• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Heteroclinic and Traveling Wave Solutions for a SIR Epidemic Model with Nonlocal Response

    2019-06-27 09:58:34WANGZongyi王宗毅
    應(yīng)用數(shù)學(xué) 2019年3期

    WANG Zongyi(王宗毅)

    ( College of Mathematics and Big Data,Huizhou University,Guangdong 516007,China)

    Abstract: The existence of positive heteroclinic solutions is proved for a class of sir epidemic model with nonlocal interaction and non monotone property.Applying the theory of Fredholm operator decomposition and nonlinear perturbation developed by Faria and HUANG(2006),we study a connection between traveling wave solutions for the reaction-diffusion system and heteroclinic solutions of the associated differential equations.Existence and dynamics of wavefront profile are obtained as a consequence.

    Key words: Delay ordinary differential equation; Reaction-diffusion equation; SIR epidemic model; Heteroclinic solution; Traveling wave solution

    1.Introduction

    As we all know,delay differential equations(DDEs) have been extensively used as models in biology and other sciences,with particular emphasis in population dynamics.Such equations serve as models for the growth of a single species population,in ecology problems or in disease modeling[1?3,9?13].Recently,Faria et al.proposed the theory to obtain traveling wave solutions for scalar delay reaction-diffusion equations[4],which can be viewed as perturbations of heteroclinic solutions connecting two hyperbolic equilibria of the associated equation without diffusion.Our study was motivated by the following diffusive population model with stage structure[5]

    whereu1(t,x) andu2(t,x) denote respectively the densities of juvenile,mature individuals at timetand locationx.αu2is a birth function,andγu1,βu22represent respectively the death functions of juvenile and mature individuals.The adult recruitment term iswhere the delayτis the time taken from birth to maturity.Gourley and KUANG[5]study the minimal speed of equations (1.1) atτ=0.They also discuss the relations betweenτand the minimal speed,and the monotonicity of the traveling waves for such given model.

    We note that the spread of disease for species is possibly related to the stage structure.Juveniles have more opportunities to contract some diseases such as measles and mumps,while some other diseases may spread in adults.Thus only the juveniles are assumed to be susceptible to the infection in many SIR epidemic models with stage structure and nonlinear incidence.Furthermore,a general incidence can beU(u)vwith susceptible populationuand infectious populationv.However,we are concerned on the infectious agentsU(u) instead of the nonlinear incidenceU(u)vfor simplicity,and study a SIR epidemic model with stage structure and nonlocal response with the form as follows

    whereu1(t,x),u2(t,x) andu3(t,x) denote the densities of juvenile,susceptible mature and infectious mature individuals at timet ∈R respectively,locationx ∈R,γ,ρ >0 denote the death rate of juvenile and infectious adults respectively,andr >0 denote the recovery rate of infectious adults.HereB(u2)is the birth function,andε∫

    Rfα(x ?y)B(u2(t?τ,y))dyrepresents the recruitment term whereε ∈[0,1],andfα(·)is the kernel function.For instance,we can letandε=e?γτ,coinciding with those of maturation ageτand nonlocal response.We assume that only the mature individuals are susceptible,and the susceptible individuals,once infected by infectious adults,can carry germs and then transmit the infections.Since it act similarly as the infectious agent and thus letU(u2) be the force of infection on the mature population due to a concentration of the susceptible adultsu2.

    The purpose of this paper is to study connections between the traveling wave solutions and heteroclinic solutions for such different type systems.Roughly speaking,by detailed discussion on the dynamics of the corresponding ordinary differential equations,we expect to find the long time behaviors of the epidemic models (1.2).This paper is organized as follows.In Section 2,we introduce some assumptions and establish the well-posedness of nondiffusive system.We show that there is a positive heteroclinic solution connecting two hyperbolic equilibria,provided that one of them is global attractive.In Section 3,we obtain our main results on the existence of the positive heteroclinic solutions for the ordinary differential equations.However,for sufficient largec,the set of all traveling wave solutions propagating at speedcforms aC1-smooth manifold in someC([?τ,0],R)-neighborhood of the heteroclinic solution.As a consequence,the existence of traveling wave solutions for the given SIR epidemic model follows immediately.

    2.Well-Posedness and Positive Heteroclinic Solutions

    LetC(R,R) be the space of continuous functions on R.Let=C([?τ,0],R) be a Banach space,=C([?τ,0],R+).For anyK >0,let [0,K]C={? ∈C(R,R):0≤?(t)≤K,t ∈R}.In the system (1.2),the first and the third equations can be solved independently onceu2(t,x) is determined.Thus,we first consider the equation foru2(t,x)

    The corresponding nondiffusive system is

    Foru ∈C(R,R),define

    We always assume thatB(0)=0,U(0)=0 and

    (H1) There is au?2>0 such thatg(u?2)=0,g(u)>0 foru ∈(0,u?2) andg(u)<0 foru ∈(u?2,∞).

