• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于D(-)/L(+)-對羥基苯甘氨酸配體的兩個銅配合物的合成、結(jié)構(gòu)和電化學(xué)性質(zhì)

    2019-06-06 01:48:30劉曼玉史亞靜王蘭芝宋會花
    無機化學(xué)學(xué)報 2019年6期
    關(guān)鍵詞:宋會蘭芝河北師范大學(xué)

    劉曼玉 史亞靜 王蘭芝 宋會花

    (河北師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,石家莊 050024)

    0 Introduction

    Currently,there has been increasing interest in creating of chiral compounds due to their potential applications,such as gas adsorption,catalysis,drug delivery,separation,fluorescence,non-linear optics[1-10].Chiral coordination polymers endued with plentiful structure,ultrahigh surface area and tunable ability should be regarded as promising potential chiral sensors[11-15]. Cyclic voltammogram(CV)technique provides highly selective,and fast speed operation,which be regarded as promising tool for exploring redox properties and chiral recognition[16-18].Generally,the predictable syntheses of chiral coordination frameworks have been accomplished in the following three ways:わusing the chiral ligands as a linker to connect metal ions[19];ぷusing achiral ligands under spontaneous resolution induced by chiral auxiliary[20];ぺusing the racemic organic ligands to self-assemble with metal ions in spontaneous resolution[21].However,the relative ease of formation by self-assembly usually be effected by many factors such as solvent system,ligand-to-metal ratios,temperature,metal ions,pH value of solution[22-27].Hence,the controllable synthesis of stable chiral coordination compounds becomes one of the most burdensome challenges to chemists.

    In the above methods,using the chiral ligands as a linker to construct chiral coordination compounds is the most effective method.Some optically active amino acid molecules with chiral centers such as L-glutamic acid,L-tartric acid,L-lactic acid,and organic ligands containing chiral polypyridyl or polycarboxylate groups,have already been widely used to obtain artificial chiral compounds[28-34].D(-)/L(+)-4-Hydroxyphenylglycine(D/L-Hhpg)have both amino and carboxyl functional groups,and as ligands they can coordinate metal ions by monodentate,bidentate,chelating and bridging mode.A literature survey revealed that examples of complexes based on D/L-Hhgp are sparse.Only a few examples of chiral cyclic assemblies have been reported to date.Ivan Bernal et al.[35]have reported[Cu(4HPG)(bpy)]·2H2O compounds(4HPG=D-4-hydroxyphenylglycinato,bpy=2,2′-bipyridine),and in 2015 the related compound[Cu(hpg)2(H2O)]nwas synthesized by the group of Yao[36].Our laboratory have reported three enantiomeric pairs of chiral coordination compounds,namely{[Zn(D-hpg)(4,4′-bipy)(H2O)]NO3}n,{[Zn(L-hpg)(4,4′-bipy)(H2O)]NO3}n,{[Zn(D-hpg)(4,4′-bipy)(H2O)]ClO4}n,{[Zn(L-hpg)(4,4′-bipy)(H2O)]ClO4}n,[Zn(D-hpg)2(4,4′-bipy)]·2(4,4′-bipy)·H2O,[Zn(L-hpg)2(4,4′-bipy)]·2(4,4′-bipy)·H2O(4,4′-bipy=4,4′-bipyridine),and discussed how the metal salts and pH value affect the structures and properties of the compounds[37].

    In this work two chiral coordination compounds assembled from copper salts and D/L-Hhpg,{[Cu(D-hpg)(phen)(NO3)]·1.5H2O}n(1)and{[Cu(L-hpg)(phen)(NO3)]·2H2O}n(2)(phen=1,10-phen-anthroline),were successfully synthesized and struc-turally characterized.Their crystal structures,TG-DTA analysis and cyclic voltammetry are discussed in detail.

    1 Experimental

    1.1 Materials and methods

    All reagents and solvents for syntheses were purchased from commercial sources and were used as received without further purification.Element analyses(C,H and N)were performed on an Elemental Vario EL elemental analyzer.Infrared (IR)spectra were measured on a FTIR-8900 spectrometer from 4 000 to 400 cm-1(KBr pellets).Thermogravimetry-differential scanning calorimetry (TG-DSC)experiments were carried out on a simultaneous STA 449F3/TENSOR 27 thermal analyzer under a static N2atmosphere with a heating rate 10℃·min-1from room temperature to 850℃.Powder X-ray diffraction(PXRD)patterns were collected on a Bruker D8-Advance X-ray diffractometer using Cu Kα radiation(λ=0.154 2 nm,U=40 kV,I=40 mA)in 2θrange of 5°~50°at room temperature.The solid state circular dichroism (CD)spectra were recorded on a JASCOJ-810 spectropolari-meter with KCl pellets.Cyclic voltammetry measurements were carried out on a CHI 660 electrochemical workstation at room temperature.Platinum gauze was used as a counter electrode,and a saturated calomel electrode(SCE)was used as reference electrode.Chemically bulk-modified carbon paste electrodes (CPEs)were used as the working electrodes.The compound(1 and 2)modified CPEs(1/2-CPE)was fabricated as follows:0.1 g of graphite powder and 0.01 g of(1 and 2)were mixed and ground together by an agate mortar and pestle to achieve a uniform mixture and then 0.1 mL paraffin oil was added with stirring.The homogenized mixture was packed into a plastic tube with a 2 mm inner diameter.Electrical contact was established with a copper rod through the back of electrode.

