• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    基于D(-)/L(+)-對羥基苯甘氨酸配體的兩個銅配合物的合成、結(jié)構(gòu)和電化學(xué)性質(zhì)

    2019-06-06 01:48:30劉曼玉史亞靜王蘭芝宋會花
    無機化學(xué)學(xué)報 2019年6期
    關(guān)鍵詞:宋會蘭芝河北師范大學(xué)

    劉曼玉 史亞靜 王蘭芝 宋會花

    (河北師范大學(xué)化學(xué)與材料科學(xué)學(xué)院,石家莊 050024)

    0 Introduction

    Currently,there has been increasing interest in creating of chiral compounds due to their potential applications,such as gas adsorption,catalysis,drug delivery,separation,fluorescence,non-linear optics[1-10].Chiral coordination polymers endued with plentiful structure,ultrahigh surface area and tunable ability should be regarded as promising potential chiral sensors[11-15]. Cyclic voltammogram(CV)technique provides highly selective,and fast speed operation,which be regarded as promising tool for exploring redox properties and chiral recognition[16-18].Generally,the predictable syntheses of chiral coordination frameworks have been accomplished in the following three ways:わusing the chiral ligands as a linker to connect metal ions[19];ぷusing achiral ligands under spontaneous resolution induced by chiral auxiliary[20];ぺusing the racemic organic ligands to self-assemble with metal ions in spontaneous resolution[21].However,the relative ease of formation by self-assembly usually be effected by many factors such as solvent system,ligand-to-metal ratios,temperature,metal ions,pH value of solution[22-27].Hence,the controllable synthesis of stable chiral coordination compounds becomes one of the most burdensome challenges to chemists.

    In the above methods,using the chiral ligands as a linker to construct chiral coordination compounds is the most effective method.Some optically active amino acid molecules with chiral centers such as L-glutamic acid,L-tartric acid,L-lactic acid,and organic ligands containing chiral polypyridyl or polycarboxylate groups,have already been widely used to obtain artificial chiral compounds[28-34].D(-)/L(+)-4-Hydroxyphenylglycine(D/L-Hhpg)have both amino and carboxyl functional groups,and as ligands they can coordinate metal ions by monodentate,bidentate,chelating and bridging mode.A literature survey revealed that examples of complexes based on D/L-Hhgp are sparse.Only a few examples of chiral cyclic assemblies have been reported to date.Ivan Bernal et al.[35]have reported[Cu(4HPG)(bpy)]·2H2O compounds(4HPG=D-4-hydroxyphenylglycinato,bpy=2,2′-bipyridine),and in 2015 the related compound[Cu(hpg)2(H2O)]nwas synthesized by the group of Yao[36].Our laboratory have reported three enantiomeric pairs of chiral coordination compounds,namely{[Zn(D-hpg)(4,4′-bipy)(H2O)]NO3}n,{[Zn(L-hpg)(4,4′-bipy)(H2O)]NO3}n,{[Zn(D-hpg)(4,4′-bipy)(H2O)]ClO4}n,{[Zn(L-hpg)(4,4′-bipy)(H2O)]ClO4}n,[Zn(D-hpg)2(4,4′-bipy)]·2(4,4′-bipy)·H2O,[Zn(L-hpg)2(4,4′-bipy)]·2(4,4′-bipy)·H2O(4,4′-bipy=4,4′-bipyridine),and discussed how the metal salts and pH value affect the structures and properties of the compounds[37].

    In this work two chiral coordination compounds assembled from copper salts and D/L-Hhpg,{[Cu(D-hpg)(phen)(NO3)]·1.5H2O}n(1)and{[Cu(L-hpg)(phen)(NO3)]·2H2O}n(2)(phen=1,10-phen-anthroline),were successfully synthesized and struc-turally characterized.Their crystal structures,TG-DTA analysis and cyclic voltammetry are discussed in detail.

