• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global Stability of Rarefaction Waves for the One-Dimensional Nonisothermal Compressible Navier-Stokes-Korteweg System

    2019-06-27 10:00:24GUOQidong郭起東CHENZhengzheng陳正爭
    應(yīng)用數(shù)學(xué) 2019年3期

    GUO Qidong(郭起東),CHEN Zhengzheng(陳正爭)

    (School of Mathematical Sciences,Anhui University,Hefei 230601,China)

    Abstract: This paper is concerned with the large-time behavior of solutions to the Cauchy problem of the one-dimensional nonisothermal compressible Navier-Stokes-Korteweg system with density-dependent capillarity coefficient and temperature-dependent viscosity and heat conductivity coefficients,which models the motions of compressible viscous fluids with internal capillarity.If the corresponding Riemann problem of the compressible Euler system can be solved by a rarefaction wave,we prove that the 1D compressible Navier-Stokes-Korteweg system admits a unique global strong solution which tends to the rarefaction wave as time goes to infinity.Here both the initial perturbation and the strength of the rarefaction wave can be arbitrarily large.The proof is given by an elementaryL2 energy method.

    Key words: Compressible Navier-Stokes-Korteweg system; Rarefaction wave; Global stability

    1.Introduction

    This paper is concerned with the Cauchy problem of the following one-dimensional compressible Navier-Stokes-Korteweg system in the Lagrangian coordinates:

    with the initial and far field conditions:

    Here the unknown functions are the specific volumev(t,x)>0,the velocityu(t,x),the absolute temperatureθ(t,x)>0,and the pressurep(v,θ) of the fluid,respectively,whileμ=μ(θ),κ=κ(v) and=(θ) denote the viscosity coefficient,the capillarity coefficient and the heat conductivity coefficient,respectively.v±>0,u±,θ±>0 are given constants and we assume that (v0,u0,θ0)(±∞)=(v±,u±,θ±) as compatibility conditions.

    Throughout this paper,we assume that the pressurep(v,θ)and the constantCvare given by

    wheresis the entropy of the fluid,andγ >1,AandRare positive constants.

    System(1.1)can be used to model the motions of compressible viscous fluids with internal capillarity.The formulation of the theory of capillarity with diffuse interface was first studied by Van der Waals[1]and Korteweg[2],and then derived rigorously by Dunn and Serrin[3].Note that if the capillary coefficientκ=0,the system (1.1) is reduced to the compressible Navier-Stokes system.

    There have been many results on the mathematical theory of the compressible Navier-Stokes-Korteweg system.For the case with small initial data,we refer to [6,9,12,14-15,17-18]and the references therein.For the case with large initial data,Bresch,Desjardins,and LIN[4]studied the global existence of weak solutions for an isothermal Korteweg system with a linearly density-dependent viscosity and a constant capillarity coefficient in a periodic domain Tdwithd=2 or 3.Haspot[11]proved the global existence of strong solution for an isothermal fluid with density-dependent viscosity and capillary coefficients in the whole space RNwithN ≥2.Charve and Haspot[5]showed the global existence of large strong solution to an isothermal Korteweg system with the viscosity coefficientμ(ρ)=ερa(bǔ)nd the capillarity coefficientκ(ρ)=ε2ρ?1in R (hereεis positive constant).Tsyganov[16]discussed the global existence of weak solutions for an isothermal system with the viscosity coefficientμ(ρ)≡1 and the capillarity coefficientκ(ρ)=ρ?5on the interval [0,1].Recently,Germain and LeFloch[10]investigated the global existence of weak solutions for the isothermal Korteweg system with general density-dependent viscosity and capillarity coefficients in R.Moreover,CHEN et al.[7?8]proved the global existence of smooth large solutions to the compressible Korteweg system in the whole space R with general density- and/or temperature-dependent viscosity,capillarity and heat conductivity coefficients.The time-asymptotic nonlinear stability of strong rarefaction waves for the isothermal Korteweg system with large initial data was also obtained in [7].

    From the above results,it is easy to see that few results have been obtained on the global stability of basic waves for the compressible Navier-Stokes-Korteweg system so far.Here and hereafter,“global stability”means the nonlinear stability result with large initial perturbation.And if the initial perturbation is small,the nonlinear stability result is usually called“l(fā)ocal stability”.To our knowledge,there have been no result on the global stability of rarefaction wave to the nonisothermal compressible Navier-Stokes-Korteweg system up to now.This paper is devoted to this problem and we are concerned with the global stability of rarefaction wave for the Cauchy problem (1.1)-(1.2) with density-dependent capillarity coefficient and temperature-dependent viscosity and heat conductivity coefficients.

    It is well-known that the large-time behavior of solutions to the Cauchy problem (1.1)-(1.2) is closely related to the Riemann solution of the compressible Euler system:

    with the Riemann initial data

    Then it is known that the Euler system (1.4) is a strict hyperbolic system of conservation laws with three distinct eigenvalues[25]:

    and the Riemann problem(1.4)-(1.5)have two rarefaction waves solutions,denoted by(V r1,Ur1,Θr1)(t,x) and (V r3,Ur3,Θr3)(t,x),which are weak entropy solutions of (1.4)-(1.5) of the first and third family,respectively.

