch that (2.1) and (2.2)hold.From Lemma 3.1,we know that there existρ?,ν?such that (u?,v?,ηG?,ηH?,ρ?,ν?) is the feasible point of VCLD(x?).In view of that the definitions of the index sets,one gets the following equality:

    Similar to the proof of Theorem 3.2,from the corresponding convexity,we can also obtain for allx ∈Rn

    Taking into account (2.1) and (4.2),we know that the following inequality holds:

    On the other hand,from (4.1) and the feasibility ofx?,it follows that

    Combining the above two relationships,we can obtain that(x?,u?,v?,ηG?,ηH?,ρ?,ν?)is the saddle point ofφ(x,u,v,ηG,ηH).

    The following theorem shows that a VC-KKT point of the MPVC is a saddle point ofφ(x,u,v,ηG,ηH) under some conditions.

    Theorem 4.2Letx?be a VC-KKT point of the MPVC and (u?,v?,ηG?,ηH?) be the corresponding multiplier vector.Assume that one of the following conditions holds:

    (ii)φ(·,u,v,ηG,ηH) is convex atx?for all (u,v,ηG,ηH,ρ,ν)∈SD(x?).Then there existρ?,ν?such that(x?,u?,v?,ηG?,ηH?,ρ?,ν?)is the saddle point ofφ(x,u,v,ηG,ηH).

    ProofTaking into account thatx?being a VC-KKT point of the MPVC and(u?,v?,ηG?,ηH?)being the corresponding multiplier vector,from Theorem 2.1,Lemma 3.1 and the definition ofSD(x?),we know that there existρ?,ν?such that (u?,v?,ηG?,ηH?,ρ?,ν?)∈SD(x?).

    (i) Noting that the convexity of the functionsand?hj(j ∈I?h(x?)),we can obtain that

    Combing the above inequalities,(2.1) and (2.2),one gets

    On the other hand,from (2.2),we have for all (u,v,ηG,ηH,ρ,ν)∈SD(x?)

    In view of the above two relationships,we can conclude that (x?,u?,v?,ηG?,ηH?,ρ?,ν?) is the saddle point ofφ(x,u,v,ηG,ηH).

    (ii) From the convexity ofφ(·,u,v,ηG,ηH) atx?for all (u,v,ηG,ηH,ρ,ν)∈SD(x?),we get for allx ∈Rn

    Similar to the proof of case (i),we can also conclude that (x?,u?,v?,ηG?,ηH?,ρ?,ν?) is the saddle point ofφ(x,u,v,ηG,ηH).

    Now,we will verify the validity of Theorem 4.1 and Theorem 4.2 through the following example.

    Example 4.1We continue to consider the MPVC problem in Example 3.1.From Example 3.1,we know thatx?=(0,0) is an optimal solution of the MPVC problem and the conditions of Strong duality theorem hold true,by Theorem 4.1,there existsuch thatis a saddle point ofφ(x,ηG1,ηH1).

    We now verify the validity of the above results.Sincethen we can chooseObviously,In view of thatφ(·,ηH1,ηG1) being a convex function atx?,one gets

    The validity of Theorem 4.1 is completed.

    The following object is to verify the validity of Theorem 4.2.

    Sincex?=(0,0) is an optimal solution of the MPVC problem and VC-ACQ holds atx?,by Theorem 2.1,we can obtain thatx?is a VC-KKT point of the MPVC andis the corresponding multiplier vector such that

    Hence,from the above relationships,we can getSincef(x)=x21+x22,?H1(x)=?x2,G1(x)=x1are convex functions,by Theorem 4.2,we can conclude that there exist (ρ?1,ν?1)=(0,0) such thatis a saddle point ofφ(x,ηG1,ηH1).Obviously,we can also verify the validity of the above results which is obtained by Theorem 4.2 in a similar way.

    5.Conclusions

    In this paper,by considering the special structure of vanishing constraints,a Lagrange type dual model and some saddle point optimality criteria for the mathematical programs with vanishing constraints are studied.The weak,strong duality results between the primal problem and the Lagrange type dual model under mild assumptions are derived.The optimality criteria of the saddle point problem to the mathematical programs with vanishing constraints are investigated under some conditions.As further research work,some other dual model,like the Fenchel-Lagrange type duality,may be established by relaxing some conditions to obtain the corresponding duality results.