    1 Experimental

    1.1 Materials and methods

    All reagents and solvents for syntheses were purchased from commercial sources and were used as received without further purification.Element analyses(C,H and N)were performed on an Elemental Vario EL elemental analyzer.Infrared (IR)spectra were measured on a FTIR-8900 spectrometer from 4 000 to 400 cm-1(KBr pellets).Thermogravimetry-differential scanning calorimetry (TG-DSC)experiments were carried out on a simultaneous STA 449F3/TENSOR 27 thermal analyzer under a static N2atmosphere with a heating rate 10℃·min-1from room temperature to 850℃.Powder X-ray diffraction(PXRD)patterns were collected on a Bruker D8-Advance X-ray diffractometer using Cu Kα radiation(λ=0.154 2 nm,U=40 kV,I=40 mA)in 2θrange of 5°~50°at room temperature.The solid state circular dichroism (CD)spectra were recorded on a JASCOJ-810 spectropolari-meter with KCl pellets.Cyclic voltammetry measurements were carried out on a CHI 660 electrochemical workstation at room temperature.Platinum gauze was used as a counter electrode,and a saturated calomel electrode(SCE)was used as reference electrode.Chemically bulk-modified carbon paste electrodes (CPEs)were used as the working electrodes.The compound(1 and 2)modified CPEs(1/2-CPE)was fabricated as follows:0.1 g of graphite powder and 0.01 g of(1 and 2)were mixed and ground together by an agate mortar and pestle to achieve a uniform mixture and then 0.1 mL paraffin oil was added with stirring.The homogenized mixture was packed into a plastic tube with a 2 mm inner diameter.Electrical contact was established with a copper rod through the back of electrode.

    1.2 Synthesis

    1.2.1 {[Cu(D-hpg)(phen)(NO3)]·1.5H2O}n(1)

    Cu(NO3)2·3H2O(0.024 1 g,0.1 mmol),D-Hhpg(0.016 7 g,0.1 mmol)was stirred into a 10 mL aqueous solution.A solution of phen(0.019 8 g,0.1 mmol)in EtOH(6 mL)was slowly added.The resulting solution was stirred for 20 minutes,The pH value of solution was adjusted to 4.8 with 1 mol·L-1NaOH solution,and the blue block-shaped transparent crystals 1 suitable for X-ray analysis were obtained with 66%yield based on Cu.Anal.Calcd.For C20H19N4O7.5Cu(%):C,48.14;H,3.83;N,11.22.Found(%):C,48.03;H,3.91;N,11.00.IR (KBr,cm-1):3 417 (w),3 286(s),3 232(m),1 635(s),1 519(m),1 465(w),1 427(m),1 388(s),1 327(s),1 249(m),1 141(m),1 103(w),1 018(m),848(m),833(m),794(w),725(m),609(w),570(w)。

    1.2.2 {[Cu(L-hpg)(phen)(NO3)]·2H2O}n(2)

    Compound 2 was synthesized in a procedure similar to that for 1 except that L-Hhpg(0.016 7 g,0.1 mmol)was used instead of D-Hhpg(0.016 7 g,0.1 mmol).The blue block-shaped transparent crystals of 2 were obtained with 62%yield based on Cu.Anal.Calcd.for C20H20N4O8Cu(%):C,47.29;H,3.96;N,11.03.Found(%):C,47.73;H,3.91;N,11.29.IR(KBr,cm-1):3 417(w),3 286(s),3 232(m),1 635(s),1 519(m),1 465(w),1 427(m),1 388(s),1 327(s),1 249(m),1 141(m),1 103(w),1 018(m),848(m),833(m),794(w),725(m),609(w),570(w).

    1.3 X-ray crystallography

    Single-crystal X-ray crystals for title compounds were selected for single-crystal diffraction analyses(Crystal size:0.31 mm×0.20 mm×0.15 mm for 1;0.29 mm×0.18 mm×0.12 mm for 2).The data for 1 and 2 were collected on a Bruker SMART-CCD diffractometer by φ-ω scan mode.The structure was solved through direct methods using SHELXS-97 and all non-hydrogen atoms were refined anisotropically by full-matrix leastsquares on F2using SHELXL-97[38].Further crystallographic data and experimental details for structural analyses of compounds 1 and 2 are summarized in Table 1.