    1.2 Synthesis

    1.2.1 {[Cu(D-hpg)(phen)(NO3)]·1.5H2O}n(1)

    Cu(NO3)2·3H2O(0.024 1 g,0.1 mmol),D-Hhpg(0.016 7 g,0.1 mmol)was stirred into a 10 mL aqueous solution.A solution of phen(0.019 8 g,0.1 mmol)in EtOH(6 mL)was slowly added.The resulting solution was stirred for 20 minutes,The pH value of solution was adjusted to 4.8 with 1 mol·L-1NaOH solution,and the blue block-shaped transparent crystals 1 suitable for X-ray analysis were obtained with 66%yield based on Cu.Anal.Calcd.For C20H19N4O7.5Cu(%):C,48.14;H,3.83;N,11.22.Found(%):C,48.03;H,3.91;N,11.00.IR (KBr,cm-1):3 417 (w),3 286(s),3 232(m),1 635(s),1 519(m),1 465(w),1 427(m),1 388(s),1 327(s),1 249(m),1 141(m),1 103(w),1 018(m),848(m),833(m),794(w),725(m),609(w),570(w)。

    1.2.2 {[Cu(L-hpg)(phen)(NO3)]·2H2O}n(2)

    Compound 2 was synthesized in a procedure similar to that for 1 except that L-Hhpg(0.016 7 g,0.1 mmol)was used instead of D-Hhpg(0.016 7 g,0.1 mmol).The blue block-shaped transparent crystals of 2 were obtained with 62%yield based on Cu.Anal.Calcd.for C20H20N4O8Cu(%):C,47.29;H,3.96;N,11.03.Found(%):C,47.73;H,3.91;N,11.29.IR(KBr,cm-1):3 417(w),3 286(s),3 232(m),1 635(s),1 519(m),1 465(w),1 427(m),1 388(s),1 327(s),1 249(m),1 141(m),1 103(w),1 018(m),848(m),833(m),794(w),725(m),609(w),570(w).

    1.3 X-ray crystallography

    Single-crystal X-ray crystals for title compounds were selected for single-crystal diffraction analyses(Crystal size:0.31 mm×0.20 mm×0.15 mm for 1;0.29 mm×0.18 mm×0.12 mm for 2).The data for 1 and 2 were collected on a Bruker SMART-CCD diffractometer by φ-ω scan mode.The structure was solved through direct methods using SHELXS-97 and all non-hydrogen atoms were refined anisotropically by full-matrix leastsquares on F2using SHELXL-97[38].Further crystallographic data and experimental details for structural analyses of compounds 1 and 2 are summarized in Table 1.

    CCDC:1440300,1;1505353,2.

    Table 1 Crystal data and structure refinements for 1 and 2

    Reflection collected,unique 4 754,3 186(R int=0.013 3) 5 248,3 294(R int=0.022 4)Completeness toθ/% 99.7 99.7 Max.and min.transmission 1.000 00 and 0.824 28 1.000 00 and 0.995 98 Data,restraint,parameter 3 186,0,299 3 294,0,305 GOF 1.058 1.063 R1,wR2[I>2σ(I)] 0.029 7,0.099 2 0.033 2,0.083 5 R1,wR2(all data) 0.031 9,0.100 6 0.036 1,0.085 2 Absolute structure parameter -0.01(3) 0.000(14)Largest diff.peak and hole/(e·nm-3) -290 and-410 317 and-492 Flack parameter -0.01(3) 0.000(14)

    2 Results and discussion

    2.1 Crystal structure

    Single crystal X-ray diffraction analysis revealed that compound 1 crystallizes in the Orthorhombic space group of P212121and possesses a 1D chain structure.As shown in Fig.1,the asymmetric unit is composed of one Cuギcation,one D-hpg-anion,one phen ligand,one and a half coordinated water molecule and one nitrate counter anion.Each Cuギexhibits a distorted octahedral geometry,which is six-coordinated by three oxygen atoms (O1,O6,O7)from one D-hpg-anion and two nitrate counter anions,and nitrogen atoms(N3,N1,N2)from one D-hpg-anion and one phen ligand.The O1,N1,N2 and N3 atoms form the equatorial plane,O6 and O7 atoms occupy the apical positions.The Cu-O bond lengths are 0.192 3(2)and 0.262 0(3)nm,and the Cu-N bond lengths range are between 0.199 9(2)and 0.201 3(3)nm,which are in accordance with the previously reported complexes[39].Selected bond lengths and angles are given in Table 2.

