• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global Stability of Rarefaction Waves for the One-Dimensional Nonisothermal Compressible Navier-Stokes-Korteweg System

    2019-06-27 10:00:24GUOQidong郭起東CHENZhengzheng陳正爭
    應(yīng)用數(shù)學(xué) 2019年3期

    GUO Qidong(郭起東),CHEN Zhengzheng(陳正爭)

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China)

    Abstract: This paper is concerned with the large-time behavior of solutions to the Cauchy problem of the one-dimensional nonisothermal compressible Navier-Stokes-Korteweg system with density-dependent capillarity coefficient and temperature-dependent viscosity and heat conductivity coefficients,which models the motions of compressible viscous fluids with internal capillarity.If the corresponding Riemann problem of the compressible Euler system can be solved by a rarefaction wave,we prove that the 1D compressible Navier-Stokes-Korteweg system admits a unique global strong solution which tends to the rarefaction wave as time goes to infinity.Here both the initial perturbation and the strength of the rarefaction wave can be arbitrarily large.The proof is given by an elementaryL2 energy method.

    Key words: Compressible Navier-Stokes-Korteweg system; Rarefaction wave; Global stability

    1.Introduction

    This paper is concerned with the Cauchy problem of the following one-dimensional compressible Navier-Stokes-Korteweg system in the Lagrangian coordinates:

    with the initial and far field conditions:

    Here the unknown functions are the specific volumev(t,x)>0,the velocityu(t,x),the absolute temperatureθ(t,x)>0,and the pressurep(v,θ) of the fluid,respectively,whileμ=μ(θ),κ=κ(v) and=(θ) denote the viscosity coefficient,the capillarity coefficient and the heat conductivity coefficient,respectively.v±>0,u±,θ±>0 are given constants and we assume that (v0,u0,θ0)(±∞)=(v±,u±,θ±) as compatibility conditions.

    Throughout this paper,we assume that the pressurep(v,θ)and the constantCvare given by

    wheresis the entropy of the fluid,andγ >1,AandRare positive constants.

    System(1.1)can be used to model the motions of compressible viscous fluids with internal capillarity.The formulation of the theory of capillarity with diffuse interface was first studied by Van der Waals[1]and Korteweg[2],and then derived rigorously by Dunn and Serrin[3].Note that if the capillary coefficientκ=0,the system (1.1) is reduced to the compressible Navier-Stokes system.

    There have been many results on the mathematical theory of the compressible Navier-Stokes-Korteweg system.For the case with small initial data,we refer to [6,9,12,14-15,17-18]and the references therein.For the case with large initial data,Bresch,Desjardins,and LIN[4]studied the global existence of weak solutions for an isothermal Korteweg system with a linearly density-dependent viscosity and a constant capillarity coefficient in a periodic domain Tdwithd=2 or 3.Haspot[11]proved the global existence of strong solution for an isothermal fluid with density-dependent viscosity and capillary coefficients in the whole space RNwithN ≥2.Charve and Haspot[5]showed the global existence of large strong solution to an isothermal Korteweg system with the viscosity coefficientμ(ρ)=ερa(bǔ)nd the capillarity coefficientκ(ρ)=ε2ρ?1in R (hereεis positive constant).Tsyganov[16]discussed the global existence of weak solutions for an isothermal system with the viscosity coefficientμ(ρ)≡1 and the capillarity coefficientκ(ρ)=ρ?5on the interval [0,1].Recently,Germain and LeFloch[10]investigated the global existence of weak solutions for the isothermal Korteweg system with general density-dependent viscosity and capillarity coefficients in R.Moreover,CHEN et al.[7?8]proved the global existence of smooth large solutions to the compressible Korteweg system in the whole space R with general density- and/or temperature-dependent viscosity,capillarity and heat conductivity coefficients.The time-asymptotic nonlinear stability of strong rarefaction waves for the isothermal Korteweg system with large initial data was also obtained in [7].

    From the above results,it is easy to see that few results have been obtained on the global stability of basic waves for the compressible Navier-Stokes-Korteweg system so far.Here and hereafter,“global stability”means the nonlinear stability result with large initial perturbation.And if the initial perturbation is small,the nonlinear stability result is usually called“l(fā)ocal stability”.To our knowledge,there have been no result on the global stability of rarefaction wave to the nonisothermal compressible Navier-Stokes-Korteweg system up to now.This paper is devoted to this problem and we are concerned with the global stability of rarefaction wave for the Cauchy problem (1.1)-(1.2) with density-dependent capillarity coefficient and temperature-dependent viscosity and heat conductivity coefficients.

    It is well-known that the large-time behavior of solutions to the Cauchy problem (1.1)-(1.2) is closely related to the Riemann solution of the compressible Euler system:

    with the Riemann initial data

    Then it is known that the Euler system (1.4) is a strict hyperbolic system of conservation laws with three distinct eigenvalues[25]:

    and the Riemann problem(1.4)-(1.5)have two rarefaction waves solutions,denoted by(V r1,Ur1,Θr1)(t,x) and (V r3,Ur3,Θr3)(t,x),which are weak entropy solutions of (1.4)-(1.5) of the first and third family,respectively.