    According to the assumption (H1),(2.2) has a unique positive equilibriau?2.Thus (1.2)has two spatially unform equilibriaE0(0,0,0) andE?(u?1,u?2,u?3),whereu?1,u?2,u?3>0 and satisfy

    In addition to (H1),we need more assumptions as follows

    (H2)B(u) is differentiable and 0< |B′(u)| ≤k1foru ∈[0,u?2] withk1>0;B′(u?2)<0;B′(0)u ?ρ1u1+ν1≤B(u)≤B′(0)uforu ∈[0,u?2] with someν1∈(0,1],ρ1>0;

    (H3)U(u) is differentiable and 0< U′(u)≤k2foru ∈[0,u?2] withk2>0;U′(0)u ≤U(u)≤U′(0)u+ρ2u1+ν2foru ∈[0,u?2] with someν2∈(0,1],ρ2>0;

    (H4)εB′(0)?U′(0)>d.

    Notice that the conditions (H2)-(H4) imposed on functionsB(u) andU(u) are natural,and they are not more restrictive conditions.For example,we take population growth rateB(u)=pue?auwith two positive constantsp,a>0,thenB′(u)=pe?au(1?au),B′(0)=pandB(u)≤B′(0)uforu ∈[0,1].If we takeU(u)=δu,thenU(u) satisfies the assumption(H3).However,it also follows thatprovidedthusB(u) is an nonmonotone function and satisfies the assumption (H2).

    Sinceg(?)=?d?(0)+εB(?(?τ))?U(?(0)) and the assumptions (H1)-(H3),for anyL ≥u?2,gis global Lipschitz continuous and quasi-monotone on [0,K]Cin the sense that

    for all?1,?2∈[0,K]Cwith?1≥?2.

    In fact,it follows that

    Hence,for anyh>0 with 1>h(d+k2),we have

    from which (2.4) follows.

    For (2.2),define the differential operatorL

    For the linearized equation of (2.2) about zero,

    The characteristic equation is

    Lemma 2.1Letλ1be the unique real root of (2.6),for? ∈(0,λ1) sufficiently small,we have

    (i) ForM=M(?) sufficiently large,the function

    witht1=?(logM)/?,is a lower solution of(2.2),i.e.,??: R→R is continuous,differentiable almost everywhere on R,and satisfiesL??≤0 a.e.t ∈R.

    (ii) Moreover,0≤??≤u?2.

    ProofLetM ≥1.Fort>t1,we haveL??(t)=?εB(??(t ?τ))≤0.Consider nowt ≤t1.It is easy to see that 0≤1?Me?t<1 and 0<1?Me?(t?τ)<1 fort ≤t1.Since(H2),(H3) and (2.6) hold,we obtain

    whereρ?:=ρ1+ρ2,and we use the inequality eλ1(1+νi)s≤e(λ1+?)sfor anys<0 andi=1,2 provided that?>0 is sufficiently small.Since ?(λ1+?)>0,hence we obtain thatL??(t)≤0 ifM=M(?) is chosen so thatM ≥1 andM ≥?(λ1+?)?1ρ?.This proves (i).

    Lett0be suchSince?′?(t0)=0,we haveλ1=M(λ1+?)e?t0,and therefore for 0

    According to (2.3) and (2.4),gis quasi-monotone on [0,K]C.However,we can choose sufficiently largeh >0 such thathφ(s)+g(φ(·)) is non-decreasing function forφ ∈[0,K]C.Thus,we can define the operatorT:C(R,R)→C(R,R) by

    Clearly,a positive functionφ(t)is a global bounded solution of(2.2)if and only ifφ=Tφ,t ∈R.Our goal in the remainder of the section is to show thatTis completely continuous on a suitable convex,closed set of a Banach space,in which we shall apply Schauder’s fixed point theorem to find a fixed point ofTsatisfying

    withK=u?2.

    Definet0=(logK)/λ1.Using the assumptions (H2) and (H3),we have the following results.

    Lemma 2.2For allφ ∈C(R,R),φnon-negative,thenTφis bounded and differentiable,with

    Moreover,ifφ ∈C(R,R) with 0≤φ(t)≤eλ1t,t ≤t0,then for some positive constantk,0≤Tφ(t)≤keλ1t,t ≤t0,whereλ1is the unique positive real root of (2.6).

    ProofRecall thathφ(s)+g(φ(·))is non-decreasing function.Consider any non-negativeφ ∈[0,K]C.Then,fort ∈R,

    and (Tφ)′(t)=?hTφ(t)+hφ(t)+g(φ(·?τ)).It follows that|(Tφ)′(t)|≤hK.This proves(2.9).

    From (H2),(H3) and the definition ofg,forφ ≥0,we have

    withh′:=h+d+k2.Then,from (2.8),(2.9) and (2.10),we obtain

    This completes the proof.

    Let??be as in (2.7),with?>0 andM ≥1 chosen in Lemma 2.1.Then we have

    Lemma 2.3The following statements hold.

    (i)T??(t)≥??(t),for allt ∈R;

    (ii) forφ ∈C(R,R) satisfying??(t)≤φ(t)≤K,t ∈R,then??(t)≤Tφ(t),t ∈R.

    ProofDefine?1:=T??.We have

    Letw(t)=?1(t)???(t).Since (2.11) and??is a lower solution of (2.2),it follows that

    andr(t) is continuous and bounded from Lemma 2.2.We obtain

    for some constantc ∈R.On the other hand,w(t) is bounded on R,implying thatc=0.Hencew(t)≥0 fort ∈R.This completes the proof of (i).

    Notice thathφ+g(φ(·?τ)) is non-decreasing for anyφ ∈C(R,R).For??(t)≤φ(t)≤K,t ∈R,by (i) we obtain

    and (ii) follows immediately.