    In this paper,we only consider the 1-rarefaction wave(V r1,Ur1,Θr1)(t,x),which is defined by

    Since rarefaction waves are not smooth enough,to study the stability of the 1-rarefaction wave (V r1,Ur1,Θr1)(t,x),we need to construct its smooth counterpart.Letw(t,x) be the solution of the Cauchy problem of the Burgers equation:

    withw±=λ1(v±,s?).Then we define the smooth approximate rarefaction waves(V,U,Θ)(t,x)of (V r1,Ur1,Θr1)(t,x) as follows:

    It is easy to check that (V,U,Θ)(t,x) satisfies:

    The main result of this paper is as follows.

    Theorem 1.1Let the condition (1.3) hold.Suppose further that the following conditions hold.

    (i) The given constantsv±,u±,θ±do not depend onγ ?1;

    (ii)The initial data(v0(x)?V(0,x),u0(x)?U(0,x),θ0(x)?Θ(0,x))∈H2(R)×H1(R)×H1(R) and

    is bounded by some constant independent ofγ ?1;

    (iii) There exist positive constantsandindependent ofγ ?1 such that

    (iv)The viscosity coefficientμ(θ),the capillarity coefficientκ(v)and the heat-conductivity coefficient(θ) are smooth positive functions ofv >0 orθ >0,and the viscosity and capillarity coefficients are coupled by

    Then there exist positive constantsδ0?1 andC0which depend only onand the initial dataN0such that the Cauchy problem (1.1)-(1.2) admits a unique global-in-time solution (v,u,θ)(t,x) satisfying

    and the large-time behavior:

    provided 0<δ:=γ ?1≤δ0.

    NotesSome notes to Theorem 1.1 are given as follows.

    1) The assumption (iv) is a technical condition in estimating(see the proof of Lemma 2.3 for details).

    2) In Theorem 1.1,although the initial perturbation∥θ0(·)?Θ(0,·)∥H1(R)is small whenγ >1 is close to 1,the initial perturbations∥v0(·)?V(0,·)∥H2(R)and∥u0(·)?U(0,·)∥H1(R)can be arbitrarily large.Moreover,from the proof of Theorem 1.1,we see thatγ ?1 needs to be sufficiently small such thatwheref(N0) is a smooth increasing function on the initial dataN0(see(2.49)-(2.50)).Thus in this sense,Theorem 1.1 is a Nishida-Smoller type result[26]with large initial data.

    3) It is interesting to study the global stability of some composite waves for the 1D nonisothermal compressible Navier-Stokes-Korteweg system,such as the combination of viscous contact wave with rarefaction waves,the combination of viscous contact wave with viscous shock waves,etc.,which is left for the future.

    Before concluding this section,we remark that the nonlinear stability of basic waves for the compressible Navier-Stokes equations has been studied extensively.We refer to [19-20]] and the references therein for the nonlinear stability of viscous shock waves,[21-22] and the references therein for the nonlinear stability of rarefaction waves,and [23-24] and the references therein for the nonlinear stability of contact discontinuity.

    The paper unfolds as follows.In the next section,we give the proof of our main Theorem 1.1,which is obtained by an elementaryL2energy method.

    NotationsThroughout this paper,CandO(1)stand for some generic positive constants which may vary in different estimates.If the dependence need to be explicitly pointed out,the natationC(·,··· ,·) orCi(·,··· ,·)(i ∈N) is used.For function spaces,Lp(R)(1≤p ≤+∞)denotes the standard Lebesgue space with the normandHk(R) is the usualk-th order Sobolev space with its normFor simplicity,we denote the the norms∥·∥Hkand∥·∥L2by∥·∥kand∥·∥,respectively.

    2.Proof of Theorem 1.1

    This section is devoted to proving Theorem 1.1 and organized as follows.First,we reformulate our original problem (1.1)-(1.2) into a perturbation one around the approximate rarefaction wave and summarize the properties of the approximate rarefaction wave(V,U,Θ)(t,x)defined by(1.8).Then we focus on deducing the uniform-in-time energy estimates of solutions to the reformulate system(2.1)-(2.2).At the end of this section,we give the proof of the main Theorem 2.1 in this section,from which,we can get Theorem 1.1 immediately.

    First,define the perturbation functions (?,ψ,ζ)(t,x) by

    Then it is easy to get from (1.1) and (1.9) that

    withx ∈R,t>0.System (2.1) is equipped with the following initial and far-filed conditions:

    We define the solution space for the Cauchy problem (2.1)-(2.2) as follows:

    wherem0,m1,M0,M1and 0≤T ≤+∞are some positive constants.

    For the Cauchy problem (2.1)-(2.2),we have the following theorem,which together with Lemma 2.1 (iii) below implies Theorem 1.1 immediately.