    男女啪啪激烈高潮av片| 男男h啪啪无遮挡| 国产乱人视频| 日本黄色日本黄色录像| 免费黄频网站在线观看国产| 能在线免费看毛片的网站| 亚洲精品久久久久久婷婷小说| 老师上课跳d突然被开到最大视频| 国产精品一区二区在线不卡| 看非洲黑人一级黄片| 日本黄色日本黄色录像| 国产 一区 欧美 日韩| 在线免费十八禁| av一本久久久久| 欧美亚洲 丝袜 人妻 在线| 久久av网站| 久久久久久人妻| 国产亚洲精品久久久com| 欧美另类一区| 男女啪啪激烈高潮av片| 国产精品一区二区在线观看99| 99热这里只有精品一区| 亚洲色图综合在线观看| av一本久久久久| 3wmmmm亚洲av在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产成人a区在线观看| 中文字幕精品免费在线观看视频 | 亚洲av中文字字幕乱码综合| 精品久久久噜噜| 国产v大片淫在线免费观看| 老司机影院成人| 精品久久久久久久久av| 亚洲欧美精品专区久久| 超碰av人人做人人爽久久| 天堂8中文在线网| 日本欧美国产在线视频| 国产成人精品婷婷| 久久久久久久久久成人| 又爽又黄a免费视频| 国产精品久久久久久精品电影小说 | 成年美女黄网站色视频大全免费 | 日韩制服骚丝袜av| 永久网站在线| 免费观看av网站的网址| 欧美激情国产日韩精品一区| h视频一区二区三区| 免费黄网站久久成人精品| 久久久久国产精品人妻一区二区| 国产免费视频播放在线视频| 欧美国产精品一级二级三级 | 亚洲熟女精品中文字幕| 久久久久久九九精品二区国产| 黄色一级大片看看| 国产精品麻豆人妻色哟哟久久| 日韩 亚洲 欧美在线| 成年人午夜在线观看视频| 一区二区三区乱码不卡18| 久久99热这里只频精品6学生| av一本久久久久| 国产一区亚洲一区在线观看| 少妇被粗大猛烈的视频| 永久免费av网站大全| .国产精品久久| 日韩国内少妇激情av| 涩涩av久久男人的天堂| 免费黄网站久久成人精品| 久久精品久久久久久久性| 老司机影院成人| 在线免费十八禁| 少妇猛男粗大的猛烈进出视频| 色哟哟·www| 亚洲欧洲国产日韩| 深夜a级毛片| 肉色欧美久久久久久久蜜桃| 91狼人影院| 精品一品国产午夜福利视频| 伊人久久国产一区二区| 纯流量卡能插随身wifi吗| 一级黄片播放器| 下体分泌物呈黄色| 国产免费视频播放在线视频| 男女边吃奶边做爰视频| 九色成人免费人妻av| 日本wwww免费看| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲精品一区在线观看 | 九九在线视频观看精品| 成人一区二区视频在线观看| 免费人成在线观看视频色| 国产成人a区在线观看| 国产精品麻豆人妻色哟哟久久| 一个人免费看片子| 99久久人妻综合| 99热全是精品| 国产乱来视频区| 简卡轻食公司| 麻豆成人午夜福利视频| av国产久精品久网站免费入址| 嫩草影院新地址| 18禁在线播放成人免费| 国产亚洲午夜精品一区二区久久| 国产成人免费观看mmmm| 在线观看一区二区三区| 在线观看av片永久免费下载| 午夜福利在线观看免费完整高清在| 国产精品人妻久久久久久| 80岁老熟妇乱子伦牲交| 在线观看免费视频网站a站| 亚洲av成人精品一区久久| 中文字幕亚洲精品专区| 亚洲精品第二区| 亚洲精品国产av成人精品| 天堂俺去俺来也www色官网| 最近的中文字幕免费完整| 最近的中文字幕免费完整| 狂野欧美激情性bbbbbb| 麻豆成人午夜福利视频| 美女cb高潮喷水在线观看| 欧美日韩国产mv在线观看视频 | 久久精品国产亚洲av涩爱| 