    Define

    We equipped the spaceC(R,R) with the norm whereρ ∈(0,min{λ1,h}).Thus (C(R,R),||·||) is a Banach space.

    Lemma 2.4The setSis||·||ρ-closed,convex and non-empty.

    ProofFrom Lemma 2.1,we have??(t)≤eλ1tand??(t)≤u?2(t),t ∈R,thus??(t)∈S.It is clear thatSis convex and||φ||ρ≤Kforφ ∈S.Since the||φ||ρconvergence implies the uniform convergence in any compact set of R,it follows thatSis||·||ρ-closed.

    Lemma 2.5Consider the spaceC(R,R),equipped with the norm|| · ||ρ.Then,T:S →C(R,R) is lipschitz continuous.

    ProofConsiderφ,ψ ∈S.Fort ≤τ,

    With a simple computation,we have

    Fort>τ,

    Hence we have

    Lemma 2.6ForSdefined in (2.12),the setT(S) is relatively compact in (C(R,R),||·||ρ).

    ProofFor any compact intervalI ∈Sandφn∈I,letψn=Tφn,n ∈N.From Lemma 2.2,(ψn) is uniformly bounded on R and equicontinuous.By Ascoli-Arzel`a theorem,there is a subsequence of (ψn) which converges uniformly onIto someψI∈C(I,R).DenoteIk=[?k,k],k ∈N.We take a convergent subsequences (ψαk(n)) such that (ψαk(n)) is a subsequences of (ψα(k?1)(n)) andαk: N→N is increasing.It follows thatψαk(n)→ψkuniformly onIkandψk+1|Ik=ψkfork ≥1.Define? ∈C(R,R) by?(t)=ψk(t) for|t|≤k,t ∈R.

    Now we show that the“diagonal”subsequence(ψαn(n))convergence to?(t)with respect to the norm||·||ρ.Let? >0 be given.Choosen0∈N such that e?ρn0≤?/K.By Lemma 2.2,0≤ψαn(n),?(t)≤K,thus if|t|≥n0we have

    On the other hand,ψαn(n)→?(t) uniformly on [?n0,n0].Consequently,there existsn1≥n0such that

    forn ≥n1and|t|≤n0.Hence|ψαn(n)??(t)|e?ρ|t|→0.This completes the proof.

    Theorem 2.1Assume that conditions(H1)-(H4)are satisfied.Then,there is a positive solutionu(t) of (2.2),defined on R and satisfyingu(?∞)=0 andu(t)=O(eλ1t)ast →?∞,whereλ1is the positive root of (2.6).Furthermore,if there exists a globally attractive equilibriumu?∈(0,u?2],there is a positive heteroclinic solution of (2.1) connecting 0 tou?.

    ProofConsiderSas in (2.12).From Lemmas 2.1-2.3,T(S)?S.From Lemma 2.4 and Lemma 2.5,T:S →Sis||·||ρcompletely continuous.Lemma 2.6 allows us to use the Schauder’s fixed-point theorem to conclude that there isu ∈Ssuch thatTu=u.Thus,u(t)is a positive global solution of (2.2) satisfying??(t)≤u(t)≤eλ1tfort ≤t0.Moreover,ifu?(t) is globally attractive,it follows that limt→∞u(t)=u?(t).This complete the proof.

    We need another lemma which is cited from [6].

    Lemma 2.7[6]Assume that (i) the functionalV:C([?τ,0],Rn)→R is continuous,V(0)=0;

    (ii) there exist nonnegative and continuous functionsu(s) andv(s) such thatu(s)→∞(s →∞),v(0)=0;

    (iii)u(|?(0)|)≤ V(?) for? ∈C;

    (iv) ˙V(?)≤ ?v(|?(0)|) for? ∈C,where

    Then all solutions of (2.2) are bounded and the zero solution of (2.2) is stable.If in addition,v(s) is positive definite,then the all solutions of (2.2) tend to zero ast →+∞.

    Using Lemma 2.7,we can prove the existence of positive heteroclinic solutions of the given model.

    Theorem 2.2Assume that (H1)-(H3) hold.Furthermore,if there exists a positive constantksatisfying

    then equation (2.2) has a heteroclinic solutionu?such that

    ProofConsider the initial problem

    whereλ0is the positive real root ofΛ1(λ)=0.Express the solution of (2.17) and (2.18) asuT(t),t ∈R.For allT ∈(?∞,0],we obtain a set of functions{uT(t)}T∈(?∞,0].Define

    Thenu?(t) satisfies the following Properties.

    (1o)u?(t) is a solution of (2.2);

    (2o)

    Hence{uT(t)}T∈(?∞,0]is equi-continuous on R.For anyN >0,{uT(t)}T∈(?∞,0]has subsequence (without loss of generality,we may assume that it is{uT(t)}T∈(?∞,0]itself) which is uniformly convergent on [?N,N].Suppose that the limit function isu?(t).SinceNis arbitrary,noting the definition of{uT(t)}T∈(?∞,0],we claim thatu?(t) is defined on R,and is a solution of (2.2).