    Theorem 2.1Under the assumptions of Theorem 1.1,there exists a small positive constantδ0depending only onand the initial datasuch that the Cauchy problem (2.1)-(2.2) admits a unique global-in-time solution (?,ψ,ζ)(t,x)satisfying

    provided 0<δ:=γ ?1≤δ0.

    Moreover,the following large-time behavior of solutions hold:

    HereC0is a positive constant depending only onandis a positive constant depending only onand

    In order to prove Theorem 2.1,we first give the local existence result.

    Proposition 2.1(Local existence) Under the assumptions of Theorem 1.1,there exists a sufficiently small positive constantt1depending only onandsuch that the Cauchy problem (2.1)-(2.2) admits a unique strong solution (?,ψ,ζ)(t,x)∈and

    whereb>1 is a positive constant depending only onand

    Proposition 2.1 can be obtained by using the dual argument and iteration technique,whose proof is similar to that of Theorem 2.1 in [12],and thus omitted here for brevity.

    The global existence of solutions to the Cauchy problem (2.1)-(2.2) can be obtained by combining the local existence and the following a priori estimates.

    Proposition 2.2(A priori estimates) Under the assumptions of Theorem 2.1,suppose that (?,ψ,ζ)(t,x)∈X(0,T;m0,M0,m1,M1) is a solution of the Cauchy problem (2.1)-(2.2)for some positive constantT >0,and satisfies the following a priori assumption:

    for some positive constantN.Then there exist a positive constantC2depending only onm0,M0such that the estimates(2.3)-(2.4)hold for allt ∈[0,T],provided that the positive numberδ:=γ ?1 satisfies

    To prove Proposition 2.2,we summarize some basic properties of the approximate rarefaction waves (V,U,Θ)(t,x) as follows lemma.

    Lemma 2.1[22]Let=|v??v+|,then the approximate rarefaction waves(V,U,Θ)(t,x)satisfy the following:

    (i)Vt=Ux>0,?x ∈R,t0;

    The proof of Proposition 2.2 follows from a series of Lemmas below.First of all,notice that the a priori assumption (2.6) impliesfor allt ∈[0,T].Thus ifδ >0 is sufficiently small such thatthen we have

    Consequently,

    The following lemma concerns the basic energy estimates for the Cauchy problem (2.1)-(2.2).

    Lemma 2.2There exists a positive constantsuch that

    where the function Φ(·) is defined by Φ(s)=s ?1?lns.

    ProofMultiplying the first equation in (2.1) bythe second equation in(2.1)byψ,and the third equation in(2.1)by,and adding the resultant equations together,we have

    where

    Integrating (2.11) over [0,t]×R yields

    We derive from the Cauchy inequality,the a priori assumption (2.6) and Lemma 2.1 that

    Similarly,

    Using the first equation in (2.1) and integration by parts,we have

    Similar to (2.13),we obtain

    In the above estimates (2.14)-(2.16),C3,C4andC5are three positive constants depending only on

    Combining (2.12)-(2.16),and using the smallness ofεsuch thatwe can get (2.10).This completes the proof of Lemma 2.2.

    To control the reminder termdxdτin (2.10),we established the following lemma.

    Lemma 2.3There exists a positive constantC2depending only onΘ,m0,M0and a positive constantC6depending only onsuch that

    holds,provided

    ProofNotice that

    hence the second equation in (2.1) can be rewritten by

    where

    It follows from the third equation in (2.1),the Cauchy inequality and the Sobolev inequality that

    ForI8,we have

    where

    Similar to the estimates of (2.21)-(2.22),we have

    Thus

    where we have used the assumption (1.11).

    To estimate the reminder termin the above estimates,we rewrite

    Consequently,it follows from (2.26),the Cauchy inequality and the Sobolev inequality that

    which implies that

    whereC7is a positive constant depending only on

    Combining (2.20)-(2.25) and (2.31),and using the Cauchy inequality,we obtain

    whereC2is a positive constant depending only onm0,M0.

    From (2.28) and Lemma 2.2,we have (2.17) holds provided thatδsatisfies (2.18) andεis sufficiently small such thatThe proof of Lemma 2.3 is finished.

    Combining Lemmas 2.2-2.3 and (2.9),we have the following corollary.

    Corollary 2.1Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    provided thatε>0 is sufficiently small.

    Now we use Y.Kanel’s method[13]to deduce the lower and upper bound ofv(t,x).

    Lemma 2.4Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    ProofLetand

    Then there exist two positive constantsA1andA2such that

    On the other hand,we have

    where we have used Corollary 2.1 and the following inequality

    provided thatε>0 is sufficiently small.

    Combining (2.31) and (2.32) yields

    for allt ∈[0,T],whereC10,C11are two positive constants depending only onand

    LettingC9=maxthen we have (2.30) holds.This completes the proof of Lemma 2.4.