    In this paper,we only consider the 1-rarefaction wave(V r1,Ur1,Θr1)(t,x),which is defined by

    Since rarefaction waves are not smooth enough,to study the stability of the 1-rarefaction wave (V r1,Ur1,Θr1)(t,x),we need to construct its smooth counterpart.Letw(t,x) be the solution of the Cauchy problem of the Burgers equation:

    withw±=λ1(v±,s?).Then we define the smooth approximate rarefaction waves(V,U,Θ)(t,x)of (V r1,Ur1,Θr1)(t,x) as follows:

    It is easy to check that (V,U,Θ)(t,x) satisfies:

    The main result of this paper is as follows.

    Theorem 1.1Let the condition (1.3) hold.Suppose further that the following conditions hold.

    (i) The given constantsv±,u±,θ±do not depend onγ ?1;

    (ii)The initial data(v0(x)?V(0,x),u0(x)?U(0,x),θ0(x)?Θ(0,x))∈H2(R)×H1(R)×H1(R) and

    is bounded by some constant independent ofγ ?1;

    (iii) There exist positive constantsandindependent ofγ ?1 such that

    (iv)The viscosity coefficientμ(θ),the capillarity coefficientκ(v)and the heat-conductivity coefficient(θ) are smooth positive functions ofv >0 orθ >0,and the viscosity and capillarity coefficients are coupled by

    Then there exist positive constantsδ0?1 andC0which depend only onand the initial dataN0such that the Cauchy problem (1.1)-(1.2) admits a unique global-in-time solution (v,u,θ)(t,x) satisfying

    and the large-time behavior:

    provided 0<δ:=γ ?1≤δ0.

    NotesSome notes to Theorem 1.1 are given as follows.

    1) The assumption (iv) is a technical condition in estimating(see the proof of Lemma 2.3 for details).

    2) In Theorem 1.1,although the initial perturbation∥θ0(·)?Θ(0,·)∥H1(R)is small whenγ >1 is close to 1,the initial perturbations∥v0(·)?V(0,·)∥H2(R)and∥u0(·)?U(0,·)∥H1(R)can be arbitrarily large.Moreover,from the proof of Theorem 1.1,we see thatγ ?1 needs to be sufficiently small such thatwheref(N0) is a smooth increasing function on the initial dataN0(see(2.49)-(2.50)).Thus in this sense,Theorem 1.1 is a Nishida-Smoller type result[26]with large initial data.

    3) It is interesting to study the global stability of some composite waves for the 1D nonisothermal compressible Navier-Stokes-Korteweg system,such as the combination of viscous contact wave with rarefaction waves,the combination of viscous contact wave with viscous shock waves,etc.,which is left for the future.

    Before concluding this section,we remark that the nonlinear stability of basic waves for the compressible Navier-Stokes equations has been studied extensively.We refer to [19-20]] and the references therein for the nonlinear stability of viscous shock waves,[21-22] and the references therein for the nonlinear stability of rarefaction waves,and [23-24] and the references therein for the nonlinear stability of contact discontinuity.

    The paper unfolds as follows.In the next section,we give the proof of our main Theorem 1.1,which is obtained by an elementaryL2energy method.

    NotationsThroughout this paper,CandO(1)stand for some generic positive constants which may vary in different estimates.If the dependence need to be explicitly pointed out,the natationC(·,··· ,·) orCi(·,··· ,·)(i ∈N) is used.For function spaces,Lp(R)(1≤p ≤+∞)denotes the standard Lebesgue space with the normandHk(R) is the usualk-th order Sobolev space with its normFor simplicity,we denote the the norms∥·∥Hkand∥·∥L2by∥·∥kand∥·∥,respectively.

    2.Proof of Theorem 1.1

    This section is devoted to proving Theorem 1.1 and organized as follows.First,we reformulate our original problem (1.1)-(1.2) into a perturbation one around the approximate rarefaction wave and summarize the properties of the approximate rarefaction wave(V,U,Θ)(t,x)defined by(1.8).Then we focus on deducing the uniform-in-time energy estimates of solutions to the reformulate system(2.1)-(2.2).At the end of this section,we give the proof of the main Theorem 2.1 in this section,from which,we can get Theorem 1.1 immediately.

    First,define the perturbation functions (?,ψ,ζ)(t,x) by

    Then it is easy to get from (1.1) and (1.9) that

    withx ∈R,t>0.System (2.1) is equipped with the following initial and far-filed conditions:

    We define the solution space for the Cauchy problem (2.1)-(2.2) as follows:

    wherem0,m1,M0,M1and 0≤T ≤+∞are some positive constants.