    Fig.1 Coordination environment of Cuギfor 1(a)and 2(b)

    For compound 1,nitrate counter anion bridges two Cuギions through two different oxygen atoms(O6,O7)to form a 1D infinite linear structure along the a-axis direction.As shown in Fig.2,the 1D chains are stacked in an ABAB fashion along the b-axis direction with the shortest Cu-Cu distance between adjacent chains being 0.867 54(7)nm.D-hpg-and phen coordinate with Cu2+in bidentate chelate coordination mode as modifying ligands,and arrange on both sides of the chain.It is worth noting that these chains are further extended through extensive hydrogen bonding interactions(Table 3):(1)hydrogen bonding between lattice water and lattice water(O(8)…O(7)#5 0.308 3(7)nm);(2) hydrogen bonding between lattice water and coordinated carboxyl oxygen atom (O(7)…O(1)#4 0.314 9(4)nm);(3)hydrogen bonding between lattice water and uncoordinated carboxyl oxygen atom(O(7)…O(2)#4 0.276 2(4)nm);(4)hydrogen bonding between lattice water and phenol hydroxyl oxygen atom(O(3)…O(7)#3 0.263 7(4)nm);(5)hydrogen bonding between the amino nitrogen atom of the coordination and the phenolic hydroxyl oxygen atom of another molecule(N(3)…O(3)#2 0.309 2(4)nm);(6)hydrogen bonding between the coordinated amino nitrogen atom and the coordinated nitrate anionoxygen atom(N(3)…O(5)#1 0.316 3(4)nm);(7)hydrogen bonding between lattice water and coordinated nitrate anion oxygen atom(O(7)…O(6)0.281 7(4)nm,O(8)…O(4)0.308 4(4)nm).Interestingly,between lattice water molecules and coordination nitrate anions there exist extensive hydrogen bonds(O(7)…O(6)0.281 7(4)nm,O(8)…O(4)0.308 4(4)nm,O(8)…O(7)#5 0.308 3(7)nm)resulting in a 1D left-handed helical chain along the b-axis direction(Fig.3).The adjacent chain form weak π-π stacking interaction through the phen ligand(Fig.4).The combination of hydrogen bonding and π-π stacking makes the 3D supramolecular structure of the compounds more stable.

    Table 2 Selected bond distances(nm)and angles(°)for compound 1

    Table 3 Hydrogen bond parameters for compound 1

    Fig.2 ABAB stacking along b axis for 1(a)and 2(b)

    By comparing the crystallography data of 1 and 2 showed in Table 1 as well as Fig.1a and Fig.1b,their different chirality is caused by the different chirality of main ligands,namely D-Hhpg and L-Hhpg.As shown in Fig.3b,the difference of their crystal structures is that L-hpg-ligands form right-handed supramolecular helices along the b-axis for 2 by the extensive hydrogen bond between lattice water molecules and coordination nitrate anion(O(7)…O(5)#2 0.278 1(4)nm,O(8)…O(7)#1 0.299 1(5)nm,O(8)…O(4)0.303 9(5)nm;Table 4).In addition,the Cu-O bond lengths are 0.192 5(2)and 0.261 3(2)nm,and the Cu-N bond lengths are 0.199 6(3)and 0.200 7(3)nm for 2.Selected bond lengths and angles are given in Table 5.

    Fig.3 (a)One dimensional left-handed double stranded helices of compound 1;(b)One dimensional right-handed double stranded helices of compound 2

    Fig.4 Three dimensional supramolecular layers formed by hydrogen bonding and π-π stacking for 1(a)and 2(b)

    Table 4 Hydrogen bond parameters for compound 2

    Table 5 Selected bond distances(nm)and angles(°)for compound 2

    2.2 Powder X-ray diffraction analyses and IR spectra

    Fig.5 PXRD patterns for 1(a)and 2(b)

    Fig.6 IR spectra of 1(a)and 2(b)

    The PXRD patterns for 1 and 2 are presented in Fig.5.The main peaks of simulated spectra of 1 and 2 matched well with their experimental spectra,demonstrating the crystallization degree and the purity of crystalline phase are both good.Theνas(COO-)and νs(COO-)vibrations of D-hpg-/L-hpg-can be observed at 1 635 and 1 427 cm-1.The peak at 1 249 cm-1is due toν(C-O)vibrations of phenolic hydroxyl group,and the peaks at 1 327 cm-1are due toνas(C-N)vibrations of amino-groups which connect to the carbon atoms in amino-acids.The(C-C)and(C=N)vibrations of phen can be observed at 1 519 and 1 388 cm-1,which had a certain degree of red-or blue-shift compared to the related absorption peak of phen at 1 504 and 1 419 cm-1,respectively.Meanwhile,the(C-H)bending vibration of phen at 840 and 732 cm-1have moved to 848 and 725 cm-1,respectively.This result indicates that the phen molecules have coordinated with metal.In addition,the strong peaks at 3 244~3 348 cm-1are due toν(N-H)vibrations of D-hpg-/L-hpg-ligands(Fig.6).

    2.3 Circular dichroism spectra properties

    Fig.7 Solid-state CD spectra of D-Hhpg/L-Hhpg and compounds 1 and 2

    The solid-state circular dichroism(CD)spectra of compounds 1 and 2 were investigated at room temperature,as shown in Fig.7.Chiral ligand D-Hhpg displayed positive peak value at 245,261 and 283 nm,while L-Hhpg displayed negative peak value at 240,268 and 284 nm.Compound 1 displayed negative peak value at 237,275 and 305 nm,and compound 2 displays positive peak value at 254,282 and 306 nm.From the CD spectra,we can clearly see that 1 and 2 both show obvious Cotton effect,which confirms the two compounds are chiral compounds.Besides the opposite CD signal in the same peak position from compounds 1 and 2,we can come up with a conclusion is that their CD spectra are image symmetrical,while the CD signal direction of the compound is affected by chiral ligands(Fig.7).