    For any?>0,choosingT <0,if|T|is large enough andt

    Therefore,we obtain

    Letx(t)=u(t)?u?(t),t ∈R.Then the equation forxis

    Define a functional

    Then we have

    Calculating the right derivative along the solutions of (2.21),we obtain

    wher eζ(t) is betweenx(t)+u?(t) andu?(t) fort ∈R.From (2.15),we haveandk >12.Noting that 0

    Defineu(s) :=s2,andv(s) :=[(2k ?1)?k22]s2.Then

    andv(s) is positive definite.On the other hand,we obtain from (2.23) that

    Therefore,by Lemma 2.7,we know that any solutionu(t)=x(t)+u?(t) of (2.2) tends tou?(t) ast →∞.Thus (2o) holds.

    We conclude from (1o) and (2o) thatu?(t) is a solution of (2.2) satisfying (2.16).This completes the proof.

    3.Existence of Traveling Wave Solution

    Now we are in a position to study traveling wave solutions for the reaction-diffusive SIR model(2.1).To the end we shall use the method developed in[4].The results obtained in the paper tell us if the nondiffusive equation has a heteroclinic connection betweenE1andE2,then the diffusive system has a family of traveling wavefronts fromE1toE2with large speed.For convenience of discussion,we denote two positive equilibria byE1=0,E2=u?2(t),respectively.We have the following results.

    Lemma 3.1E1is hyperbolic.

    ProofConsider the characteristic equationΛ1(λ)=0 of (2.1) atE1,where

    Since

    We know thatΛ1(λ) is an increasing function with respect toλ,andΛ1(λ)=0 has a positive real rootλ0>0.Therefore the unstable manifold associated withE1is at least one dimensional.Note that the equationΛ1(λ)=0 has only finite rootsλwith Reλ >0.ThusΛ1(λ)=0 has exactm(m ≥1) roots with positive real parts.SinceΛ1(iβ)=0 (β >0) is equivalent to

    which leads to

    We obtain from (3.1) thatβτis in the first quarter,and

    wheren ∈N0:={0}∪N.LetIf 0≤τ <τ′,thenE1is hyperbolic.

    LetΛ2(λ)=λ+d+U′(u?2)?εB′(u?2)e?λτ,andλ=α+iβ,then we have the following result.

    Lemma 3.2All roots ofΛ2(λ)=0 have negative real parts.

    ProofFromΛ2(λ)=0,we have

    If|εB′(u?2)|≤d+U′(u?2),the the first equation in (3.2) can not have nonnegative solutionα.In fact,if there isα>0 such that (3.2) holds,then we have

    which is a contradiction.Ifα=0,then we haved+U′(u?2)=e?ατB′(u?2)cosβτ,which can not hold either forβ >0 orβ=0.Thus all zeros ofΛ2(λ) have negative real parts.

    IfεB′(u?2)|>d+U′(u?2),we can also show that Reλ<0 for all roots ofΛ2(λ)=0 whileτis sufficiently small.However,ifτ=0,we haveα+d+U′(u?2)=εB′(u?2),which leads toα<0.Letα=0,β >0,then (3.2) leads to

    We obtain from (3.3) and (H1) thatβτis in the second quarter,and

    wheren ∈N0.LetTherefore if 0≤ τ < τ′′,then all roots ofΛ2(λ)=0 have negative real parts.This completes the proof.

    Summarizing the above discussion,we obtain the following results.

    Theorem 3.1Assume that (H1),(H2) and (H3) hold.Then as either|εB′(u?2)| ≤d+U′(u?2),0≤τ < τ′,or|εB′(u?2)| > d+U′(u?2),0≤τ < τ′′,ifτ?:=min{τ′,τ′′},(H2)and (H3) of Theorem 1.1 in [4] are satisfied for (2.2).

    Theorem 3.2Assume the assumptions (H1)-(H4) hold.Letτ?=min{τ′,τ′′},where

    Then as either|εB′(u?2)|≤d+U′(u?2),0≤τ <τ?,or|εB′(u?2)| ≥d+U′(u?2),0≤τ < τ?,there exists a constantc?>0,such that for everyc > c?,the equation (2.1) has a traveling wave,which connects the trivial equilibriumE1to the positive equilibriumE2.

    ProofNotice that if there is no diffusion,the equation (2.1) reduces to (2.2).From Lemma 3.1,Lemma 3.2,Theorem 3.1,we know that the equilibriaE1andE2are hyperbolic,and,in particular,all the eigenvalues toE2have negative real parts.From Theorem 3.2,the equation (2.2) has a heteroclinic connection.Thus if 0≤ τ < τ?,the conditions (H1),(H2) and (H3) of Theorem 1.1 in [4] are satisfied.In fact,for our kernel functionfα(x),for instance,it is easy to see that

    So all conditions of Theorem 1.1 in[4]are satisfied.Hence by Theorem 1.1 in[4],we conclude that there exists a constantc?>0 so that for anyc > c?,the equation (2.1) has a traveling wave solution which connectsE1toE2.This completes the proof.

    Remark 3.1In fact,as a consequence of Theorem 1.1 in [4],for eachc>c?,the set of all traveling wave solutions of (2.1) connecting zero toE2and propagating at speedcforms aC1-smoothM-dimensional manifold in someC([?τ,0],R)-neighborhood of the heteroclinic solution in Theorem 3.2.