    For the Cauchy problem (2.1)-(2.2),we have the following theorem,which together with Lemma 2.1 (iii) below implies Theorem 1.1 immediately.

    Theorem 2.1Under the assumptions of Theorem 1.1,there exists a small positive constantδ0depending only onand the initial datasuch that the Cauchy problem (2.1)-(2.2) admits a unique global-in-time solution (?,ψ,ζ)(t,x)satisfying

    provided 0<δ:=γ ?1≤δ0.

    Moreover,the following large-time behavior of solutions hold:

    HereC0is a positive constant depending only onandis a positive constant depending only onand

    In order to prove Theorem 2.1,we first give the local existence result.

    Proposition 2.1(Local existence) Under the assumptions of Theorem 1.1,there exists a sufficiently small positive constantt1depending only onandsuch that the Cauchy problem (2.1)-(2.2) admits a unique strong solution (?,ψ,ζ)(t,x)∈and

    whereb>1 is a positive constant depending only onand

    Proposition 2.1 can be obtained by using the dual argument and iteration technique,whose proof is similar to that of Theorem 2.1 in [12],and thus omitted here for brevity.

    The global existence of solutions to the Cauchy problem (2.1)-(2.2) can be obtained by combining the local existence and the following a priori estimates.

    Proposition 2.2(A priori estimates) Under the assumptions of Theorem 2.1,suppose that (?,ψ,ζ)(t,x)∈X(0,T;m0,M0,m1,M1) is a solution of the Cauchy problem (2.1)-(2.2)for some positive constantT >0,and satisfies the following a priori assumption:

    for some positive constantN.Then there exist a positive constantC2depending only onm0,M0such that the estimates(2.3)-(2.4)hold for allt ∈[0,T],provided that the positive numberδ:=γ ?1 satisfies

    To prove Proposition 2.2,we summarize some basic properties of the approximate rarefaction waves (V,U,Θ)(t,x) as follows lemma.

    Lemma 2.1[22]Let=|v??v+|,then the approximate rarefaction waves(V,U,Θ)(t,x)satisfy the following:

    (i)Vt=Ux>0,?x ∈R,t0;

    The proof of Proposition 2.2 follows from a series of Lemmas below.First of all,notice that the a priori assumption (2.6) impliesfor allt ∈[0,T].Thus ifδ >0 is sufficiently small such thatthen we have

    Consequently,

    The following lemma concerns the basic energy estimates for the Cauchy problem (2.1)-(2.2).

    Lemma 2.2There exists a positive constantsuch that

    where the function Φ(·) is defined by Φ(s)=s ?1?lns.

    ProofMultiplying the first equation in (2.1) bythe second equation in(2.1)byψ,and the third equation in(2.1)by,and adding the resultant equations together,we have

    where

    Integrating (2.11) over [0,t]×R yields

    We derive from the Cauchy inequality,the a priori assumption (2.6) and Lemma 2.1 that

    Similarly,

    Using the first equation in (2.1) and integration by parts,we have

    Similar to (2.13),we obtain

    In the above estimates (2.14)-(2.16),C3,C4andC5are three positive constants depending only on

    Combining (2.12)-(2.16),and using the smallness ofεsuch thatwe can get (2.10).This completes the proof of Lemma 2.2.

    To control the reminder termdxdτin (2.10),we established the following lemma.

    Lemma 2.3There exists a positive constantC2depending only onΘ,m0,M0and a positive constantC6depending only onsuch that

    holds,provided

    ProofNotice that

    hence the second equation in (2.1) can be rewritten by

    where

    It follows from the third equation in (2.1),the Cauchy inequality and the Sobolev inequality that

    ForI8,we have

    where

    Similar to the estimates of (2.21)-(2.22),we have

    Thus

    where we have used the assumption (1.11).

    To estimate the reminder termin the above estimates,we rewrite

    Consequently,it follows from (2.26),the Cauchy inequality and the Sobolev inequality that

    which implies that

    whereC7is a positive constant depending only on

    Combining (2.20)-(2.25) and (2.31),and using the Cauchy inequality,we obtain

    whereC2is a positive constant depending only onm0,M0.

    From (2.28) and Lemma 2.2,we have (2.17) holds provided thatδsatisfies (2.18) andεis sufficiently small such thatThe proof of Lemma 2.3 is finished.

    Combining Lemmas 2.2-2.3 and (2.9),we have the following corollary.

    Corollary 2.1Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    provided thatε>0 is sufficiently small.

    Now we use Y.Kanel’s method[13]to deduce the lower and upper bound ofv(t,x).

    Lemma 2.4Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    ProofLetand

    Then there exist two positive constantsA1andA2such that

    On the other hand,we have

    where we have used Corollary 2.1 and the following inequality

    provided thatε>0 is sufficiently small.

    Combining (2.31) and (2.32) yields

    for allt ∈[0,T],whereC10,C11are two positive constants depending only onand

    LettingC9=maxthen we have (2.30) holds.This completes the proof of Lemma 2.4.