    CCDC:1440300,1;1505353,2.

    Table 1 Crystal data and structure refinements for 1 and 2

    Reflection collected,unique 4 754,3 186(R int=0.013 3) 5 248,3 294(R int=0.022 4)Completeness toθ/% 99.7 99.7 Max.and min.transmission 1.000 00 and 0.824 28 1.000 00 and 0.995 98 Data,restraint,parameter 3 186,0,299 3 294,0,305 GOF 1.058 1.063 R1,wR2[I>2σ(I)] 0.029 7,0.099 2 0.033 2,0.083 5 R1,wR2(all data) 0.031 9,0.100 6 0.036 1,0.085 2 Absolute structure parameter -0.01(3) 0.000(14)Largest diff.peak and hole/(e·nm-3) -290 and-410 317 and-492 Flack parameter -0.01(3) 0.000(14)

    2 Results and discussion

    2.1 Crystal structure

    Single crystal X-ray diffraction analysis revealed that compound 1 crystallizes in the Orthorhombic space group of P212121and possesses a 1D chain structure.As shown in Fig.1,the asymmetric unit is composed of one Cuギcation,one D-hpg-anion,one phen ligand,one and a half coordinated water molecule and one nitrate counter anion.Each Cuギexhibits a distorted octahedral geometry,which is six-coordinated by three oxygen atoms (O1,O6,O7)from one D-hpg-anion and two nitrate counter anions,and nitrogen atoms(N3,N1,N2)from one D-hpg-anion and one phen ligand.The O1,N1,N2 and N3 atoms form the equatorial plane,O6 and O7 atoms occupy the apical positions.The Cu-O bond lengths are 0.192 3(2)and 0.262 0(3)nm,and the Cu-N bond lengths range are between 0.199 9(2)and 0.201 3(3)nm,which are in accordance with the previously reported complexes[39].Selected bond lengths and angles are given in Table 2.

    Fig.1 Coordination environment of Cuギfor 1(a)and 2(b)

    For compound 1,nitrate counter anion bridges two Cuギions through two different oxygen atoms(O6,O7)to form a 1D infinite linear structure along the a-axis direction.As shown in Fig.2,the 1D chains are stacked in an ABAB fashion along the b-axis direction with the shortest Cu-Cu distance between adjacent chains being 0.867 54(7)nm.D-hpg-and phen coordinate with Cu2+in bidentate chelate coordination mode as modifying ligands,and arrange on both sides of the chain.It is worth noting that these chains are further extended through extensive hydrogen bonding interactions(Table 3):(1)hydrogen bonding between lattice water and lattice water(O(8)…O(7)#5 0.308 3(7)nm);(2) hydrogen bonding between lattice water and coordinated carboxyl oxygen atom (O(7)…O(1)#4 0.314 9(4)nm);(3)hydrogen bonding between lattice water and uncoordinated carboxyl oxygen atom(O(7)…O(2)#4 0.276 2(4)nm);(4)hydrogen bonding between lattice water and phenol hydroxyl oxygen atom(O(3)…O(7)#3 0.263 7(4)nm);(5)hydrogen bonding between the amino nitrogen atom of the coordination and the phenolic hydroxyl oxygen atom of another molecule(N(3)…O(3)#2 0.309 2(4)nm);(6)hydrogen bonding between the coordinated amino nitrogen atom and the coordinated nitrate anionoxygen atom(N(3)…O(5)#1 0.316 3(4)nm);(7)hydrogen bonding between lattice water and coordinated nitrate anion oxygen atom(O(7)…O(6)0.281 7(4)nm,O(8)…O(4)0.308 4(4)nm).Interestingly,between lattice water molecules and coordination nitrate anions there exist extensive hydrogen bonds(O(7)…O(6)0.281 7(4)nm,O(8)…O(4)0.308 4(4)nm,O(8)…O(7)#5 0.308 3(7)nm)resulting in a 1D left-handed helical chain along the b-axis direction(Fig.3).The adjacent chain form weak π-π stacking interaction through the phen ligand(Fig.4).The combination of hydrogen bonding and π-π stacking makes the 3D supramolecular structure of the compounds more stable.