    Now we return to study the first and the third equations of the given SIR model (1.2),

    Lets=x+ctandφ(s)=u2(x+ct) be the traveling wave solution of (2.1).Define?(z) :=u1(x+ct) andψ(z) :=u3(x+ct).We have wave profile equations for (1.2)

    where

    It is easy to see that equations (3.5) are independent DDEs with boundary value such that

    and

    whereu?2is the unique positive root ofg(u)=0.Thus,we have the following result.

    Theorem 3.3Let the conditions (H1)-(H4) hold.Then there exists a constantc?>0,such that for everyc>c?,the equations(1.2)have traveling wave solution(φ(s),?(s),ψ(s))connecting the trivial equilibriumE0(0,0,0) to the positive equilibriumE?(u?1,u?2,u?3) withs=x+ctandφ(·)∈[0,K]C.

    日本av免费视频播放| 2018国产大陆天天弄谢| 精品一品国产午夜福利视频| 国产成人欧美| 久久国内精品自在自线图片| 日本wwww免费看| 欧美亚洲 丝袜 人妻 在线| 亚洲激情五月婷婷啪啪| 亚洲精品乱码久久久久久按摩| 街头女战士在线观看网站| 少妇的逼好多水| 中文字幕精品免费在线观看视频 | 蜜臀久久99精品久久宅男| 2018国产大陆天天弄谢| 亚洲五月色婷婷综合| 久久久国产欧美日韩av| 亚洲欧美精品自产自拍| 777米奇影视久久| 一区二区三区乱码不卡18| 狠狠精品人妻久久久久久综合| 亚洲久久久国产精品| 婷婷色麻豆天堂久久| 大片电影免费在线观看免费| 黄色视频在线播放观看不卡| 午夜视频国产福利| 日韩一本色道免费dvd| 亚洲综合色惰| av不卡在线播放| av在线app专区| 日韩熟女老妇一区二区性免费视频| 亚洲熟女精品中文字幕| 久久热在线av| 欧美日韩亚洲高清精品| 国产精品一区二区在线观看99| 欧美人与性动交α欧美精品济南到 | 女人久久www免费人成看片| 亚洲色图 男人天堂 中文字幕 | 精品一品国产午夜福利视频| 欧美日韩成人在线一区二区| 欧美另类一区| 亚洲欧美日韩卡通动漫| 精品一区在线观看国产| 九九在线视频观看精品| 亚洲天堂av无毛| 男的添女的下面高潮视频| 亚洲av日韩在线播放| 只有这里有精品99| 精品一区二区免费观看| 欧美人与性动交α欧美精品济南到 | 黄色 视频免费看| 精品亚洲成国产av| 深夜精品福利| 人体艺术视频欧美日本| 国产男女超爽视频在线观看| 日本-黄色视频高清免费观看| 亚洲精品久久久久久婷婷小说| 中文欧美无线码| 日本vs欧美在线观看视频| 中文字幕最新亚洲高清| 男女国产视频网站| 91久久精品国产一区二区三区| 亚洲高清免费不卡视频| 欧美日韩国产mv在线观看视频| 狂野欧美激情性bbbbbb| 亚洲美女搞黄在线观看| 国产av一区二区精品久久| 欧美老熟妇乱子伦牲交| 久久精品人人爽人人爽视色| 国产黄色免费在线视频| 欧美日韩视频精品一区| 99久久中文字幕三级久久日本| 国产成人精品婷婷| 少妇熟女欧美另类| 国产在线视频一区二区| 国产精品国产三级国产av玫瑰| 最后的刺客免费高清国语| 国产日韩欧美亚洲二区| 欧美精品人与动牲交sv欧美| 97在线视频观看| 侵犯人妻中文字幕一二三四区| 国产精品不卡视频一区二区| 看非洲黑人一级黄片| 中文字幕av电影在线播放| 国产精品一二三区在线看| 热99久久久久精品小说推荐| 男人操女人黄网站| 久久午夜福利片| 新久久久久国产一级毛片| 精品国产露脸久久av麻豆| 中国三级夫妇交换| 久久久久国产精品人妻一区二区| 亚洲,欧美,日韩| 亚洲精品,欧美精品| 亚洲精品久久午夜乱码| 伊人久久国产一区二区| 一级片免费观看大全| 亚洲内射少妇av| 久久久久网色| 亚洲,欧美精品.| 亚洲色图 男人天堂 中文字幕 | 两个人免费观看高清视频| 视频在线观看一区二区三区| 久久青草综合色| 亚洲精品国产av蜜桃| 成人亚洲精品一区在线观看| 精品久久蜜臀av无| 日韩一区二区三区影片| 国产伦理片在线播放av一区| 亚洲欧美成人综合另类久久久| 国产成人a∨麻豆精品| 久久精品国产亚洲av天美| 99精国产麻豆久久婷婷| 九色成人免费人妻av| 久久精品夜色国产| www.av在线官网国产| 一区二区av电影网| 欧美人与性动交α欧美软件 | 久久青草综合色| 亚洲精品一区蜜桃| 一级片免费观看大全| 亚洲情色 制服丝袜| 中文字幕亚洲精品专区| 国产女主播在线喷水免费视频网站| www.