    As a direct consequence of Corollary 2.1 and Lemma 2.4,we have the following:

    Corollary 2.2Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    ProofFirst,Corollary 2.1 and Lemma 2.4 imply that

    whereC13is a positive constant depending only on

    It follows from Corollary 2.1 and Lemma 2.4 that

    Denoting the last term on the right hand side of (2.35) byI9,then by using the Cauchy inequality,the Young inequality and the Sobolev inequality,we have

    Putting (2.36) into (2.35) gives

    whereC14is a positive constant depending only onandN01.

    (2.33) follows from (2.34) and (2.37) immediately.This completes the proof of Corollary 2.2.

    Lemma 2.5Under the assumption of Proposition 2.2,there exists a positive constantsuch that

    ProofMultiplying (2.1)2by?ψxx,and using (2.1)1,we have

    Integrating the above equation over [0,t]×R,and using Lemma 2.4 and (2.9),we obtain

    We derive from the Cauchy inequality,the Sobolev inequality,Lemma 2.4 and Corollary 2.2 that

    Combining (2.39)-(2.42) yields

    (2.43) together with the Gronwall’s inequality gives

    whereC11,C12are two positive constants depending only onandN01.

    Now,we turn to estimate∥ζx(t)∥.Multiplying the third equation in (2.1) by?ζxx,we have

    Integrating(2.44)over[0,t]×R,and by repeating the same argument as above,we can obtain:

    whereC16is a positive constant depending only onandN01.

    Thus (2.38) follows from (2.44) and (2.46) immediately.This completes the proof of Lemma 2.5.

    Lemma 2.6Under the assumption of Proposition 2.2,there exists a positive constant0 such that

    ProofDifferentiating the second equation in (2.1) with respect toxonce,and multiplying the resultant equation bygives

    where

    Integrating (2.48) over [0,t]×R,similar to the proofs of Lemmas 2.4 and 2.5,we can get(2.47).The details are omitted here for brevity.This completes the proof of Lemma 2.6.

    Proof of Proposition 2.2Proposition 2.2 follows from Corollary 2.2 and Lemmas 2.5-2.6 immediately.

    Proof of Theorem 2.1Based on Propositions 2.1-2.2,we now use the continuation argument to extend the unique local solution (?,ψ,ζ)(t,x) to be a global one,i.e.,T=+∞.First,we have from Proposition 2.1 that (?,ψ,ζ)(t,x)∈X(0,t1;m0,M0,m1,M1) withm0=and the a priori assumption (2.6) holds with

    for allt ∈[0,t1],wheret1>0 is a small positive constant given in Proposition 2.1.Then it is easy to find a small positive constantδ1>0 depending only onandN0such that

    Thus if 0<δ=γ ?1≤δ1,then the inequalities in (2.3)-(2.4) hold for all (t,x)∈[0,t1]×R.

    Now we take (?,ψ,ζ)(t1,x) as an initial data,then by Proposition 3.1 again,we can extend the local solution (?,ψ,ζ)(t,x) to the time stept=t1+t2for some suitably small constantt2>0 depending only onandN0.Moreover,(?,ψ,ζ)(t,x)∈X(t1,t1+t2;m0,M0,m1,M1)withand the a priori assumption(2.6)hold withThen there exists a small positive constantδ2>0 depending only onandN0such that

    Consequently,if 0<δ ≤δ2,the inequalities in (2.3)-(2.4) hold for all (t,x)∈[t1,t1+t2]×R.Lettingδ0=min{δ1,δ2},then if 0< δ ≤δ0,the local solution (?,ψ,ζ)(t,x)∈X(0,t1+

    Next,taking (?,ψ,ζ)(t1+t2,x) as initial data and using Proposition 3.1 again,we can extend the local solution (?,ψ,ζ)(t,x) to the time stept=t1+2t2.By repeating the above procedure,we can thus extend the local solution (?,ψ,ζ)(t,x) step by step to a global one provided that 0< δ < δ0.And as a by-product,the inequalities in (2.3)-(2.4) hold for all(t,x)∈[0,+∞)×R.

    Moreover,the estimate (2.4) and the system (2.1) imply that

    which together with (2.4) and the Sobolev inequality implies (2.5).This finishes the proof of Theorem 2.1.