    Table 2 Selected bond distances(nm)and angles(°)for compound 1

    Table 3 Hydrogen bond parameters for compound 1

    Fig.2 ABAB stacking along b axis for 1(a)and 2(b)

    By comparing the crystallography data of 1 and 2 showed in Table 1 as well as Fig.1a and Fig.1b,their different chirality is caused by the different chirality of main ligands,namely D-Hhpg and L-Hhpg.As shown in Fig.3b,the difference of their crystal structures is that L-hpg-ligands form right-handed supramolecular helices along the b-axis for 2 by the extensive hydrogen bond between lattice water molecules and coordination nitrate anion(O(7)…O(5)#2 0.278 1(4)nm,O(8)…O(7)#1 0.299 1(5)nm,O(8)…O(4)0.303 9(5)nm;Table 4).In addition,the Cu-O bond lengths are 0.192 5(2)and 0.261 3(2)nm,and the Cu-N bond lengths are 0.199 6(3)and 0.200 7(3)nm for 2.Selected bond lengths and angles are given in Table 5.

    Fig.3 (a)One dimensional left-handed double stranded helices of compound 1;(b)One dimensional right-handed double stranded helices of compound 2

    Fig.4 Three dimensional supramolecular layers formed by hydrogen bonding and π-π stacking for 1(a)and 2(b)

    Table 4 Hydrogen bond parameters for compound 2

    Table 5 Selected bond distances(nm)and angles(°)for compound 2

    2.2 Powder X-ray diffraction analyses and IR spectra

    Fig.5 PXRD patterns for 1(a)and 2(b)

    Fig.6 IR spectra of 1(a)and 2(b)

    The PXRD patterns for 1 and 2 are presented in Fig.5.The main peaks of simulated spectra of 1 and 2 matched well with their experimental spectra,demonstrating the crystallization degree and the purity of crystalline phase are both good.Theνas(COO-)and νs(COO-)vibrations of D-hpg-/L-hpg-can be observed at 1 635 and 1 427 cm-1.The peak at 1 249 cm-1is due toν(C-O)vibrations of phenolic hydroxyl group,and the peaks at 1 327 cm-1are due toνas(C-N)vibrations of amino-groups which connect to the carbon atoms in amino-acids.The(C-C)and(C=N)vibrations of phen can be observed at 1 519 and 1 388 cm-1,which had a certain degree of red-or blue-shift compared to the related absorption peak of phen at 1 504 and 1 419 cm-1,respectively.Meanwhile,the(C-H)bending vibration of phen at 840 and 732 cm-1have moved to 848 and 725 cm-1,respectively.This result indicates that the phen molecules have coordinated with metal.In addition,the strong peaks at 3 244~3 348 cm-1are due toν(N-H)vibrations of D-hpg-/L-hpg-ligands(Fig.6).

    2.3 Circular dichroism spectra properties

    Fig.7 Solid-state CD spectra of D-Hhpg/L-Hhpg and compounds 1 and 2

    The solid-state circular dichroism(CD)spectra of compounds 1 and 2 were investigated at room temperature,as shown in Fig.7.Chiral ligand D-Hhpg displayed positive peak value at 245,261 and 283 nm,while L-Hhpg displayed negative peak value at 240,268 and 284 nm.Compound 1 displayed negative peak value at 237,275 and 305 nm,and compound 2 displays positive peak value at 254,282 and 306 nm.From the CD spectra,we can clearly see that 1 and 2 both show obvious Cotton effect,which confirms the two compounds are chiral compounds.Besides the opposite CD signal in the same peak position from compounds 1 and 2,we can come up with a conclusion is that their CD spectra are image symmetrical,while the CD signal direction of the compound is affected by chiral ligands(Fig.7).