    2.4 Thermal analyses

    The TG/DTG-DSC methods were used to describe thermal decomposition of synthesized compounds in air as shown in the Fig.8.The thermal decomposition results are presented in Table 6.Compound 1 is fairly stable before 121.37℃.The first weight loss in a temperature range of 121.37~181.37 ℃ is consistent with the removal of one and a half lattice water molecules(Obsd.4.55%,Calcd.5.41%).On the DSC curve,endothermic peak was observed at about 173.37℃,which can prove the loss of one and a half lattice water molecules.The second and third decomposition steps occurred in a temperature range of 181.37~251.37℃ and 251.37~481.15℃ with a weight loss of 21.49%and 24.51%,respectively,against calculated weight loss of 45.32%,corresponding to the loss of D-Hhpg and part of nitrate anion.Therewere a strong exothermic peak(195.87℃)and a weak exothermic peak (301.87℃)on the DSC curve,corresponding to the decomposition and degradation D-Hhpg and part of nitrate anion.The fourth decomposition steps took place at the temperature of 481.37℃,and until 850℃ no platform appeared,which indicates that the compound has not completely lost weight.

    Table 6 Thermal decomposition data for compounds 1 and 2

    Fig.8 TG-DTG and DSC curves of compounds 1(a)and 2(b)

    Compound 2 is relatively stable before 124.38℃.The first weight loss in the temperature range of 124.38~159.38 ℃ is consistent with the removal of two lattice water molecules (Obsd.7.39%,Calcd.7.09%).On the DSC curve,endothermic peak was observed at about 173.88℃,which can prove the decomposition of one and two lattice water molecules.The second and third decomposition steps occurred in a temperature range of 159.38~180.88 ℃ and 180.88~256.88 ℃ with a weight loss of 2.90%and 21.02%,respectively,against calculated weight loss of 24.42%,corresponding to the loss of two nitrate anion.There were a weak exothermic peak(167.38℃)and a strong exothermic peak (194.88℃)on the DSC curve,corresponding to the decomposition two nitrate anion.The fourth decomposition steps took place at the temperature of 256.88℃,and no platform appeared until 850℃,indicating that the compound has not completely lost weight.

    2.5 Cyclic voltammetry

    We investigated the electrochemical behavior of the compounds by cyclic voltammetry(CV).Typically,the carbon paste electrodes modified by 1 and 2 were constructed and then electrochemical properties were studied in 1 mol·L-1H2SO4solution at different scan rates in a voltage range of-0.75~1.00 V.It can be seen that the potential of oxidation peak increased and that the potential of reduction peak decreased with the scan rate increasing (Fig.9a,c).Analysis of cyclic voltammetry at varying scan rates (0.03~0.13 V·s-1)demonstrates a linear relationship between the anode peakⅠ (or anodic peakⅠ′)current and the scan rate (Fig.9b,d),indicating a surface-controlled electrochemical process.

    Fig.9 Cyclic voltammograms of compounds 1(a)and 2(c);Change of anodic and anode current(Ia)vs scan rate for compounds 1(b)and 2(d)

    3 Conclusions

    In summary,one pair of chiral coordination compounds{[Cu(D-hpg)(phen)(NO3)]·1.5H2O}n(1)and{[Cu(L-hpg)(phen)(NO3)]·2H2O}n(2)have been described in detail.They are 1D chain structure,which is extended into a 3D supramolecular structure by the hydrogen bond.Interestingly,for compounds 1 and 2,there exist left-handed or right-handed supramolecular helix chains along thebaxis direction by the hydrogen bond,respectively,which is extended by the hydrogen bond between coordinated nitrate anion and lattice water.The TG-DTG and DSC curves reveal that the frameworks of compounds 1 and 2 are thermally stable before 120℃.These phenomenon may be attributed to the coexistence of strong hydrogen bonding interaction,π-π stacking interaction and coordination interaction.The cyclic voltammetry of the compounds at varying scan rates (0.03~0.13 V·s-1)demonstrates a linear relationship between the anode peakⅠ (or anodic peak Ⅰ′)current and the scan rate,indicating a surface-controlled electrochemical process.