    亚洲精品456在线播放app | 国产黄色小视频在线观看| 久久久久久国产a免费观看| 日日干狠狠操夜夜爽| tocl精华| 午夜精品久久久久久毛片777| 国产精品一区二区精品视频观看| 日韩精品青青久久久久久| 婷婷六月久久综合丁香| 国产精品九九99| 母亲3免费完整高清在线观看| 美女cb高潮喷水在线观看 | 99久久久亚洲精品蜜臀av| 人人妻,人人澡人人爽秒播| 国产一区在线观看成人免费| av欧美777| 欧美午夜高清在线| 婷婷精品国产亚洲av| 亚洲av熟女| 一二三四社区在线视频社区8| 欧美性猛交黑人性爽| 精品免费久久久久久久清纯| 成年女人永久免费观看视频| 久久久久国内视频| 精品欧美国产一区二区三| 国产成人一区二区三区免费视频网站| 日韩欧美在线二视频| 9191精品国产免费久久| 国产亚洲av高清不卡| av天堂中文字幕网| 变态另类成人亚洲欧美熟女| 亚洲电影在线观看av| 亚洲 国产 在线| 精华霜和精华液先用哪个| 1024香蕉在线观看| 哪里可以看免费的av片| 叶爱在线成人免费视频播放| 桃色一区二区三区在线观看| 亚洲一区二区三区不卡视频| 午夜福利18| 成在线人永久免费视频| 亚洲第一欧美日韩一区二区三区| 免费在线观看视频国产中文字幕亚洲| 少妇丰满av| 国产成人精品无人区| 久久草成人影院| 国产伦一二天堂av在线观看| 日韩 欧美 亚洲 中文字幕| 搡老妇女老女人老熟妇| 欧洲精品卡2卡3卡4卡5卡区| 国产精品久久久久久久电影 | 国产精品爽爽va在线观看网站| 一进一出抽搐动态| 亚洲国产日韩欧美精品在线观看 | 天天添夜夜摸| 久久精品国产99精品国产亚洲性色| 国产熟女xx| 国产野战对白在线观看| 一个人免费在线观看的高清视频| 美女高潮的动态| 香蕉久久夜色| 国产主播在线观看一区二区| 久久九九热精品免费| 九色国产91popny在线| 亚洲欧美精品综合一区二区三区| 在线免费观看的www视频| 嫁个100分男人电影在线观看| 亚洲国产中文字幕在线视频| 国产精品久久久久久久电影 | 亚洲欧美日韩高清专用| 中文字幕久久专区| 99国产极品粉嫩在线观看| or卡值多少钱| 精品无人区乱码1区二区| 久久久久久久久中文| 久久欧美精品欧美久久欧美| 日本免费a在线| 欧美黄色淫秽网站| av福利片在线观看| 国产高清视频在线观看网站| 亚洲av第一区精品v没综合| 色综合欧美亚洲国产小说| 天天一区二区日本电影三级| 99久久精品热视频| 午夜福利在线观看吧| 国产69精品久久久久777片 | 非洲黑人性xxxx精品又粗又长| 久久这里只有精品19| 国产久久久一区二区三区| 国产成+人综合+亚洲专区| 两个人的视频大全免费| 九九久久精品国产亚洲av麻豆 | 日本在线视频免费播放| 色综合婷婷激情| 黄色成人免费大全| 久久久久久人人人人人| 一a级毛片在线观看| 日韩三级视频一区二区三区| 日本a在线网址| 亚洲精品久久国产高清桃花| 亚洲人与动物交配视频| 一本精品99久久精品77| 又黄又爽又免费观看的视频| 精品电影一区二区在线| 国产精品,欧美在线| 免费看美女性在线毛片视频| 午夜激情福利司机影院| 久久草成人影院| 国产精品电影一区二区三区| 不卡一级毛片| 精华霜和精华液先用哪个| 淫秽高清视频在线观看| 久久久久九九精品影院| 热99re8久久精品国产| 精品日产1卡2卡| 亚洲国产欧美网| 三级国产精品欧美在线观看 | 精品一区二区三区四区五区乱码| 亚洲avbb在线观看| 国产1区2区3区精品| 免费在线观看影片大全网站| 色吧在线观看| 免费观看人在逋| 美女 人体艺术 gogo| 国内精品久久久久精免费| 亚洲专区国产一区二区| 久久精品人妻少妇| 精华霜和精华液先用哪个| 久久久久久久午夜电影| 日韩高清综合在线| 美女扒开内裤让男人捅视频| 两性午夜刺激爽爽歪歪视频在线观看| 精品国产亚洲在线| 免费电影在线观看免费观看| 综合色av麻豆| 欧美日韩福利视频一区二区| 免费观看精品视频网站| 国产极品精品免费视频能看的| 久久99热这里只有精品18| 最近最新中文字幕大全免费视频| 又爽又黄无遮挡网站| 老司机深夜福利视频在线观看| 亚洲成人中文字幕在线播放| 我要搜黄色片| 亚洲人成电影免费在线| 精品国产乱子伦一区二区三区| 国产午夜福利久久久久久| 精品乱码久久久久久99久播| 俺也久久电影网| 欧洲精品卡2卡3卡4卡5卡区| 欧美不卡视频在线免费观看| 全区人妻精品视频| 少妇人妻一区二区三区视频| 18禁观看日本| 岛国视频午夜一区免费看| 成人无遮挡网站| 色视频www国产| 香蕉久久夜色| 18禁黄网站禁片免费观看直播| 男女之事视频高清在线观看| 国产成人欧美在线观看| 亚洲专区字幕在线| 日韩欧美精品v在线| 国产精品女同一区二区软件 | 欧美日本视频| 此物有八面人人有两片| 天堂√8在线中文| 国产精华一区二区三区| 成熟少妇高潮喷水视频| 在线国产一区二区在线| 国产一级毛片七仙女欲春2| 九九久久精品国产亚洲av麻豆 | 老司机午夜福利在线观看视频| 色综合婷婷激情| www.