    2.4 Thermal analyses

    The TG/DTG-DSC methods were used to describe thermal decomposition of synthesized compounds in air as shown in the Fig.8.The thermal decomposition results are presented in Table 6.Compound 1 is fairly stable before 121.37℃.The first weight loss in a temperature range of 121.37~181.37 ℃ is consistent with the removal of one and a half lattice water molecules(Obsd.4.55%,Calcd.5.41%).On the DSC curve,endothermic peak was observed at about 173.37℃,which can prove the loss of one and a half lattice water molecules.The second and third decomposition steps occurred in a temperature range of 181.37~251.37℃ and 251.37~481.15℃ with a weight loss of 21.49%and 24.51%,respectively,against calculated weight loss of 45.32%,corresponding to the loss of D-Hhpg and part of nitrate anion.Therewere a strong exothermic peak(195.87℃)and a weak exothermic peak (301.87℃)on the DSC curve,corresponding to the decomposition and degradation D-Hhpg and part of nitrate anion.The fourth decomposition steps took place at the temperature of 481.37℃,and until 850℃ no platform appeared,which indicates that the compound has not completely lost weight.

    Table 6 Thermal decomposition data for compounds 1 and 2

    Fig.8 TG-DTG and DSC curves of compounds 1(a)and 2(b)

    Compound 2 is relatively stable before 124.38℃.The first weight loss in the temperature range of 124.38~159.38 ℃ is consistent with the removal of two lattice water molecules (Obsd.7.39%,Calcd.7.09%).On the DSC curve,endothermic peak was observed at about 173.88℃,which can prove the decomposition of one and two lattice water molecules.The second and third decomposition steps occurred in a temperature range of 159.38~180.88 ℃ and 180.88~256.88 ℃ with a weight loss of 2.90%and 21.02%,respectively,against calculated weight loss of 24.42%,corresponding to the loss of two nitrate anion.There were a weak exothermic peak(167.38℃)and a strong exothermic peak (194.88℃)on the DSC curve,corresponding to the decomposition two nitrate anion.The fourth decomposition steps took place at the temperature of 256.88℃,and no platform appeared until 850℃,indicating that the compound has not completely lost weight.

    2.5 Cyclic voltammetry

    We investigated the electrochemical behavior of the compounds by cyclic voltammetry(CV).Typically,the carbon paste electrodes modified by 1 and 2 were constructed and then electrochemical properties were studied in 1 mol·L-1H2SO4solution at different scan rates in a voltage range of-0.75~1.00 V.It can be seen that the potential of oxidation peak increased and that the potential of reduction peak decreased with the scan rate increasing (Fig.9a,c).Analysis of cyclic voltammetry at varying scan rates (0.03~0.13 V·s-1)demonstrates a linear relationship between the anode peakⅠ (or anodic peakⅠ′)current and the scan rate (Fig.9b,d),indicating a surface-controlled electrochemical process.

    Fig.9 Cyclic voltammograms of compounds 1(a)and 2(c);Change of anodic and anode current(Ia)vs scan rate for compounds 1(b)and 2(d)

    3 Conclusions

    In summary,one pair of chiral coordination compounds{[Cu(D-hpg)(phen)(NO3)]·1.5H2O}n(1)and{[Cu(L-hpg)(phen)(NO3)]·2H2O}n(2)have been described in detail.They are 1D chain structure,which is extended into a 3D supramolecular structure by the hydrogen bond.Interestingly,for compounds 1 and 2,there exist left-handed or right-handed supramolecular helix chains along thebaxis direction by the hydrogen bond,respectively,which is extended by the hydrogen bond between coordinated nitrate anion and lattice water.The TG-DTG and DSC curves reveal that the frameworks of compounds 1 and 2 are thermally stable before 120℃.These phenomenon may be attributed to the coexistence of strong hydrogen bonding interaction,π-π stacking interaction and coordination interaction.The cyclic voltammetry of the compounds at varying scan rates (0.03~0.13 V·s-1)demonstrates a linear relationship between the anode peakⅠ (or anodic peak Ⅰ′)current and the scan rate,indicating a surface-controlled electrochemical process.