熟女人妻精品国产 | 我的女老师完整版在线观看| 国产老妇伦熟女老妇高清| h视频一区二区三区| 国产男女超爽视频在线观看| 伦理电影免费视频| 国产乱人偷精品视频| 亚洲欧美一区二区三区黑人 | 久久久久网色| 久久久久国产网址| 国产精品人妻久久久影院| 亚洲国产精品成人久久小说| 久久久久精品人妻al黑| 少妇的丰满在线观看| 水蜜桃什么品种好| 成人亚洲精品一区在线观看| 亚洲欧洲精品一区二区精品久久久 | 精品一区二区免费观看| 久久精品夜色国产| 国产一区二区三区综合在线观看 | 精品一品国产午夜福利视频| 最新中文字幕久久久久| 日韩 亚洲 欧美在线| 高清视频免费观看一区二区| 黑人高潮一二区| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 国产国拍精品亚洲av在线观看| 国产日韩欧美视频二区| 大香蕉久久网| 国产亚洲欧美精品永久| 亚洲精品国产av蜜桃| 欧美xxⅹ黑人| 亚洲情色 制服丝袜| 国产在线一区二区三区精| 日本黄大片高清| 欧美精品av麻豆av| 亚洲少妇的诱惑av| 蜜臀久久99精品久久宅男| 久久韩国三级中文字幕| 国产精品人妻久久久久久| 欧美人与性动交α欧美精品济南到 | 中国国产av一级| 亚洲精品国产av蜜桃| 寂寞人妻少妇视频99o| 国产片内射在线| 纯流量卡能插随身wifi吗| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 国产成人精品一,二区| 最新的欧美精品一区二区| xxxhd国产人妻xxx| 成年动漫av网址| 亚洲精品,欧美精品| 大片免费播放器 马上看| 免费少妇av软件| 久久99精品国语久久久| www日本在线高清视频| 色5月婷婷丁香| 草草在线视频免费看| 国产片特级美女逼逼视频| 亚洲国产精品999| 日韩中字成人| 久久精品夜色国产| 肉色欧美久久久久久久蜜桃| 久久99热这里只频精品6学生| 涩涩av久久男人的天堂| 日产精品乱码卡一卡2卡三| 国产成人a∨麻豆精品| h视频一区二区三区| 久久精品国产自在天天线| 99久久精品国产国产毛片| 成年动漫av网址| 亚洲图色成人| 大话2 男鬼变身卡| 在线观看国产h片| 极品少妇高潮喷水抽搐| 欧美日韩成人在线一区二区| 男人爽女人下面视频在线观看| 在线精品无人区一区二区三| 免费av中文字幕在线| 免费黄网站久久成人精品| 亚洲精品aⅴ在线观看| 视频中文字幕在线观看| 午夜影院在线不卡| 精品一区二区免费观看| 欧美成人午夜精品| 永久免费av网站大全| 日本av手机在线免费观看| 国产又爽黄色视频| 国产国语露脸激情在线看| 亚洲国产色片| 大香蕉久久网| 天堂8中文在线网| 中文字幕制服av| 午夜福利网站1000一区二区三区| 男男h啪啪无遮挡| 久热这里只有精品99| 成人国产麻豆网| 亚洲精品第二区| 国产av精品麻豆| av天堂久久9| 日日啪夜夜爽| 99热国产这里只有精品6| av女优亚洲男人天堂| 亚洲精品美女久久av网站| 大片电影免费在线观看免费| videos熟女内射| 大香蕉久久成人网| 下体分泌物呈黄色| 一级毛片黄色毛片免费观看视频| 校园人妻丝袜中文字幕| 午夜视频国产福利| 午夜激情久久久久久久| 久久人人97超碰香蕉20202| 国产永久视频网站| 一区二区三区乱码不卡18| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 只有这里有精品99| 国产黄色视频一区二区在线观看| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 日韩成人伦理影院| 国产成人精品婷婷| 亚洲国产毛片av蜜桃av| 美女国产视频在线观看| 中文字幕制服av| 亚洲av中文av极速乱| 夜夜骑夜夜射夜夜干| 欧美激情国产日韩精品一区| 高清av免费在线| 亚洲精品一区蜜桃| 国产极品粉嫩免费观看在线| 99热这里只有是精品在线观看| 熟女电影av网| 久久精品国产综合久久久 | 最后的刺客免费高清国语| 欧美人与善性xxx| 亚洲欧洲日产国产| 国产亚洲精品第一综合不卡 | 免费黄频网站在线观看国产| 国产一区二区在线观看av| 欧美3d第一页| 久久99精品国语久久久| 亚洲五月色婷婷综合| 成年美女黄网站色视频大全免费| av国产久精品久网站免费入址| a级片在线免费高清观看视频| 爱豆传媒免费全集在线观看| 伊人久久国产一区二区| av福利片在线| 欧美亚洲日本最大视频资源| 超色免费av| 亚洲av免费高清在线观看| 日本黄色日本黄色录像| 