    猜你喜歡
    宋會蘭芝河北師范大學(xué)
    基于D-(-)-/L-(+)-對羥基苯甘氨酸的兩對手性鈷配合物的合成、晶體結(jié)構(gòu)和電化學(xué)識別
    賀河北師范大學(xué)百廿校慶
    《找不同》上月答案
    河北師范大學(xué)美術(shù)與設(shè)計學(xué)院油畫作品選登
    高靈敏度Sb基量子阱2DEG的霍爾器件
    《宋會要輯稿》“西人最重寒食”考
    西夏學(xué)(2018年2期)2018-05-15 11:21:48
    Blooming Air春風(fēng)輕舞,妝彩飛揚
    女友·家園(2017年5期)2017-05-26 11:55:23
    高等學(xué)校書法創(chuàng)作教學(xué)摭談——以河北師范大學(xué)為例
    蘭芝LUCKY CHOUETTE時尚定制版
    女友·家園(2016年10期)2016-11-10 19:56:36
    蘭芝發(fā)布最I(lǐng)N試妝APP《K妝美人鏡》
    女友·家園(2016年6期)2016-08-09 20:46:35
    菩萨蛮人人尽说江南好唐韦庄| 天堂8中文在线网| 18在线观看网站| 国产精品香港三级国产av潘金莲| 999久久久精品免费观看国产| 久久久久网色| 成人18禁高潮啪啪吃奶动态图| 一区在线观看完整版| 汤姆久久久久久久影院中文字幕| 亚洲精品粉嫩美女一区| 色在线成人网| 757午夜福利合集在线观看| 久久久精品94久久精品| 俄罗斯特黄特色一大片| 日韩欧美三级三区| 国产精品麻豆人妻色哟哟久久| 久久久久网色| 精品高清国产在线一区| 黄色怎么调成土黄色| 精品午夜福利视频在线观看一区 | 国产精品二区激情视频| 日韩中文字幕欧美一区二区| 午夜福利影视在线免费观看| 看免费av毛片| 法律面前人人平等表现在哪些方面| 在线观看免费午夜福利视频| 国产免费福利视频在线观看| 99在线人妻在线中文字幕 | 国产精品久久久久久精品电影小说| 国产免费视频播放在线视频| 啦啦啦在线免费观看视频4| 我的亚洲天堂| av网站在线播放免费| 精品熟女少妇八av免费久了| 视频在线观看一区二区三区| 国产亚洲精品久久久久5区| 性高湖久久久久久久久免费观看| 国产高清激情床上av| 日本五十路高清| 一区二区三区乱码不卡18| 黄色毛片三级朝国网站| 搡老乐熟女国产| 国产成人一区二区三区免费视频网站| 高清毛片免费观看视频网站 | 国产欧美日韩一区二区精品| 最近最新中文字幕大全免费视频| 不卡av一区二区三区| 精品亚洲成a人片在线观看| www日本在线高清视频| 日日夜夜操网爽| 高清在线国产一区| 午夜成年电影在线免费观看| 久久久精品国产亚洲av高清涩受| 一区二区三区精品91| 天堂中文最新版在线下载| 人妻一区二区av| 91精品三级在线观看| 久久毛片免费看一区二区三区| 国产精品久久久人人做人人爽| 天天影视国产精品| 亚洲欧美色中文字幕在线| 日韩成人在线观看一区二区三区| 亚洲少妇的诱惑av| 久久久久久人人人人人| 精品国产亚洲在线| 午夜激情av网站| 下体分泌物呈黄色| 在线 av 中文字幕| 成人永久免费在线观看视频 | 久久天堂一区二区三区四区| 少妇被粗大的猛进出69影院| 一区福利在线观看| av线在线观看网站| 精品国产亚洲在线| 超碰97精品在线观看| 国产精品一区二区精品视频观看| 夜夜骑夜夜射夜夜干| 国产免费视频播放在线视频| 窝窝影院91人妻| 亚洲精品av麻豆狂野| 怎么达到女性高潮| 精品国内亚洲2022精品成人 | 欧美日韩成人在线一区二区| 狠狠狠狠99中文字幕| 女性生殖器流出的白浆| 五月开心婷婷网| 日韩 欧美 亚洲 中文字幕| 亚洲国产毛片av蜜桃av| 91字幕亚洲| 女人被躁到高潮嗷嗷叫费观| 午夜两性在线视频| 少妇 在线观看| 午夜激情av网站| 老司机在亚洲福利影院| 老司机亚洲免费影院| 色综合婷婷激情| 91精品国产国语对白视频| 久久 成人 亚洲| 日日夜夜操网爽| 亚洲精品av麻豆狂野| 国产视频一区二区在线看| 麻豆乱淫一区二区| www.自偷自拍.com| 97在线人人人人妻| 亚洲精品美女久久久久99蜜臀| 久久精品国产亚洲av香蕉五月 | 亚洲国产看品久久| 人人妻人人澡人人爽人人夜夜| 亚洲精品国产精品久久久不卡| 国产成人精品在线电影| 久久精品亚洲av国产电影网| 狂野欧美激情性xxxx| 中文字幕av电影在线播放| 欧美人与性动交α欧美软件| 国产亚洲av高清不卡| 悠悠久久av| 美女午夜性视频免费| 精品人妻在线不人妻| 捣出白浆h1v1| 18在线观看网站| 精品熟女少妇八av免费久了| 国产一区二区在线观看av| av一本久久久久| 欧美人与性动交α欧美软件| 99国产极品粉嫩在线观看| 国产精品二区激情视频| 亚洲av欧美aⅴ国产| 最新在线观看一区二区三区| 黑人猛操日本美女一级片| 