国产精品不卡视频一区二区| 国产毛片在线视频| 人妻一区二区av| 中文资源天堂在线| 亚洲精华国产精华液的使用体验| 久久精品熟女亚洲av麻豆精品| h视频一区二区三区| 人人妻人人爽人人添夜夜欢视频 | 国内精品宾馆在线| 男人爽女人下面视频在线观看| 亚洲,一卡二卡三卡| 18禁在线无遮挡免费观看视频| 欧美日韩国产mv在线观看视频 | 久久久精品免费免费高清| 赤兔流量卡办理| 国产av一区二区精品久久 | 免费大片黄手机在线观看| 伦精品一区二区三区| 成人高潮视频无遮挡免费网站| 内射极品少妇av片p| 亚洲无线观看免费| 夫妻性生交免费视频一级片| 黄色一级大片看看| 看免费成人av毛片| 亚洲第一区二区三区不卡| 久久久亚洲精品成人影院| 91午夜精品亚洲一区二区三区| 只有这里有精品99| 亚洲欧洲国产日韩| 久久久久久伊人网av| 国产亚洲欧美精品永久| 国国产精品蜜臀av免费| 日本av手机在线免费观看| 大香蕉97超碰在线| 下体分泌物呈黄色| 久热久热在线精品观看| 伊人久久国产一区二区| 亚洲国产毛片av蜜桃av| 青春草视频在线免费观看| 精品少妇黑人巨大在线播放| 少妇高潮的动态图| 人人妻人人澡人人爽人人夜夜| 亚洲色图av天堂| 欧美日韩综合久久久久久| 欧美三级亚洲精品| 永久免费av网站大全| 日日啪夜夜撸| 精品人妻视频免费看| av国产免费在线观看| 国产精品一及| 久久99热这里只有精品18| 噜噜噜噜噜久久久久久91| 亚洲aⅴ乱码一区二区在线播放| 春色校园在线视频观看| 99久国产av精品国产电影| 51国产日韩欧美| 特大巨黑吊av在线直播| 精品亚洲成国产av| 日韩视频在线欧美| 国产成人一区二区在线| 亚洲av二区三区四区| av.在线天堂| 日韩人妻高清精品专区| 婷婷色综合大香蕉| 中文精品一卡2卡3卡4更新| 欧美国产精品一级二级三级 | 亚洲国产欧美在线一区| 狂野欧美激情性xxxx在线观看| 日日摸夜夜添夜夜爱| 国产人妻一区二区三区在| 免费看av在线观看网站| 国产乱人偷精品视频| av专区在线播放| 欧美激情极品国产一区二区三区 | 亚洲电影在线观看av| 久久精品人妻少妇| 男女下面进入的视频免费午夜| 各种免费的搞黄视频| 色哟哟·www| 精品少妇久久久久久888优播| 一本久久精品| 国产精品久久久久久精品电影小说 | 中文字幕免费在线视频6| 成人一区二区视频在线观看| 成人高潮视频无遮挡免费网站| 日韩人妻高清精品专区| 99久久中文字幕三级久久日本| 777米奇影视久久| 欧美少妇被猛烈插入视频| 日韩一本色道免费dvd| 国产黄频视频在线观看| 亚洲一级一片aⅴ在线观看| 激情五月婷婷亚洲| 美女xxoo啪啪120秒动态图| 国语对白做爰xxxⅹ性视频网站| 性色avwww在线观看| 亚洲欧美一区二区三区国产| 免费看av在线观看网站| 夜夜爽夜夜爽视频| 国产在线视频一区二区| 久久久久久久久久久免费av| 两个人的视频大全免费| 婷婷色综合大香蕉| 亚洲自偷自拍三级| 视频中文字幕在线观看| 欧美日韩国产mv在线观看视频 | 亚洲欧美成人精品一区二区| 高清视频免费观看一区二区| 国产女主播在线喷水免费视频网站| 日本午夜av视频| 亚洲天堂av无毛| 少妇人妻一区二区三区视频| 国产精品一及| 色视频在线一区二区三区| 最后的刺客免费高清国语| 久久精品夜色国产| 18禁动态无遮挡网站| 亚洲三级黄色毛片| 国产成人精品福利久久| 永久免费av网站大全| 国产真实伦视频高清在线观看| 草草在线视频免费看| 精品少妇久久久久久888优播| 高清欧美精品videossex| 日韩一区二区三区影片| 老师上课跳d突然被开到最大视频| 亚洲欧美成人精品一区二区| 国产有黄有色有爽视频| 精品国产三级普通话版| 一级毛片电影观看| 在线观看国产h片| 嫩草影院入口| 在线免费观看不下载黄p国产| 国产久久久一区二区三区| 成人高潮视频无遮挡免费网站| av在线蜜桃| 中文欧美无线码| 一级片'在线观看视频| 日日摸夜夜添夜夜爱| 51国产日韩欧美| 又黄又爽又刺激的免费视频.