久久热在线av| 中国美白少妇内射xxxbb| 少妇的丰满在线观看| 欧美成人午夜免费资源| 日韩精品有码人妻一区| 999精品在线视频| 天天躁夜夜躁狠狠久久av| 久久精品国产综合久久久 | 国内精品宾馆在线| 欧美日韩一区二区视频在线观看视频在线| 亚洲高清免费不卡视频| 人人妻人人澡人人爽人人夜夜| 美女xxoo啪啪120秒动态图| 久久精品熟女亚洲av麻豆精品| 一级毛片 在线播放| 飞空精品影院首页| av免费观看日本| 一边摸一边做爽爽视频免费| 男女下面插进去视频免费观看 | 国产精品国产三级专区第一集| 国产片特级美女逼逼视频| 精品国产一区二区三区久久久樱花| 日本av手机在线免费观看| 国产精品人妻久久久久久| 国产国拍精品亚洲av在线观看| videos熟女内射| 一区二区av电影网| 亚洲图色成人| 亚洲国产av影院在线观看| 亚洲精品中文字幕在线视频| 波多野结衣一区麻豆| 51国产日韩欧美| 久久鲁丝午夜福利片| 欧美精品av麻豆av| 亚洲人成网站在线观看播放| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 欧美bdsm另类| 女的被弄到高潮叫床怎么办| 五月伊人婷婷丁香| 在线亚洲精品国产二区图片欧美| 精品国产乱码久久久久久小说| 国产一级毛片在线| 大香蕉久久成人网| 免费看av在线观看网站| 男人操女人黄网站| 国产精品蜜桃在线观看| 免费观看a级毛片全部| 亚洲精品成人av观看孕妇| 大话2 男鬼变身卡| 亚洲国产色片| 日韩av不卡免费在线播放| 国产精品久久久久成人av| 亚洲成人av在线免费| 91精品国产国语对白视频| 深夜精品福利| 亚洲 欧美一区二区三区| 人妻一区二区av| 国产精品一区二区在线不卡| 午夜福利,免费看| www.熟女人妻精品国产 | 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 成年美女黄网站色视频大全免费| 在线 av 中文字幕| 国产免费一级a男人的天堂| 国产亚洲精品久久久com| 欧美日韩综合久久久久久| 国产免费一区二区三区四区乱码| 在线天堂最新版资源| 王馨瑶露胸无遮挡在线观看| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 精品酒店卫生间| 天堂8中文在线网| 高清视频免费观看一区二区| 久久97久久精品| 九草在线视频观看| 亚洲精品av麻豆狂野| 国产在线免费精品| 男男h啪啪无遮挡| 90打野战视频偷拍视频| 亚洲精品国产av成人精品| 香蕉丝袜av| 午夜91福利影院| 久久女婷五月综合色啪小说| 亚洲欧美清纯卡通| 国产成人精品无人区| 丰满少妇做爰视频| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 一级毛片黄色毛片免费观看视频| 在线 av 中文字幕| 1024视频免费在线观看| 下体分泌物呈黄色| 国产精品国产三级专区第一集| 三级国产精品片| freevideosex欧美| 国产精品一二三区在线看| av播播在线观看一区| 婷婷色av中文字幕| 大香蕉久久成人网| 中文字幕亚洲精品专区| 国产成人91sexporn| 精品亚洲乱码少妇综合久久| 亚洲美女视频黄频| 精品亚洲乱码少妇综合久久| 在线观看三级黄色| 午夜免费男女啪啪视频观看| 日韩成人av中文字幕在线观看| 在线精品无人区一区二区三| 美女福利国产在线| 国产av精品麻豆| 欧美人与性动交α欧美软件 | 999精品在线视频| 欧美日韩精品成人综合77777| 欧美成人精品欧美一级黄| 99热国产这里只有精品6| 亚洲图色成人| 777米奇影视久久| 日韩一区二区视频免费看| 伦理电影免费视频| 日本黄色日本黄色录像| 成人无遮挡网站| 成年美女黄网站色视频大全免费| 最近2019中文字幕mv第一页| 如日韩欧美国产精品一区二区三区| 欧美亚洲日本最大视频资源| 菩萨蛮人人尽说江南好唐韦庄| 极品少妇高潮喷水抽搐| 少妇的逼好多水| 久久久欧美国产精品| av一本久久久久| 尾随美女入室| 国产成人a∨麻豆精品| 九九在线视频观看精品| 欧美日韩av久久| 欧美亚洲 丝袜 人妻 在线| 欧美亚洲日本最大视频资源| 少妇人妻久久综合中文| 国产xxxxx性猛交| 午夜久久久在线观看| 欧美老熟妇乱子伦牲交| 91精品国产国语对白视频| 精品国产一区二区三区久久久樱花| 国内精品宾馆在线| 18在线观看网站| 另类精品久久| 亚洲国产精品专区欧美| 亚洲丝袜综合中文字幕| 亚洲国产精品一区三区| 久久久久久久久久久免费av| 中文字幕精品免费在线观看视频 | 中文字幕亚洲精品专区| 一本—道久久a久久精品蜜桃钙片| 久久狼人影院| 成人漫画全彩无遮挡| 捣出白浆h1v1| 午夜91福利影院| 亚洲一码二码三码区别大吗| 久久人人爽人人片av| 欧美人与性动交α欧美精品济南到 | 