国精品久久久久久国模美| 丰满迷人的少妇在线观看| 午夜福利视频精品| 亚洲欧美一区二区三区久久| 欧美乱码精品一区二区三区| 一区二区三区乱码不卡18| 香蕉久久夜色| 国产亚洲精品一区二区www | 亚洲avbb在线观看| 亚洲精品乱久久久久久| 亚洲成国产人片在线观看| 精品久久久久久电影网| 久久精品国产99精品国产亚洲性色 | 亚洲欧美色中文字幕在线| 久久狼人影院| 久久中文看片网| 欧美日韩亚洲综合一区二区三区_| 亚洲精品粉嫩美女一区| 日韩三级视频一区二区三区| 亚洲男人天堂网一区| 电影成人av| 欧美国产精品一级二级三级| 久久久久网色| 成人av一区二区三区在线看| av线在线观看网站| 欧美午夜高清在线| 男人舔女人的私密视频| 999久久久国产精品视频| 亚洲专区中文字幕在线| 欧美+亚洲+日韩+国产| 18禁观看日本| 十八禁高潮呻吟视频| 一个人免费看片子| 久久久水蜜桃国产精品网| 亚洲中文av在线| 俄罗斯特黄特色一大片| av福利片在线| 黑人欧美特级aaaaaa片| 少妇猛男粗大的猛烈进出视频| 亚洲成人手机| 女性被躁到高潮视频| 国产精品1区2区在线观看. | 18禁国产床啪视频网站| 久久久欧美国产精品| 黄片小视频在线播放| 午夜福利一区二区在线看| 国产av一区二区精品久久| 亚洲av日韩精品久久久久久密| 国产精品一区二区在线观看99| 岛国毛片在线播放| 亚洲性夜色夜夜综合| 美女高潮到喷水免费观看| 性高湖久久久久久久久免费观看| 狠狠婷婷综合久久久久久88av| 国产一区二区激情短视频| 一进一出好大好爽视频| 久久久久久免费高清国产稀缺| 建设人人有责人人尽责人人享有的| 国产精品影院久久| 亚洲成人免费电影在线观看| 欧美成人午夜精品| 久久久久久免费高清国产稀缺| 亚洲第一av免费看| 久久精品熟女亚洲av麻豆精品| 露出奶头的视频| 国产熟女午夜一区二区三区| 亚洲avbb在线观看| 美女福利国产在线| 亚洲三区欧美一区| 少妇精品久久久久久久| 久久久水蜜桃国产精品网| cao死你这个sao货| 日本wwww免费看| 三级毛片av免费| 自拍欧美九色日韩亚洲蝌蚪91| 我的亚洲天堂| 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 亚洲视频免费观看视频| 天天添夜夜摸| 麻豆av在线久日| 国产色视频综合| 成人国语在线视频| 欧美精品av麻豆av| 我要看黄色一级片免费的| 丰满少妇做爰视频| 在线观看66精品国产| 少妇粗大呻吟视频| 人妻 亚洲 视频| 日韩熟女老妇一区二区性免费视频| 1024视频免费在线观看| 国产亚洲午夜精品一区二区久久| 男男h啪啪无遮挡| 免费在线观看视频国产中文字幕亚洲| 午夜精品国产一区二区电影| 亚洲国产看品久久| 国产精品.久久久| 免费女性裸体啪啪无遮挡网站| 久久久久国内视频| 青草久久国产| 在线av久久热| 久久青草综合色| 久久国产亚洲av麻豆专区| 欧美精品亚洲一区二区| 亚洲精品中文字幕在线视频| 久久久国产欧美日韩av| 日韩欧美一区二区三区在线观看 | 女人爽到高潮嗷嗷叫在线视频| 美女视频免费永久观看网站| 波多野结衣av一区二区av| 91麻豆精品激情在线观看国产 | 精品少妇内射三级| 亚洲成国产人片在线观看| 国产熟女午夜一区二区三区| 欧美成人免费av一区二区三区 | 在线看a的网站| 日韩有码中文字幕| 成人18禁高潮啪啪吃奶动态图| 亚洲自偷自拍图片 自拍| 国产深夜福利视频在线观看| 久久天堂一区二区三区四区| 夜夜爽天天搞| 亚洲综合色网址| netflix在线观看网站| 欧美 日韩 精品 国产| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 国产激情久久老熟女| 亚洲欧美日韩高清在线视频 | 国产主播在线观看一区二区| 国产淫语在线视频| 成年动漫av网址| 黄频高清免费视频| 桃红色精品国产亚洲av| 两人在一起打扑克的视频| 看免费av毛片| 精品国产亚洲在线| 两个人免费观看高清视频| 黄频高清免费视频| 成人黄色视频免费在线看| 久久久久精品国产欧美久久久| 一区二区三区乱码不卡18| 妹子高潮喷水视频| 久久久国产欧美日韩av| 黄频高清免费视频| 一本色道久久久久久精品综合| 大片免费播放器 马上看| 91字幕亚洲| 国产一区二区三区综合在线观看| 欧美精品人与动牲交sv欧美| 国产成人欧美在线观看 | 美女扒开内裤让男人捅视频| 亚洲欧美一区二区三区久久| 国产日韩欧美在线精品| 女人久久www免费人成看片| 成在线人永久免费视频| tocl精华| 成人国语在线视频| xxxhd国产人妻xxx| 激情视频va一区二区三区| h视频一区二区三区| 最近最新中文字幕大全免费视频| 国产区一区二久久| 亚洲国产欧美网| 嫩草影视91久久| 亚洲人成77777在线视频| 欧美日韩成人在线一区二区| 免费久久久久久久精品成人欧美视频| 