| 亚洲欧美成人精品一区二区| 国产高潮美女av| 少妇人妻久久综合中文| 久久综合国产亚洲精品| 色婷婷久久久亚洲欧美| 亚洲人成网站在线播| 美女中出高潮动态图| 成人亚洲欧美一区二区av| av在线观看视频网站免费| 777米奇影视久久| 插阴视频在线观看视频| 免费黄色在线免费观看| 又黄又爽又刺激的免费视频.| 日本黄色日本黄色录像| 91午夜精品亚洲一区二区三区| 各种免费的搞黄视频| 国产高清有码在线观看视频| 国产成人aa在线观看| 国产乱人偷精品视频| 国产探花极品一区二区| 国产乱人视频| 欧美bdsm另类| 日韩强制内射视频| 色婷婷久久久亚洲欧美| 精品亚洲成a人片在线观看 | 国产男人的电影天堂91| 毛片一级片免费看久久久久| 少妇熟女欧美另类| 免费人成在线观看视频色| 美女脱内裤让男人舔精品视频| 视频区图区小说| 天天躁日日操中文字幕| 青春草国产在线视频| 免费少妇av软件| 看十八女毛片水多多多| 亚洲精品日韩av片在线观看| 国产成人精品婷婷| 精品久久久精品久久久| 欧美日韩亚洲高清精品| 国产在线男女| 日本免费在线观看一区| 欧美精品一区二区免费开放| 超碰av人人做人人爽久久| 国产成人aa在线观看| 黄色欧美视频在线观看| 黑丝袜美女国产一区| 最新中文字幕久久久久| 在线观看美女被高潮喷水网站| 国产片特级美女逼逼视频| 老女人水多毛片| 夫妻性生交免费视频一级片| 精华霜和精华液先用哪个| 少妇人妻久久综合中文| 六月丁香七月| 97精品久久久久久久久久精品| 男女无遮挡免费网站观看| 免费观看在线日韩| 黄片wwwwww| 亚洲色图综合在线观看| 国产美女午夜福利| 国产大屁股一区二区在线视频| 五月开心婷婷网| 国产午夜精品久久久久久一区二区三区| 国国产精品蜜臀av免费| 看免费成人av毛片| 黄色日韩在线| 成人黄色视频免费在线看| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 国产欧美亚洲国产| 久久国产乱子免费精品| 高清不卡的av网站| 青春草国产在线视频| 不卡视频在线观看欧美| 成人黄色视频免费在线看| 国产高清有码在线观看视频| 91精品国产九色| 亚洲在久久综合| 1000部很黄的大片| av视频免费观看在线观看| 嫩草影院入口| 网址你懂的国产日韩在线| 超碰97精品在线观看| 成人无遮挡网站| 女人十人毛片免费观看3o分钟| 久久久久国产精品人妻一区二区| 成人一区二区视频在线观看| 男女边摸边吃奶| 舔av片在线| 亚洲精品第二区| 91精品一卡2卡3卡4卡| 自拍偷自拍亚洲精品老妇| 高清av免费在线| 久久久色成人| 联通29元200g的流量卡| 亚洲国产高清在线一区二区三| 亚洲国产欧美在线一区| 乱系列少妇在线播放| 在线播放无遮挡| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品一区三区| 天堂俺去俺来也www色官网| 蜜桃在线观看..