    As a direct consequence of Corollary 2.1 and Lemma 2.4,we have the following:

    Corollary 2.2Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    ProofFirst,Corollary 2.1 and Lemma 2.4 imply that

    whereC13is a positive constant depending only on

    It follows from Corollary 2.1 and Lemma 2.4 that

    Denoting the last term on the right hand side of (2.35) byI9,then by using the Cauchy inequality,the Young inequality and the Sobolev inequality,we have

    Putting (2.36) into (2.35) gives

    whereC14is a positive constant depending only onandN01.

    (2.33) follows from (2.34) and (2.37) immediately.This completes the proof of Corollary 2.2.

    Lemma 2.5Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    ProofMultiplying (2.1)2by?ψxx,and using (2.1)1,we have

    Integrating the above equation over [0,t]×R,and using Lemma 2.4 and (2.9),we obtain

    We derive from the Cauchy inequality,the Sobolev inequality,Lemma 2.4 and Corollary 2.2 that

    Combining (2.39)-(2.42) yields

    (2.43) together with the Gronwall’s inequality gives

    whereC11,C12are two positive constants depending only onandN01.

    Now,we turn to estimate∥ζx(t)∥.Multiplying the third equation in (2.1) by?ζxx,we have

    Integrating(2.44)over[0,t]×R,and by repeating the same argument as above,we can obtain:

    whereC16is a positive constant depending only onandN01.

    Thus (2.38) follows from (2.44) and (2.46) immediately.This completes the proof of Lemma 2.5.

    Lemma 2.6Under the assumption of Proposition 2.2,there exists a positive constant0 such that

    ProofDifferentiating the second equation in (2.1) with respect toxonce,and multiplying the resultant equation bygives

    where

    Integrating (2.48) over [0,t]×R,similar to the proofs of Lemmas 2.4 and 2.5,we can get(2.47).The details are omitted here for brevity.This completes the proof of Lemma 2.6.

    Proof of Proposition 2.2Proposition 2.2 follows from Corollary 2.2 and Lemmas 2.5-2.6 immediately.

    Proof of Theorem 2.1Based on Propositions 2.1-2.2,we now use the continuation argument to extend the unique local solution (?,ψ,ζ)(t,x) to be a global one,i.e.,T=+∞.First,we have from Proposition 2.1 that (?,ψ,ζ)(t,x)∈X(0,t1;m0,M0,m1,M1) withm0=and the a priori assumption (2.6) holds with

    for allt ∈[0,t1],wheret1>0 is a small positive constant given in Proposition 2.1.Then it is easy to find a small positive constantδ1>0 depending only onandN0such that

    Thus if 0<δ=γ ?1≤δ1,then the inequalities in (2.3)-(2.4) hold for all (t,x)∈[0,t1]×R.

    Now we take (?,ψ,ζ)(t1,x) as an initial data,then by Proposition 3.1 again,we can extend the local solution (?,ψ,ζ)(t,x) to the time stept=t1+t2for some suitably small constantt2>0 depending only onandN0.Moreover,(?,ψ,ζ)(t,x)∈X(t1,t1+t2;m0,M0,m1,M1)withand the a priori assumption(2.6)hold withThen there exists a small positive constantδ2>0 depending only onandN0such that

    Consequently,if 0<δ ≤δ2,the inequalities in (2.3)-(2.4) hold for all (t,x)∈[t1,t1+t2]×R.Lettingδ0=min{δ1,δ2},then if 0< δ ≤δ0,the local solution (?,ψ,ζ)(t,x)∈X(0,t1+

    Next,taking (?,ψ,ζ)(t1+t2,x) as initial data and using Proposition 3.1 again,we can extend the local solution (?,ψ,ζ)(t,x) to the time stept=t1+2t2.By repeating the above procedure,we can thus extend the local solution (?,ψ,ζ)(t,x) step by step to a global one provided that 0< δ < δ0.And as a by-product,the inequalities in (2.3)-(2.4) hold for all(t,x)∈[0,+∞)×R.

    Moreover,the estimate (2.4) and the system (2.1) imply that

    which together with (2.4) and the Sobolev inequality implies (2.5).This finishes the proof of Theorem 2.1.