欧美性长视频在线观看| 国产日韩欧美亚洲二区| 国产av精品麻豆| 久久久国产成人免费| 国产精品亚洲av一区麻豆| 91老司机精品| 国产精品一区二区精品视频观看| av视频免费观看在线观看| 夜夜爽天天搞| 可以免费在线观看a视频的电影网站| 精品午夜福利视频在线观看一区 | 色综合欧美亚洲国产小说| 久久99热这里只频精品6学生| 日韩一区二区三区影片| av在线播放免费不卡| 免费高清在线观看日韩| 午夜老司机福利片| 精品一区二区三区av网在线观看 | 嫩草影视91久久| 国产一区二区三区综合在线观看| 亚洲黑人精品在线| 多毛熟女@视频| 亚洲一区中文字幕在线| 人人妻,人人澡人人爽秒播| 国产一区二区激情短视频| 欧美日韩视频精品一区| 国产在线精品亚洲第一网站| 欧美精品亚洲一区二区| 成年动漫av网址| 久久精品国产亚洲av高清一级| 中文字幕色久视频| 久久精品亚洲精品国产色婷小说| 十八禁高潮呻吟视频| 露出奶头的视频| 99久久国产精品久久久| 日日摸夜夜添夜夜添小说| 欧美成人午夜精品| 蜜桃在线观看..| 丝袜人妻中文字幕| 国产片内射在线| 国产精品1区2区在线观看. | 天天躁狠狠躁夜夜躁狠狠躁| 精品少妇黑人巨大在线播放| 中亚洲国语对白在线视频| 亚洲第一欧美日韩一区二区三区 | 在线观看66精品国产| 波多野结衣av一区二区av| 欧美日韩亚洲综合一区二区三区_| 69精品国产乱码久久久| 一级毛片女人18水好多| 国产一区二区三区视频了| 亚洲,欧美精品.| 国产精品偷伦视频观看了| av天堂久久9| 亚洲成人免费电影在线观看| 少妇被粗大的猛进出69影院| 国产精品 国内视频| 99国产精品99久久久久| 亚洲五月色婷婷综合| 80岁老熟妇乱子伦牲交| 啪啪无遮挡十八禁网站| 精品午夜福利视频在线观看一区 | 久久久久久人人人人人| 亚洲成av片中文字幕在线观看| a在线观看视频网站| 久久影院123| 欧美成人午夜精品| 99精品欧美一区二区三区四区| a在线观看视频网站| 国产精品一区二区免费欧美| 动漫黄色视频在线观看| 99国产精品免费福利视频| 亚洲五月婷婷丁香| 亚洲欧美日韩高清在线视频 | 电影成人av| 黑人猛操日本美女一级片| 欧美精品亚洲一区二区| 日韩欧美一区视频在线观看| av网站免费在线观看视频| 色尼玛亚洲综合影院| 午夜激情av网站| 在线永久观看黄色视频| 又大又爽又粗| 9色porny在线观看| 午夜视频精品福利| 国产欧美亚洲国产| 视频区图区小说| netflix在线观看网站| 国产亚洲精品第一综合不卡| 91av网站免费观看| 午夜久久久在线观看| 777久久人妻少妇嫩草av网站| 精品国产一区二区三区四区第35| 母亲3免费完整高清在线观看| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 日本黄色日本黄色录像| 男人操女人黄网站| 中文字幕av电影在线播放| av线在线观看网站| 18禁美女被吸乳视频| 国产男女内射视频| 精品少妇一区二区三区视频日本电影| 国产不卡av网站在线观看| 18在线观看网站| 免费在线观看日本一区| 国产在线一区二区三区精| 国内毛片毛片毛片毛片毛片| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 国产精品免费一区二区三区在线 | 精品人妻在线不人妻| 亚洲人成电影观看| 日日爽夜夜爽网站| 丝瓜视频免费看黄片| 国产亚洲精品久久久久5区| 欧美国产精品一级二级三级| 一边摸一边做爽爽视频免费| 91精品三级在线观看| 亚洲伊人久久精品综合| 免费在线观看视频国产中文字幕亚洲| av在线播放免费不卡| 国产精品成人在线| 一级毛片女人18水好多| 99久久人妻综合| 亚洲黑人精品在线| 精品第一国产精品| 999久久久国产精品视频| 男女之事视频高清在线观看| √禁漫天堂资源中文www| 国产无遮挡羞羞视频在线观看| 老司机影院毛片| 国产激情久久老熟女| 热re99久久精品国产66热6| 色94色欧美一区二区| 十分钟在线观看高清视频www| a级毛片黄视频| 十八禁网站网址无遮挡| 18禁黄网站禁片午夜丰满| 中文字幕精品免费在线观看视频| 欧美变态另类bdsm刘玥| 99香蕉大伊视频| 久久精品亚洲熟妇少妇任你| 国产一卡二卡三卡精品| 在线观看免费午夜福利视频| 精品久久久精品久久久| 国产不卡av网站在线观看| 99热国产这里只有精品6| 国产视频一区二区在线看| 亚洲精品国产精品久久久不卡| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品久久久久久精品古装| av有码第一页| 午夜激情久久久久久久| 黄色 视频免费看| 中文字幕人妻丝袜制服| 人人妻人人爽人人添夜夜欢视频| 青草久久国产| 亚洲欧美一区二区三区久久| 黄片小视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 美女国产高潮福利片在线看| 欧美日本中文国产一区发布| 精品久久蜜臀av无| 日本黄色视频三级网站网址 | 久久久欧美国产精品| 欧美黄色淫秽网站| 中文亚洲av片在线观看爽 | 99精品欧美一区二区三区四区| 99久久精品国产亚洲精品| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美亚洲国产| 熟女少妇亚洲综合色aaa.