    猜你喜歡
    宋會蘭芝河北師范大學(xué)
    基于D-(-)-/L-(+)-對羥基苯甘氨酸的兩對手性鈷配合物的合成、晶體結(jié)構(gòu)和電化學(xué)識別
    賀河北師范大學(xué)百廿校慶
    《找不同》上月答案
    河北師范大學(xué)美術(shù)與設(shè)計學(xué)院油畫作品選登
    高靈敏度Sb基量子阱2DEG的霍爾器件
    《宋會要輯稿》“西人最重寒食”考
    西夏學(xué)(2018年2期)2018-05-15 11:21:48
    Blooming Air春風(fēng)輕舞,妝彩飛揚
    女友·家園(2017年5期)2017-05-26 11:55:23
    高等學(xué)校書法創(chuàng)作教學(xué)摭談——以河北師范大學(xué)為例
    蘭芝LUCKY CHOUETTE時尚定制版
    女友·家園(2016年10期)2016-11-10 19:56:36
    蘭芝發(fā)布最I(lǐng)N試妝APP《K妝美人鏡》
    女友·家園(2016年6期)2016-08-09 20:46:35
    亚洲国产高清在线一区二区三| 亚洲欧美精品综合一区二区三区| a在线观看视频网站| 村上凉子中文字幕在线| 看片在线看免费视频| 国语自产精品视频在线第100页| 亚洲精品在线美女| 国产爱豆传媒在线观看| 91字幕亚洲| 精品国产超薄肉色丝袜足j| 免费无遮挡裸体视频| 波多野结衣高清无吗| 国产不卡一卡二| 国产精品98久久久久久宅男小说| 亚洲欧美日韩东京热| 青草久久国产| 给我免费播放毛片高清在线观看| 成人午夜高清在线视频| 一个人免费在线观看电影 | 人妻丰满熟妇av一区二区三区| 国产1区2区3区精品| 搡老熟女国产l中国老女人| 亚洲 欧美一区二区三区| 国内精品久久久久精免费| 亚洲av成人精品一区久久| 国产综合懂色| 女同久久另类99精品国产91| 成年女人看的毛片在线观看| 999久久久国产精品视频| 午夜免费观看网址| 久久九九热精品免费| 国内久久婷婷六月综合欲色啪| 岛国在线观看网站| 国产精品av视频在线免费观看| 在线观看美女被高潮喷水网站 | 国产一区二区在线观看日韩 | 制服丝袜大香蕉在线| 99久久国产精品久久久| 在线国产一区二区在线| 国产三级在线视频| 精华霜和精华液先用哪个| 99国产综合亚洲精品| 午夜激情福利司机影院| 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩 | 后天国语完整版免费观看| 中文在线观看免费www的网站| h日本视频在线播放| 中文字幕人成人乱码亚洲影| 久久精品91无色码中文字幕| 精品久久久久久久久久免费视频| 国产99白浆流出| 精品乱码久久久久久99久播| 国产伦人伦偷精品视频| 午夜激情福利司机影院| 国产伦精品一区二区三区四那| 国产熟女xx| www.自偷自拍.com| 免费观看人在逋| 首页视频小说图片口味搜索| 精品福利观看| 亚洲精品色激情综合| 亚洲精品久久国产高清桃花| 中文字幕最新亚洲高清| 黄色 视频免费看| 一二三四社区在线视频社区8| 青草久久国产| 9191精品国产免费久久| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 丰满的人妻完整版| 后天国语完整版免费观看| 亚洲 欧美一区二区三区| 999久久久国产精品视频| 欧美性猛交黑人性爽| 久久这里只有精品19| 午夜日韩欧美国产| 美女免费视频网站| 免费搜索国产男女视频| 欧美一级a爱片免费观看看| 国产一区二区三区视频了| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 国产毛片a区久久久久| 国产高清激情床上av| 