    免费观看性生交大片5| 欧美 日韩 精品 国产| 国产 精品1| 久久精品国产综合久久久| 亚洲色图综合在线观看| 久久久亚洲精品成人影院| 人人澡人人妻人| 国产精品偷伦视频观看了| 免费看不卡的av| 伊人久久大香线蕉亚洲五| 少妇人妻精品综合一区二区| 亚洲国产精品成人久久小说| 成年人午夜在线观看视频| 老司机亚洲免费影院| 久久久久久久精品精品| av天堂久久9| 亚洲少妇的诱惑av| av女优亚洲男人天堂| 美女福利国产在线| 精品一区二区三区av网在线观看 | 19禁男女啪啪无遮挡网站| 精品酒店卫生间| 免费观看人在逋| 一级片免费观看大全| 国产成人精品福利久久| 99国产综合亚洲精品| 纵有疾风起免费观看全集完整版| 交换朋友夫妻互换小说| 深夜精品福利| 久久久精品区二区三区| 亚洲精品国产一区二区精华液| 久久性视频一级片| 狠狠婷婷综合久久久久久88av| 欧美变态另类bdsm刘玥| 国产在线一区二区三区精| 精品亚洲乱码少妇综合久久| 一二三四在线观看免费中文在| 亚洲精品日本国产第一区| 午夜福利视频精品| 91精品伊人久久大香线蕉| 卡戴珊不雅视频在线播放| 2018国产大陆天天弄谢| 日韩伦理黄色片| 电影成人av| 日韩一本色道免费dvd| 久久av网站| 亚洲图色成人| 亚洲成人手机| 欧美少妇被猛烈插入视频| 色婷婷av一区二区三区视频| 亚洲国产欧美一区二区综合| 成人亚洲精品一区在线观看| 亚洲精华国产精华液的使用体验| 日日啪夜夜爽| 亚洲精品国产区一区二| 国产精品一区二区精品视频观看| 免费观看性生交大片5| 男女高潮啪啪啪动态图| 亚洲av男天堂| 婷婷色麻豆天堂久久| av有码第一页| 欧美黄色片欧美黄色片| avwww免费| 狠狠精品人妻久久久久久综合| 狂野欧美激情性bbbbbb| 毛片一级片免费看久久久久| 国产精品三级大全| 99精品久久久久人妻精品| 美女脱内裤让男人舔精品视频| kizo精华| 国产一区有黄有色的免费视频| 丁香六月天网| 国产不卡av网站在线观看| 国产不卡av网站在线观看| 欧美最新免费一区二区三区| 人成视频在线观看免费观看| 中文字幕人妻熟女乱码| 精品国产一区二区三区四区第35| 日日啪夜夜爽| 午夜av观看不卡| 成人免费观看视频高清| av网站在线播放免费| 亚洲国产看品久久| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久久久免| 欧美中文综合在线视频| 制服丝袜香蕉在线| 女人高潮潮喷娇喘18禁视频| 韩国精品一区二区三区| 精品亚洲乱码少妇综合久久| 人人妻,人人澡人人爽秒播 | 成年av动漫网址| 晚上一个人看的免费电影| 9热在线视频观看99| 亚洲国产欧美网| 久久午夜综合久久蜜桃| 日本猛色少妇xxxxx猛交久久| 欧美亚洲 丝袜 人妻 在线| 精品免费久久久久久久清纯 | 久久人人97超碰香蕉20202| 国产精品久久久av美女十八| 国产高清不卡午夜福利| 亚洲激情五月婷婷啪啪| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕人妻丝袜制服| 亚洲欧洲国产日韩| 精品少妇久久久久久888优播| 麻豆精品久久久久久蜜桃| 夜夜骑夜夜射夜夜干| av免费观看日本| 国产日韩一区二区三区精品不卡| 777久久人妻少妇嫩草av网站| 日韩视频在线欧美| 久久精品亚洲av国产电影网| 人人妻人人添人人爽欧美一区卜| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久男人| 可以免费在线观看a视频的电影网站 | 欧美在线黄色| 欧美亚洲 丝袜 人妻 在线| 国产精品 欧美亚洲| 日韩 亚洲 欧美在线| 国产精品久久久人人做人人爽| 伊人亚洲综合成人网| 亚洲国产中文字幕在线视频| 激情视频va一区二区三区| 深夜精品福利| 亚洲免费av在线视频| 日韩免费高清中文字幕av| 免费少妇av软件| 亚洲av欧美aⅴ国产| 午夜久久久在线观看| 少妇人妻精品综合一区二区| 十八禁网站网址无遮挡| 爱豆传媒免费全集在线观看| 免费日韩欧美在线观看| 少妇被粗大的猛进出69影院| 69精品国产乱码久久久| 一本大道久久a久久精品| 国产一区有黄有色的免费视频| 男女下面插进去视频免费观看| av网站在线播放免费| 久热爱精品视频在线9| 亚洲视频免费观看视频| 日韩制服骚丝袜av| 9热在线视频观看99| 国产不卡av网站在线观看| 欧美日韩视频精品一区| 中文字幕精品免费在线观看视频| 国产色婷婷99| 国产黄频视频在线观看| 