自偷自拍.com| 久久香蕉国产精品| 欧美3d第一页| 在线观看66精品国产| 哪里可以看免费的av片| 国产精品永久免费网站| 午夜福利18| 丝袜人妻中文字幕| 搡老熟女国产l中国老女人| 亚洲真实伦在线观看| 久久精品综合一区二区三区| 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 老鸭窝网址在线观看| 制服人妻中文乱码| 日韩成人在线观看一区二区三区| 真人一进一出gif抽搐免费| 亚洲成av人片在线播放无| 免费搜索国产男女视频| 日日夜夜操网爽| 搡老岳熟女国产| 免费观看的影片在线观看| 看片在线看免费视频| 啦啦啦免费观看视频1| 久久久色成人| 欧美日韩瑟瑟在线播放| 久久久国产精品麻豆| www.精华液| 国内少妇人妻偷人精品xxx网站 | 18禁观看日本| 亚洲五月婷婷丁香| 白带黄色成豆腐渣| 久久中文字幕人妻熟女| 国产 一区 欧美 日韩| 神马国产精品三级电影在线观看| 成人无遮挡网站| 黑人操中国人逼视频| 色综合亚洲欧美另类图片| 可以在线观看的亚洲视频| 国产毛片a区久久久久| 天堂√8在线中文| 色av中文字幕| 欧美又色又爽又黄视频| 1024手机看黄色片| 亚洲va日本ⅴa欧美va伊人久久| 美女黄网站色视频| 国产激情久久老熟女| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 欧美乱码精品一区二区三区| 男女床上黄色一级片免费看| 丰满人妻熟妇乱又伦精品不卡| 日韩欧美国产一区二区入口| tocl精华| 国产精品亚洲一级av第二区| 日日干狠狠操夜夜爽| 成人欧美大片| 深夜精品福利| av黄色大香蕉| 亚洲片人在线观看| aaaaa片日本免费| 又紧又爽又黄一区二区| а√天堂www在线а√下载| 免费在线观看日本一区| 草草在线视频免费看| 黄色片一级片一级黄色片| 在线a可以看的网站| 久久中文字幕人妻熟女| 中文字幕高清在线视频| 深夜精品福利| 中文字幕最新亚洲高清| 日韩欧美国产一区二区入口| 午夜精品久久久久久毛片777| 国语自产精品视频在线第100页| 亚洲av日韩精品久久久久久密| 国产精品永久免费网站| 国产又色又爽无遮挡免费看| 国产69精品久久久久777片 | 欧美一级毛片孕妇| 久久久久久九九精品二区国产| 夜夜爽天天搞| 日韩国内少妇激情av| 长腿黑丝高跟| 国产人伦9x9x在线观看| 亚洲片人在线观看| 婷婷丁香在线五月| 欧美日本亚洲视频在线播放| 久久这里只有精品19| 成年女人看的毛片在线观看| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费 | 欧美丝袜亚洲另类 | 成人鲁丝片一二三区免费| 我的老师免费观看完整版| 母亲3免费完整高清在线观看| 午夜精品一区二区三区免费看| 国内精品美女久久久久久| 亚洲aⅴ乱码一区二区在线播放| 色av中文字幕| 亚洲熟女毛片儿| 国产成人精品无人区| 国产亚洲精品综合一区在线观看| 床上黄色一级片| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 国产单亲对白刺激| 国产av在哪里看| 久久久国产成人免费| 日本成人三级电影网站| 国产伦人伦偷精品视频| 亚洲成av人片在线播放无| 长腿黑丝高跟| 国内精品久久久久精免费| 一进一出好大好爽视频| 高清在线国产一区| 久久久成人免费电影| 国产69精品久久久久777片 | 亚洲欧洲精品一区二区精品久久久| 搡老岳熟女国产| 老司机午夜十八禁免费视频| 999久久久国产精品视频| 日本一二三区视频观看| 欧美日韩精品网址| 男女视频在线观看网站免费| 欧美高清成人免费视频www| www.999成人在线观看| 亚洲精品乱码久久久v下载方式 | 国产精品久久视频播放| 少妇熟女aⅴ在线视频| 欧美日韩中文字幕国产精品一区二区三区| 一级毛片精品| 亚洲中文av在线| 日本一本二区三区精品| 国产欧美日韩一区二区三| 精品午夜福利视频在线观看一区| 精品久久久久久,| 可以在线观看的亚洲视频| 欧美日韩黄片免| 成人无遮挡网站| 老熟妇乱子伦视频在线观看| 99久久无色码亚洲精品果冻| 国产精品一区二区三区四区免费观看 | 丁香欧美五月| 97超级碰碰碰精品色视频在线观看| 久久久久久九九精品二区国产| 国产亚洲精品久久久com| 国产精品1区2区在线观看.