黄网站色视频无遮挡免费观看| 国产精品无大码| 三上悠亚av全集在线观看| 国产一区二区在线观看av| 免费少妇av软件| 久久ye,这里只有精品| 国产毛片在线视频| 嫩草影院入口| av网站免费在线观看视频| 欧美成人午夜精品| 搡女人真爽免费视频火全软件| 男女午夜视频在线观看 | 欧美激情极品国产一区二区三区 | 在线观看免费日韩欧美大片| 五月天丁香电影| 亚洲精品久久久久久婷婷小说| 亚洲国产成人一精品久久久| 国产欧美另类精品又又久久亚洲欧美| 97超碰精品成人国产| 精品少妇久久久久久888优播| 夫妻性生交免费视频一级片| 在线 av 中文字幕| 亚洲美女黄色视频免费看| 超碰97精品在线观看| 亚洲国产av影院在线观看| 精品一区二区三卡| 视频中文字幕在线观看| 熟女电影av网| 国产精品国产三级国产专区5o| 久久精品久久久久久噜噜老黄| 在线观看人妻少妇| 一边亲一边摸免费视频| 欧美+日韩+精品| 日日爽夜夜爽网站| 日本免费在线观看一区| 免费黄色在线免费观看| 搡女人真爽免费视频火全软件| 成人综合一区亚洲| 黑人欧美特级aaaaaa片| 久久国产精品大桥未久av| 在线 av 中文字幕| 成人黄色视频免费在线看| 乱人伦中国视频| 2018国产大陆天天弄谢| 日韩,欧美,国产一区二区三区| av电影中文网址| 国产黄色免费在线视频| 亚洲av在线观看美女高潮| 中文精品一卡2卡3卡4更新| kizo精华| 久久精品国产综合久久久 | 久久久久久人妻| 日韩三级伦理在线观看| 欧美+日韩+精品| 午夜福利影视在线免费观看| 欧美日韩成人在线一区二区| 极品少妇高潮喷水抽搐| 久久久久人妻精品一区果冻| 色网站视频免费| 亚洲欧美一区二区三区国产| 26uuu在线亚洲综合色| 国产日韩欧美在线精品| 校园人妻丝袜中文字幕| 国产免费福利视频在线观看| 日韩一区二区三区影片| 桃花免费在线播放| 国产不卡av网站在线观看| 亚洲婷婷狠狠爱综合网| 亚洲精品日韩在线中文字幕| 国产深夜福利视频在线观看| 一级a做视频免费观看| 不卡视频在线观看欧美| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| 国产日韩欧美亚洲二区| 久久热在线av| 免费女性裸体啪啪无遮挡网站| 免费黄色在线免费观看| 少妇人妻久久综合中文| a级片在线免费高清观看视频| 婷婷色麻豆天堂久久| 欧美成人午夜免费资源| www.熟女人妻精品国产 | 国产黄色视频一区二区在线观看| 免费播放大片免费观看视频在线观看| 久热这里只有精品99| 男男h啪啪无遮挡| 男女啪啪激烈高潮av片| 久久人人97超碰香蕉20202| 国产精品欧美亚洲77777| 岛国毛片在线播放| av女优亚洲男人天堂| 99热国产这里只有精品6| 亚洲精品久久成人aⅴ小说| 最近中文字幕高清免费大全6| 亚洲av日韩在线播放| 欧美 日韩 精品 国产| 国产国拍精品亚洲av在线观看| 国产欧美亚洲国产| 国产精品熟女久久久久浪| 欧美精品一区二区免费开放| 久久久a久久爽久久v久久| 中文字幕最新亚洲高清| 香蕉丝袜av| 蜜桃国产av成人99| 2018国产大陆天天弄谢| 成人免费观看视频高清| 亚洲精品第二区| 国产成人免费观看mmmm| 尾随美女入室| 国产精品熟女久久久久浪| 欧美日韩精品成人综合77777| 成年动漫av网址| 久久国产亚洲av麻豆专区| 男的添女的下面高潮视频| 久久精品国产亚洲av天美| 国产高清国产精品国产三级| 中文字幕另类日韩欧美亚洲嫩草| 欧美3d第一页| 高清av免费在线| 成人亚洲精品一区在线观看| 国产日韩欧美视频二区| 日韩三级伦理在线观看| 黄色配什么色好看| 51国产日韩欧美| 亚洲av.av天堂| 色5月婷婷丁香| 亚洲精品日本国产第一区| 成人国产麻豆网| 18禁国产床啪视频网站| 美国免费a级毛片| 欧美日韩视频精品一区| 精品一品国产午夜福利视频| 视频中文字幕在线观看| 美女大奶头黄色视频| 伊人久久国产一区二区| 综合色丁香网| 亚洲一码二码三码区别大吗| 久久精品国产亚洲av天美| 美女xxoo啪啪120秒动态图| 满18在线观看网站| 久久久久久人妻| 丰满迷人的少妇在线观看| 成人亚洲精品一区在线观看| 久久99热6这里只有精品| 啦啦啦在线观看免费高清www| 少妇高潮的动态图| 最近2019中文字幕mv第一页| 中国三级夫妇交换| 看免费成人av毛片| 我要看黄色一级片免费的| 免费高清在线观看视频在线观看| 天天影视国产精品| 久久 成人 亚洲| 欧美亚洲 丝袜 人妻 在线| 国产免费又黄又爽又色| 日本av手机在线免费观看| 日韩一本色道免费dvd| 一个人免费看片子| 国产亚洲最大av| av有码第一页| 人妻人人澡人人爽人人| 1024视频免费在线观看| 九九爱精品视频在线观看| 夫妻午夜视频| 成人免费观看视频高清| 久久精品夜色国产| 日韩精品有码人妻一区| av视频免费观看在线观看|