午夜免费鲁丝| av在线老鸭窝| 大香蕉久久成人网| 欧美日韩国产mv在线观看视频| 91成人精品电影| 精品免费久久久久久久清纯 | 欧美 亚洲 国产 日韩一| 午夜影院在线不卡| 中文欧美无线码| 久久97久久精品| 韩国精品一区二区三区| 日韩av在线免费看完整版不卡| 中国国产av一级| 亚洲精品中文字幕在线视频| 欧美激情高清一区二区三区 | 人妻一区二区av| 国产 一区精品| 久久韩国三级中文字幕| 在线观看免费视频网站a站| 免费人妻精品一区二区三区视频| 91精品伊人久久大香线蕉| 少妇精品久久久久久久| 一区在线观看完整版| 在线观看三级黄色| 无限看片的www在线观看| 啦啦啦啦在线视频资源| 1024香蕉在线观看| a级毛片在线看网站| 国产国语露脸激情在线看| 午夜久久久在线观看| 嫩草影院入口| 成年av动漫网址| 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| 免费av中文字幕在线| av卡一久久| 日韩中文字幕欧美一区二区 | 两个人免费观看高清视频| 久久国产精品大桥未久av| 欧美日韩成人在线一区二区| 亚洲av电影在线观看一区二区三区| 午夜91福利影院| 久久久久久久大尺度免费视频| 在线天堂最新版资源| 国产激情久久老熟女| 日韩中文字幕欧美一区二区 | av卡一久久| 男女无遮挡免费网站观看| 免费高清在线观看视频在线观看| 午夜日韩欧美国产| 国产一卡二卡三卡精品 | 最近2019中文字幕mv第一页| 亚洲第一青青草原| 亚洲国产av影院在线观看| 色婷婷久久久亚洲欧美| 日本黄色日本黄色录像| 亚洲av成人精品一二三区| 啦啦啦中文免费视频观看日本| 国产乱人偷精品视频| 国产精品 国内视频| 亚洲,一卡二卡三卡| tube8黄色片| 亚洲av中文av极速乱| 一区二区三区四区激情视频| 国产精品香港三级国产av潘金莲 | 黑人欧美特级aaaaaa片| 欧美97在线视频| 如日韩欧美国产精品一区二区三区| 精品卡一卡二卡四卡免费| 考比视频在线观看| 一本—道久久a久久精品蜜桃钙片| 夜夜骑夜夜射夜夜干| 亚洲,欧美精品.| 精品国产一区二区久久| 一二三四在线观看免费中文在| 欧美激情极品国产一区二区三区| 亚洲av福利一区| 日韩一区二区三区影片| 免费观看av网站的网址| 91精品国产国语对白视频| 久久精品熟女亚洲av麻豆精品| 久久精品亚洲av国产电影网| av女优亚洲男人天堂| 19禁男女啪啪无遮挡网站| 啦啦啦在线观看免费高清www| 日韩 亚洲 欧美在线| 女性生殖器流出的白浆| 欧美久久黑人一区二区| 日韩 欧美 亚洲 中文字幕| 这个男人来自地球电影免费观看 | 大话2 男鬼变身卡| 亚洲国产欧美网| 久久久欧美国产精品| 日本wwww免费看| 97人妻天天添夜夜摸| 黄色视频不卡| 制服人妻中文乱码| 国产xxxxx性猛交| 十八禁人妻一区二区| 一区二区三区乱码不卡18| 精品一区二区三卡| 操出白浆在线播放| 亚洲精品在线美女| 男的添女的下面高潮视频| 美女福利国产在线| 熟女av电影| 18禁裸乳无遮挡动漫免费视频| 建设人人有责人人尽责人人享有的| 国产高清不卡午夜福利| 啦啦啦在线免费观看视频4| 久久婷婷青草| 十分钟在线观看高清视频www| 欧美成人午夜精品| 男的添女的下面高潮视频| 热re99久久国产66热| 亚洲精品一二三| 99热网站在线观看| 18禁动态无遮挡网站| 天天躁夜夜躁狠狠久久av| 美女福利国产在线| 捣出白浆h1v1| 搡老乐熟女国产| 国产日韩欧美亚洲二区| 国产国语露脸激情在线看| 亚洲五月色婷婷综合| 肉色欧美久久久久久久蜜桃| 一二三四中文在线观看免费高清| 天天影视国产精品| 精品福利永久在线观看| 丰满迷人的少妇在线观看| 久久久久国产精品人妻一区二区| 考比视频在线观看| 国产女主播在线喷水免费视频网站| 国产成人91sexporn| 色播在线永久视频| 国产野战对白在线观看| 国产av码专区亚洲av| 亚洲综合色网址| 一级a爱视频在线免费观看| 成人免费观看视频高清| 精品免费久久久久久久清纯 | 99国产精品免费福利视频| 日韩伦理黄色片| 一级毛片我不卡| 久久精品国产a三级三级三级| 久久亚洲国产成人精品v| 丰满迷人的少妇在线观看| 欧美日韩精品网址| 看免费成人av毛片| 国产成人精品久久二区二区91 | 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 国产在线视频一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 