亚洲精华国产精华精| 中文字幕最新亚洲高清| 午夜福利高清视频| 日日干狠狠操夜夜爽| 亚洲男人的天堂狠狠| 一个人看的www免费观看视频| 久久婷婷人人爽人人干人人爱| 麻豆av在线久日| 久久国产精品人妻蜜桃| 国产极品精品免费视频能看的| 哪里可以看免费的av片| 色视频www国产| 熟妇人妻久久中文字幕3abv| 一区福利在线观看| 色精品久久人妻99蜜桃| 啦啦啦韩国在线观看视频| 日韩精品青青久久久久久| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 小说图片视频综合网站| 九九热线精品视视频播放| 成年免费大片在线观看| 757午夜福利合集在线观看| 一a级毛片在线观看| 欧美激情在线99| 成人18禁在线播放| 久久久久久人人人人人| 精品免费久久久久久久清纯| 欧美大码av| 999久久久精品免费观看国产| 天堂√8在线中文| 美女 人体艺术 gogo| 亚洲一区二区三区不卡视频| 他把我摸到了高潮在线观看| 国产成人aa在线观看| 韩国av一区二区三区四区| 18禁黄网站禁片免费观看直播| 老鸭窝网址在线观看| 在线播放国产精品三级| 久久精品人妻少妇| 一个人观看的视频www高清免费观看 | 日本三级黄在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲av美国av| 又爽又黄无遮挡网站| 成年版毛片免费区| 国产精品九九99| 一级黄色大片毛片| 日本免费一区二区三区高清不卡| 国产高清有码在线观看视频| 两个人看的免费小视频| 久久久国产欧美日韩av| 十八禁人妻一区二区| 男女床上黄色一级片免费看| 亚洲人成伊人成综合网2020| 三级男女做爰猛烈吃奶摸视频| 欧美黑人欧美精品刺激| 亚洲精品456在线播放app | 欧美日韩福利视频一区二区| 国产毛片a区久久久久| 免费电影在线观看免费观看| 国产成人一区二区三区免费视频网站| 一夜夜www| 久久草成人影院| 在线观看免费视频日本深夜| 国产精品精品国产色婷婷| 成人亚洲精品av一区二区| 亚洲国产高清在线一区二区三| 国产三级黄色录像| 伦理电影免费视频| 久久久久久九九精品二区国产| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人久久性| 嫩草影院精品99| 法律面前人人平等表现在哪些方面| 国产一级毛片七仙女欲春2| 午夜福利免费观看在线| 天堂影院成人在线观看| 最好的美女福利视频网| 中国美女看黄片| 99热精品在线国产| 巨乳人妻的诱惑在线观看| 黄片大片在线免费观看| 国产伦一二天堂av在线观看| 亚洲精品美女久久久久99蜜臀| 国产97色在线日韩免费| 国产一级毛片七仙女欲春2| 俄罗斯特黄特色一大片| 欧美一级a爱片免费观看看| 日本与韩国留学比较| 国产精品 国内视频| 欧美一级a爱片免费观看看| 最好的美女福利视频网| 亚洲欧美日韩高清专用| 欧美不卡视频在线免费观看| 视频区欧美日本亚洲| 欧美日韩亚洲国产一区二区在线观看| 91字幕亚洲| 一个人观看的视频www高清免费观看 | 免费在线观看影片大全网站| 观看美女的网站| 久久热在线av| 国产不卡一卡二| 久9热在线精品视频| 久久精品亚洲精品国产色婷小说| 亚洲熟妇熟女久久| 色尼玛亚洲综合影院| 日韩免费av在线播放| 69av精品久久久久久| 精品国产乱子伦一区二区三区| 男女午夜视频在线观看| 国产真实乱freesex| netflix在线观看网站| av中文乱码字幕在线| 男女床上黄色一级片免费看| 午夜两性在线视频| 久久久成人免费电影| 天天躁日日操中文字幕| 国产精品永久免费网站| 日本黄大片高清| 亚洲国产欧美人成| 真人一进一出gif抽搐免费| 两个人看的免费小视频| 国产高清视频在线播放一区| 