| 亚洲国产欧美日韩在线播放| 高清黄色对白视频在线免费看| 国产精品一区二区免费欧美| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 国产一区二区三区视频了| 男女免费视频国产| 怎么达到女性高潮| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 少妇 在线观看| 18禁美女被吸乳视频| 欧美久久黑人一区二区| 99re在线观看精品视频| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品区二区三区| 男女下面插进去视频免费观看| 亚洲精品av麻豆狂野| 国产伦理片在线播放av一区| 老司机福利观看| 在线亚洲精品国产二区图片欧美| 久久天躁狠狠躁夜夜2o2o| 成人永久免费在线观看视频 | 婷婷丁香在线五月| 亚洲 国产 在线| 一区二区三区精品91| a级毛片黄视频| 国产一区二区三区在线臀色熟女 | 极品少妇高潮喷水抽搐| 成人黄色视频免费在线看| 岛国在线观看网站| 女人久久www免费人成看片| 久久久久精品国产欧美久久久| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 亚洲一区中文字幕在线| 国产精品.久久久| 91精品国产国语对白视频| 大香蕉久久网| 黑人欧美特级aaaaaa片| 国产xxxxx性猛交| 国产精品秋霞免费鲁丝片| 亚洲成人免费电影在线观看| 免费观看av网站的网址| 国产成人免费无遮挡视频| 一进一出好大好爽视频| 成年女人毛片免费观看观看9 | av一本久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 久热爱精品视频在线9| 精品国产乱码久久久久久男人| 精品国内亚洲2022精品成人 | 欧美人与性动交α欧美软件| 国产精品.久久久| 成人影院久久| 日本欧美视频一区| 亚洲伊人久久精品综合| 另类精品久久| 国产精品 国内视频| 一本大道久久a久久精品| 国产在线免费精品| 久久热在线av| 国产淫语在线视频| 成人国语在线视频| 丝瓜视频免费看黄片| 免费人妻精品一区二区三区视频| 色老头精品视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲色图综合在线观看| 国产欧美日韩一区二区三| 一级片'在线观看视频| 老熟女久久久| 欧美日韩福利视频一区二区| 国产日韩欧美视频二区| 国产免费福利视频在线观看| 9191精品国产免费久久| 国产一区二区三区综合在线观看| 亚洲欧洲日产国产| 国产又爽黄色视频| 国产一区二区在线观看av| 老汉色∧v一级毛片| 高清毛片免费观看视频网站 | 久久久久久久大尺度免费视频| 中国美女看黄片| 色婷婷久久久亚洲欧美| 国产有黄有色有爽视频| 成人精品一区二区免费| 亚洲熟妇熟女久久| 丰满迷人的少妇在线观看| 久久精品熟女亚洲av麻豆精品| 狂野欧美激情性xxxx| 亚洲精品在线观看二区| 国产国语露脸激情在线看| 一区二区三区激情视频| 免费看十八禁软件| 亚洲精品成人av观看孕妇| 一夜夜www| 亚洲专区字幕在线| 成在线人永久免费视频| 美女福利国产在线| 亚洲精品国产精品久久久不卡| 91老司机精品| 高清视频免费观看一区二区| 久久久久精品国产欧美久久久| 捣出白浆h1v1| 精品卡一卡二卡四卡免费| 俄罗斯特黄特色一大片| 夜夜骑夜夜射夜夜干| 成年人免费黄色播放视频| 午夜91福利影院| 久久中文字幕人妻熟女| 免费在线观看视频国产中文字幕亚洲| 18禁美女被吸乳视频| 欧美成人午夜精品| 99香蕉大伊视频| 免费看a级黄色片| 午夜激情久久久久久久| 国产av一区二区精品久久| 在线播放国产精品三级| avwww免费| 欧美一级毛片孕妇| 久久国产精品男人的天堂亚洲| 一本—道久久a久久精品蜜桃钙片| 日本五十路高清| 桃花免费在线播放| 波多野结衣av一区二区av| 色尼玛亚洲综合影院| 欧美午夜高清在线| 正在播放国产对白刺激| 亚洲视频免费观看视频| 国产高清国产精品国产三级| 久热这里只有精品99| 制服人妻中文乱码| 考比视频在线观看| 伦理电影免费视频| kizo精华| 两个人看的免费小视频| 人人妻人人爽人人添夜夜欢视频| 久久国产精品人妻蜜桃| 日本黄色日本黄色录像| 国精品久久久久久国模美| 视频区欧美日本亚洲| 真人做人爱边吃奶动态| 亚洲性夜色夜夜综合|