亚洲 国产 日韩一| 国产成人一区二区在线| 精品一区二区免费观看| 91精品伊人久久大香线蕉| 美女午夜性视频免费| 香蕉国产在线看| 人妻人人澡人人爽人人| 日韩电影二区| 成人黄色视频免费在线看| 少妇猛男粗大的猛烈进出视频| 国产又爽黄色视频| 又大又爽又粗| av卡一久久| 国产xxxxx性猛交| 久久性视频一级片| 一本大道久久a久久精品| avwww免费| 午夜老司机福利片| 美女福利国产在线| 美女视频免费永久观看网站| 成人免费观看视频高清| 高清av免费在线| 韩国高清视频一区二区三区| 国产午夜精品一二区理论片| 一区二区av电影网| 亚洲国产最新在线播放| 精品亚洲成国产av| 久久久久久久久久久久大奶| 日本av手机在线免费观看| 免费黄网站久久成人精品| 另类亚洲欧美激情| 午夜激情久久久久久久| av电影中文网址| 男女无遮挡免费网站观看| 91精品三级在线观看| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 国产不卡av网站在线观看| 99热国产这里只有精品6| 欧美乱码精品一区二区三区| 精品人妻在线不人妻| 亚洲精品久久久久久婷婷小说| 精品一区二区三区av网在线观看 | 狂野欧美激情性bbbbbb| 国产在线视频一区二区| xxx大片免费视频| av电影中文网址| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 一区二区三区乱码不卡18| 午夜福利视频在线观看免费| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 国产色婷婷99| 亚洲精品久久久久久婷婷小说| 91精品国产国语对白视频| 精品一区二区三卡| 十八禁人妻一区二区| 看免费av毛片| 伊人久久国产一区二区| 满18在线观看网站| 2018国产大陆天天弄谢| 999久久久国产精品视频| a级毛片在线看网站| 嫩草影院入口| 一区二区日韩欧美中文字幕| 极品人妻少妇av视频| 国产日韩欧美视频二区| 夫妻性生交免费视频一级片| 免费久久久久久久精品成人欧美视频| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 熟女少妇亚洲综合色aaa.| 妹子高潮喷水视频| 成人免费观看视频高清| 男女高潮啪啪啪动态图| 亚洲精品国产av蜜桃| 男女下面插进去视频免费观看| 免费观看性生交大片5| 美女午夜性视频免费| 免费观看a级毛片全部| 午夜福利影视在线免费观看| 欧美变态另类bdsm刘玥| 日本午夜av视频| 中文乱码字字幕精品一区二区三区| 久久久久精品人妻al黑| 又粗又硬又长又爽又黄的视频| 热re99久久精品国产66热6| 精品国产露脸久久av麻豆| 一级毛片电影观看| 18禁动态无遮挡网站| 免费观看人在逋| 七月丁香在线播放| av天堂久久9| 亚洲图色成人| 国产女主播在线喷水免费视频网站| 久久99热这里只频精品6学生| avwww免费| 欧美日韩一级在线毛片| 国产精品99久久99久久久不卡 | 制服诱惑二区| 人妻人人澡人人爽人人| 国产一卡二卡三卡精品 | 最近最新中文字幕免费大全7| 久久久精品区二区三区| 久久99一区二区三区| 天堂8中文在线网| 涩涩av久久男人的天堂| 免费人妻精品一区二区三区视频| 老司机深夜福利视频在线观看 | 亚洲四区av| 国产探花极品一区二区| 午夜久久久在线观看| 97在线人人人人妻| 两性夫妻黄色片| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花| 色视频在线一区二区三区| 秋霞伦理黄片| 2021少妇久久久久久久久久久| 在线天堂最新版资源| 最近手机中文字幕大全| 成人毛片60女人毛片免费| a级毛片黄视频| 久久免费观看电影| 日韩中文字幕欧美一区二区 | 精品少妇久久久久久888优播| 日本黄色日本黄色录像| 毛片一级片免费看久久久久| 久久人妻熟女aⅴ| 老司机影院成人| 久久久亚洲精品成人影院| 国产精品国产三级国产专区5o| 国产 一区精品| 欧美 日韩 精品 国产| 亚洲美女视频黄频| 午夜影院在线不卡| 亚洲欧洲精品一区二区精品久久久 | 午夜福利免费观看在线| 午夜福利影视在线免费观看| av网站免费在线观看视频| 欧美成人午夜精品| 少妇被粗大猛烈的视频| 久久久国产欧美日韩av| 久久久精品94久久精品| 男女床上黄色一级片免费看| 国产成人免费无遮挡视频| 国产精品一区二区在线观看99| 日韩免费高清中文字幕av| 