| 亚洲精品日韩在线中文字幕| 国产精品免费大片| 国产黄色视频一区二区在线观看| 国产午夜精品一二区理论片| 91午夜精品亚洲一区二区三区| 男女边吃奶边做爰视频| 大香蕉97超碰在线| 亚洲丝袜综合中文字幕| 2022亚洲国产成人精品| 国产成人免费无遮挡视频| 中文字幕亚洲精品专区| 成人亚洲精品一区在线观看 | 成人国产av品久久久| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| h日本视频在线播放| 日韩伦理黄色片| 久久 成人 亚洲| 国产爽快片一区二区三区| 大陆偷拍与自拍| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 涩涩av久久男人的天堂| 亚洲欧美一区二区三区黑人 | 国产精品国产av在线观看| 亚洲熟女精品中文字幕| 久久6这里有精品| av在线app专区| 久久久午夜欧美精品| 一边亲一边摸免费视频| 精品人妻熟女av久视频| 亚洲精品一二三| 国内揄拍国产精品人妻在线| 色婷婷久久久亚洲欧美| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 在线免费十八禁| 高清视频免费观看一区二区| 3wmmmm亚洲av在线观看| 中文字幕精品免费在线观看视频 | 在线免费观看不下载黄p国产| 色5月婷婷丁香| 看非洲黑人一级黄片| 97热精品久久久久久| 成人午夜精彩视频在线观看| 久久热精品热| 午夜激情久久久久久久| 少妇人妻精品综合一区二区| 黄色一级大片看看| 免费不卡的大黄色大毛片视频在线观看| 国产精品一区www在线观看| 日韩成人伦理影院| 又大又黄又爽视频免费| 丰满少妇做爰视频| 成人综合一区亚洲| 久久人人爽人人爽人人片va| 99热6这里只有精品| 亚洲色图av天堂| 免费久久久久久久精品成人欧美视频 | 欧美激情极品国产一区二区三区 | 国产精品一及| 亚洲欧美一区二区三区国产| 国产伦理片在线播放av一区| 一区二区av电影网| 国产精品一区www在线观看| 日韩成人伦理影院| 精品一区二区免费观看| 黄色视频在线播放观看不卡| 黄色配什么色好看| 国产亚洲欧美精品永久| 亚洲人与动物交配视频| 欧美激情国产日韩精品一区| 我的女老师完整版在线观看| 秋霞在线观看毛片| 久久久久久久久久久免费av| 男女国产视频网站| 丝袜喷水一区| 街头女战士在线观看网站| 国产av国产精品国产| 黄色欧美视频在线观看| 哪个播放器可以免费观看大片| 亚洲综合精品二区| 男人添女人高潮全过程视频| 2022亚洲国产成人精品| 插阴视频在线观看视频| 人人妻人人爽人人添夜夜欢视频 | 日本猛色少妇xxxxx猛交久久| 91精品国产国语对白视频| 免费人成在线观看视频色| 亚洲美女黄色视频免费看| 精品久久久精品久久久| 亚洲丝袜综合中文字幕| 少妇人妻一区二区三区视频| 在现免费观看毛片| 欧美激情国产日韩精品一区| av免费在线看不卡| 天堂俺去俺来也www色官网| 欧美区成人在线视频| 狂野欧美激情性xxxx在线观看| 国产爽快片一区二区三区| 欧美精品人与动牲交sv欧美| 久久国产亚洲av麻豆专区| 日日啪夜夜爽| 国产黄色免费在线视频| 卡戴珊不雅视频在线播放| 久久国产精品男人的天堂亚洲 | 91aial.com中文字幕在线观看| 午夜福利影视在线免费观看| 久热这里只有精品99| 九九久久精品国产亚洲av麻豆| 人妻系列 视频| 人人妻人人澡人人爽人人夜夜| 18禁裸乳无遮挡动漫免费视频| 免费看日本二区| 国产高潮美女av| 美女内射精品一级片tv| 精品视频人人做人人爽| 26uuu在线亚洲综合色| av女优亚洲男人天堂| 国产精品一区二区在线观看99| 伦理电影免费视频| 免费黄频网站在线观看国产| 2022亚洲国产成人精品| 国产在视频线精品| www.av在线官网国产| 国产亚洲最大av| 夜夜爽夜夜爽视频| 