| 成人午夜高清在线视频| 少妇熟女aⅴ在线视频| 免费大片18禁| 欧美乱色亚洲激情| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 丰满的人妻完整版| 国产 一区 欧美 日韩| 黄色女人牲交| www.熟女人妻精品国产| 国产私拍福利视频在线观看| 国产高清三级在线| 国产欧美日韩一区二区三| 午夜成年电影在线免费观看| 久久婷婷人人爽人人干人人爱| 亚洲av电影不卡..在线观看| 日韩 欧美 亚洲 中文字幕| 少妇的丰满在线观看| 亚洲精品一区av在线观看| 亚洲人与动物交配视频| 欧美又色又爽又黄视频| 国产亚洲欧美98| 精品人妻1区二区| 久久这里只有精品19| 亚洲专区中文字幕在线| 热99re8久久精品国产| 18禁观看日本| 国内精品久久久久久久电影| 此物有八面人人有两片| 两人在一起打扑克的视频| 国产精品久久久久久亚洲av鲁大| aaaaa片日本免费| 神马国产精品三级电影在线观看| 桃色一区二区三区在线观看| 国产成人系列免费观看| 欧美另类亚洲清纯唯美| 九九久久精品国产亚洲av麻豆 | 无遮挡黄片免费观看| x7x7x7水蜜桃| 2021天堂中文幕一二区在线观| 久久人妻av系列| 男女做爰动态图高潮gif福利片| www.精华液| 国产主播在线观看一区二区| 日本三级黄在线观看| 久久这里只有精品中国| 在线播放国产精品三级| 欧美黄色片欧美黄色片| 啦啦啦韩国在线观看视频| 亚洲国产欧洲综合997久久,| 国产伦精品一区二区三区四那| 长腿黑丝高跟| 色综合婷婷激情| 中文字幕熟女人妻在线| 国产精品亚洲美女久久久| 少妇裸体淫交视频免费看高清| 好看av亚洲va欧美ⅴa在| 偷拍熟女少妇极品色| 无限看片的www在线观看| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| 又大又爽又粗| 老汉色∧v一级毛片| 麻豆成人午夜福利视频| 久久久久久九九精品二区国产| 国产成人aa在线观看| 男人舔奶头视频| 99久久精品国产亚洲精品| 亚洲精品一区av在线观看| 美女高潮的动态| 美女大奶头视频| 精品午夜福利视频在线观看一区| 九九久久精品国产亚洲av麻豆 | 午夜福利在线在线| 精品一区二区三区视频在线 | 精品免费久久久久久久清纯| 午夜成年电影在线免费观看| 国产高潮美女av| 香蕉丝袜av| 蜜桃久久精品国产亚洲av| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 夜夜躁狠狠躁天天躁| 中文字幕人成人乱码亚洲影| 性色avwww在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久久久久久黄片| 又爽又黄无遮挡网站| 免费在线观看影片大全网站| 一个人观看的视频www高清免费观看 | 国产在线精品亚洲第一网站| 男人舔女人的私密视频| 日本 欧美在线| 亚洲国产日韩欧美精品在线观看 | 淫秽高清视频在线观看| 亚洲天堂国产精品一区在线| 久久久国产欧美日韩av| 好男人在线观看高清免费视频| 白带黄色成豆腐渣| 噜噜噜噜噜久久久久久91| 黄色丝袜av网址大全| 亚洲国产精品sss在线观看| 亚洲成人久久爱视频| 国产一级毛片七仙女欲春2| 中亚洲国语对白在线视频| 久久精品亚洲精品国产色婷小说| 久久久久久国产a免费观看| 久久久久久久久免费视频了| 午夜免费观看网址| 亚洲第一电影网av| 午夜a级毛片| 久久精品国产99精品国产亚洲性色| 国产乱人视频| 国产淫片久久久久久久久 | 久久天躁狠狠躁夜夜2o2o| 国产精品乱码一区二三区的特点| 极品教师在线免费播放| 99久久精品一区二区三区| 一级a爱片免费观看的视频| 1024手机看黄色片| 又紧又爽又黄一区二区| 久久中文字幕人妻熟女| 精品国产乱子伦一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲成a人片在线一区二区| 亚洲成人久久性| 午夜福利在线观看吧| 国产精品亚洲美女久久久| 女生性感内裤真人,穿戴方法视频| 观看免费一级毛片| 国产不卡一卡二| 又爽又黄无遮挡网站| 日韩欧美国产一区二区入口| 嫩草影视91久久| 狂野欧美白嫩少妇大欣赏| 最好的美女福利视频网| 日本在线视频免费播放| 九色成人免费人妻av| 欧美日本视频| 欧美黑人巨大hd| 