亚洲精品aⅴ在线观看| 韩国av在线不卡| 街头女战士在线观看网站| 亚洲精品国产av蜜桃| 日日撸夜夜添| 国产精品麻豆人妻色哟哟久久| 性少妇av在线| 中文字幕亚洲精品专区| 一区二区三区精品91| 热99国产精品久久久久久7| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 国产在视频线精品| 黄色视频不卡| 精品少妇久久久久久888优播| 亚洲人成网站在线观看播放| 免费久久久久久久精品成人欧美视频| 男女午夜视频在线观看| 一区二区av电影网| 天天躁夜夜躁狠狠躁躁| 制服诱惑二区| 免费看av在线观看网站| 亚洲激情五月婷婷啪啪| 午夜激情av网站| 亚洲av日韩在线播放| 一区二区三区乱码不卡18| 国产一区二区激情短视频 | 久久天堂一区二区三区四区| 一边亲一边摸免费视频| 亚洲国产毛片av蜜桃av| 国产成人91sexporn| 狠狠精品人妻久久久久久综合| a级毛片在线看网站| 男男h啪啪无遮挡| 精品视频人人做人人爽| 色播在线永久视频| 丁香六月天网| 中文字幕人妻丝袜制服| 99久久精品国产亚洲精品| 99久久人妻综合| 中文字幕人妻丝袜制服| 老司机深夜福利视频在线观看 | 两个人看的免费小视频| 考比视频在线观看| 久久这里只有精品19| 成年av动漫网址| 观看av在线不卡| 国产无遮挡羞羞视频在线观看| 中文天堂在线官网| 亚洲综合精品二区| 黄色视频不卡| 精品福利永久在线观看| 成年人午夜在线观看视频| 中文字幕人妻丝袜制服| 国产1区2区3区精品| 伦理电影大哥的女人| 男女国产视频网站| h视频一区二区三区| 在线观看三级黄色| 国产又爽黄色视频| 色吧在线观看| 高清在线视频一区二区三区| 亚洲美女黄色视频免费看| 亚洲熟女毛片儿| 成人毛片60女人毛片免费| av电影中文网址| 99精国产麻豆久久婷婷| 91精品伊人久久大香线蕉| 女性生殖器流出的白浆| 日本爱情动作片www.在线观看| 一本一本久久a久久精品综合妖精| 夫妻午夜视频| 精品一品国产午夜福利视频| 国产成人啪精品午夜网站| 免费少妇av软件| 中文精品一卡2卡3卡4更新| 国产亚洲av片在线观看秒播厂| 亚洲国产av新网站| 在线亚洲精品国产二区图片欧美| 69精品国产乱码久久久| 亚洲精品中文字幕在线视频| 91国产中文字幕| 999精品在线视频| 99香蕉大伊视频| 亚洲专区中文字幕在线 | 激情视频va一区二区三区| 丝袜人妻中文字幕| 97精品久久久久久久久久精品| 男的添女的下面高潮视频| 亚洲精品在线美女| 国产成人欧美在线观看 | 亚洲av中文av极速乱| 久久久久久久大尺度免费视频| 亚洲综合色网址| 日本黄色日本黄色录像| 久久久久网色| 国产欧美日韩综合在线一区二区| 在线观看免费视频网站a站| 丁香六月欧美| 永久免费av网站大全| 老汉色∧v一级毛片| 在线观看三级黄色| 啦啦啦 在线观看视频| 热99国产精品久久久久久7| 亚洲色图 男人天堂 中文字幕| 一级爰片在线观看| 91老司机精品| 亚洲欧美精品自产自拍| 欧美 日韩 精品 国产| 欧美日韩亚洲国产一区二区在线观看 | 女人被躁到高潮嗷嗷叫费观| 一级片'在线观看视频| 黄色视频不卡| 国产精品一区二区精品视频观看| 一区二区av电影网| 亚洲视频免费观看视频| 美国免费a级毛片| 两性夫妻黄色片| 巨乳人妻的诱惑在线观看| 久久99热这里只频精品6学生| 国产福利在线免费观看视频| 悠悠久久av| 午夜激情久久久久久久| 国产精品.久久久| 少妇 在线观看| 七月丁香在线播放| 亚洲久久久国产精品| 女性被躁到高潮视频| 国产熟女午夜一区二区三区| 国产免费又黄又爽又色| 久久国产亚洲av麻豆专区| 亚洲精品自拍成人| 日本91视频免费播放| 久久人人爽av亚洲精品天堂| 亚洲av日韩在线播放| 18禁观看日本| 国产视频首页在线观看| 欧美日韩一区二区视频在线观看视频在线| 青春草国产在线视频| av又黄又爽大尺度在线免费看| 精品人妻熟女毛片av久久网站| 热99国产精品久久久久久7| 少妇被粗大猛烈的视频| 国产精品久久久人人做人人爽| 一级毛片我不卡| 成人手机av| 国产淫语在线视频| 好男人视频免费观看在线| 日韩大码丰满熟妇| 久久久国产欧美日韩av| 免费观看性生交大片5| 日韩一本色道免费dvd| 精品亚洲成国产av| av国产精品久久久久影院| 一级,二级,三级黄色视频| 免费黄频网站在线观看国产| 久久97久久精品| 亚洲av国产av综合av卡| av在线老鸭窝| 久久99热这里只频精品6学生| 电影成人av|