哪个播放器可以免费观看大片| 国产精品久久久久久精品电影小说 | 亚洲国产日韩一区二区| 男女国产视频网站| 精品久久久噜噜| 精品一区二区免费观看| 日本黄色片子视频| 欧美精品一区二区大全| 91精品伊人久久大香线蕉| 午夜视频国产福利| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| 在线观看免费日韩欧美大片 | 午夜福利在线观看免费完整高清在| 国产高清国产精品国产三级 | 搡女人真爽免费视频火全软件| 人妻系列 视频| 欧美精品人与动牲交sv欧美| 能在线免费看毛片的网站| 国产欧美亚洲国产| 久久久久人妻精品一区果冻| 一级爰片在线观看| 99久久精品热视频| 久久久久久久大尺度免费视频| 自拍偷自拍亚洲精品老妇| 国产人妻一区二区三区在| 成人亚洲欧美一区二区av| 国产精品女同一区二区软件| 精品人妻一区二区三区麻豆| 精品人妻视频免费看| 丝袜脚勾引网站| 精品国产露脸久久av麻豆| 欧美一区二区亚洲| 中文字幕人妻熟人妻熟丝袜美| 最新中文字幕久久久久| 国产老妇伦熟女老妇高清| 高清午夜精品一区二区三区| av国产精品久久久久影院| 蜜桃在线观看..| 一级片'在线观看视频| av线在线观看网站| 一区二区三区精品91| 日本欧美国产在线视频| 亚洲中文av在线| 精品一区在线观看国产| 老女人水多毛片| 99热国产这里只有精品6| 美女高潮的动态| 男人舔奶头视频| 老司机影院成人| 九九在线视频观看精品| 观看美女的网站| 亚洲人成网站在线观看播放| 国产亚洲91精品色在线| 精品亚洲乱码少妇综合久久| 26uuu在线亚洲综合色| 久久精品国产亚洲网站| 日韩成人伦理影院| 97超视频在线观看视频| 亚洲不卡免费看| av国产免费在线观看| 久久99热6这里只有精品| 国产高潮美女av| 亚洲精品日本国产第一区| 三级经典国产精品| 久久精品久久精品一区二区三区| 亚洲性久久影院| 亚洲精品国产成人久久av| 国产色婷婷99| 日韩三级伦理在线观看| 内地一区二区视频在线| 日本与韩国留学比较| 建设人人有责人人尽责人人享有的 | 欧美人与善性xxx| 国产高清国产精品国产三级 | 一级毛片 在线播放| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| 欧美日韩视频精品一区| 麻豆精品久久久久久蜜桃| 免费高清在线观看视频在线观看| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 51国产日韩欧美| 亚洲一区二区三区欧美精品| 一级黄片播放器| 男人舔奶头视频| 少妇熟女欧美另类| av播播在线观看一区| 少妇熟女欧美另类| 国内少妇人妻偷人精品xxx网站| 熟女人妻精品中文字幕| 亚洲精品aⅴ在线观看| 老司机影院成人| 精品熟女少妇av免费看| 免费观看的影片在线观看| 精品国产一区二区三区久久久樱花 | 久久久久久久久大av| 亚洲精品乱码久久久v下载方式| 欧美bdsm另类| 亚洲精品乱码久久久v下载方式| 哪个播放器可以免费观看大片| 欧美丝袜亚洲另类| freevideosex欧美| 国产精品国产三级国产专区5o| 国产永久视频网站| 51国产日韩欧美| freevideosex欧美| 国产黄色视频一区二区在线观看| 亚洲av中文av极速乱| 最近的中文字幕免费完整| 只有这里有精品99| 成年免费大片在线观看| 婷婷色综合大香蕉| 干丝袜人妻中文字幕| 男女免费视频国产| 精品久久久久久久末码| 国产精品.久久久| 国产亚洲最大av| 日本欧美视频一区| 大片电影免费在线观看免费| 美女中出高潮动态图|