国产一区二区三区视频了| 亚洲人成伊人成综合网2020| av欧美777| 日本一本二区三区精品| 嫩草影院精品99| 亚洲国产精品合色在线| 两性夫妻黄色片| 久久久久亚洲av毛片大全| 亚洲欧美精品综合久久99| 18禁国产床啪视频网站| 亚洲男人的天堂狠狠| 国产男靠女视频免费网站| 在线看三级毛片| 波多野结衣高清无吗| 无人区码免费观看不卡| 国产高清视频在线播放一区| 性色avwww在线观看| 成人特级黄色片久久久久久久| 嫩草影院精品99| 成人永久免费在线观看视频| 搡老妇女老女人老熟妇| 国产精品乱码一区二三区的特点| 亚洲精品中文字幕一二三四区| 日韩精品中文字幕看吧| 日日干狠狠操夜夜爽| 国产伦在线观看视频一区| 俄罗斯特黄特色一大片| 一本综合久久免费| 观看美女的网站| 国产成+人综合+亚洲专区| 国产精品一区二区三区四区免费观看 | 欧美zozozo另类| 国产精华一区二区三区| 亚洲色图av天堂| 狠狠狠狠99中文字幕| 国产伦一二天堂av在线观看| 成在线人永久免费视频| 亚洲国产欧美网| 一个人免费在线观看的高清视频| 99国产精品99久久久久| 色综合站精品国产| 一区二区三区国产精品乱码| 国产一区二区在线av高清观看| 99热精品在线国产| 国产精品,欧美在线| 最近最新中文字幕大全电影3| 色综合亚洲欧美另类图片| 三级毛片av免费| 高清在线国产一区| 亚洲片人在线观看| 黄色丝袜av网址大全| 在线视频色国产色| 午夜激情福利司机影院| 成人国产一区最新在线观看| 久久久国产成人免费| 免费在线观看影片大全网站| 午夜精品久久久久久毛片777| 亚洲av五月六月丁香网| 亚洲av电影在线进入| 国产激情欧美一区二区| 欧美黑人欧美精品刺激| 欧美一级a爱片免费观看看| 一二三四社区在线视频社区8| 亚洲 欧美一区二区三区| 老汉色av国产亚洲站长工具| 久久久久久久久免费视频了| 亚洲精品美女久久久久99蜜臀| 99热精品在线国产| 午夜福利免费观看在线| 欧美日本视频| 国产精品爽爽va在线观看网站| 亚洲国产日韩欧美精品在线观看 | 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 最好的美女福利视频网| 女人被狂操c到高潮| 少妇人妻一区二区三区视频| 国产精品亚洲av一区麻豆| 午夜福利18| 久久久久国产一级毛片高清牌| 国产一区在线观看成人免费| 亚洲avbb在线观看| 国产精品av视频在线免费观看| 午夜成年电影在线免费观看| 99久久精品热视频| 午夜久久久久精精品| 国产精品,欧美在线| 久久久久久久久免费视频了| www.999成人在线观看| 免费在线观看日本一区| 亚洲精品国产精品久久久不卡| 日日摸夜夜添夜夜添小说| 成年女人永久免费观看视频| 小蜜桃在线观看免费完整版高清| 一个人免费在线观看的高清视频| 国产激情欧美一区二区| 国产一区二区三区在线臀色熟女| 免费av不卡在线播放| 在线免费观看不下载黄p国产 | xxx96com| 男女之事视频高清在线观看| 免费在线观看影片大全网站| 精品久久久久久成人av| 国产一区二区三区在线臀色熟女| 欧美日韩综合久久久久久 | 好男人电影高清在线观看| 免费看日本二区| 国产蜜桃级精品一区二区三区| 观看免费一级毛片| 一个人免费在线观看电影 | 久久这里只有精品19| 他把我摸到了高潮在线观看| 91九色精品人成在线观看| 性色avwww在线观看| 亚洲成人久久性| 亚洲欧美激情综合另类| 中文字幕人成人乱码亚洲影| 日日夜夜操网爽| а√天堂www在线а√下载| 国产精品国产高清国产av| 亚洲黑人精品在线| 又粗又爽又猛毛片免费看| 午夜久久久久精精品| 我要搜黄色片| 久久久久久人人人人人| www.精华液| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区视频在线观看免费| 久久久久国产一级毛片高清牌| 女生性感内裤真人,穿戴方法视频| 婷婷精品国产亚洲av| e午夜精品久久久久久久| 国产高清视频在线观看网站| 成人国产综合亚洲| 99久久国产精品久久久| 宅男免费午夜| 在线十欧美十亚洲十日本专区| 日韩高清综合在线| 18禁黄网站禁片免费观看直播| 国产精品电影一区二区三区| 久久天躁狠狠躁夜夜2o2o| 亚洲欧美日韩无卡精品| 天堂网av新在线| 日本 欧美在线| 亚洲乱码一区二区免费版| 国产 一区 欧美 日韩| 黄色视频,在线免费观看| 亚洲成人久久性| 久久伊人香网站| 偷拍熟女少妇极品色| 老熟妇仑乱视频hdxx| 国产精品永久免费网站| 国产黄色小视频在线观看| 日本免费一区二区三区高清不卡|