久久久国产精品麻豆| 一个人观看的视频www高清免费观看 | 岛国视频午夜一区免费看| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区av网在线观看| 亚洲 国产 在线| 国产精品爽爽va在线观看网站| 麻豆国产av国片精品| 日韩欧美在线二视频| 日本熟妇午夜| 少妇人妻一区二区三区视频| 天堂√8在线中文| a级毛片在线看网站| 亚洲第一电影网av| 一二三四在线观看免费中文在| 久久99热这里只有精品18| av视频在线观看入口| 亚洲人成伊人成综合网2020| 日韩欧美在线乱码| 日本黄大片高清| 一区福利在线观看| av视频在线观看入口| 欧美中文日本在线观看视频| 欧美日韩国产亚洲二区| 精品人妻1区二区| 欧美性猛交╳xxx乱大交人| 成人性生交大片免费视频hd| 中文字幕最新亚洲高清| 免费观看精品视频网站| 亚洲熟女毛片儿| 一进一出抽搐gif免费好疼| 99re在线观看精品视频| 免费大片18禁| 成年免费大片在线观看| 亚洲专区中文字幕在线| 久久性视频一级片| 黄色成人免费大全| 成人特级av手机在线观看| 亚洲精品456在线播放app | 久久精品91蜜桃| 国产欧美日韩一区二区三| 欧美黑人巨大hd| 婷婷丁香在线五月| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 搡老妇女老女人老熟妇| 久久精品国产99精品国产亚洲性色| 熟妇人妻久久中文字幕3abv| 日韩免费av在线播放| 90打野战视频偷拍视频| 一进一出抽搐动态| 看黄色毛片网站| 一区二区三区高清视频在线| 精品国产乱码久久久久久男人| 国产97色在线日韩免费| 在线十欧美十亚洲十日本专区| 欧美黑人欧美精品刺激| 国产又黄又爽又无遮挡在线| 色综合亚洲欧美另类图片| 狂野欧美激情性xxxx| 成人av一区二区三区在线看| 久久性视频一级片| 亚洲成人免费电影在线观看| 嫩草影院入口| 老司机在亚洲福利影院| 日韩欧美免费精品| 黑人操中国人逼视频| 一二三四社区在线视频社区8| 久久伊人香网站| 日韩成人在线观看一区二区三区| xxxwww97欧美| 久久久久亚洲av毛片大全| 好男人在线观看高清免费视频| 免费av不卡在线播放| 亚洲av第一区精品v没综合| 看黄色毛片网站| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 美女免费视频网站| 在线观看午夜福利视频| 香蕉久久夜色| 亚洲狠狠婷婷综合久久图片| 午夜日韩欧美国产| 综合色av麻豆| 色综合婷婷激情| 国产av不卡久久| 一本精品99久久精品77| 精品国产三级普通话版| 老司机福利观看| 欧美日本亚洲视频在线播放| 热99re8久久精品国产| 老汉色∧v一级毛片| 又大又爽又粗| 中文亚洲av片在线观看爽| 亚洲欧美日韩卡通动漫| 在线十欧美十亚洲十日本专区| 最近视频中文字幕2019在线8| 日韩大尺度精品在线看网址| 国产欧美日韩精品亚洲av| 国产高清videossex| 巨乳人妻的诱惑在线观看| 99久久精品国产亚洲精品| 国产爱豆传媒在线观看| 美女cb高潮喷水在线观看 | 麻豆成人午夜福利视频| 悠悠久久av| 国产成人影院久久av| 少妇熟女aⅴ在线视频| 亚洲狠狠婷婷综合久久图片| 黑人操中国人逼视频| 亚洲中文av在线| 91老司机精品| 亚洲av美国av| 人妻丰满熟妇av一区二区三区| 香蕉av资源在线| 欧洲精品卡2卡3卡4卡5卡区| 久久这里只有精品中国| 99热这里只有精品一区 | 美女 人体艺术 gogo| 成人av一区二区三区在线看| 熟女人妻精品中文字幕| 999久久久国产精品视频| 麻豆国产av国片精品| 精品一区二区三区视频在线观看免费| 麻豆av在线久日| 国产精品1区2区在线观看.| 亚洲精品中文字幕一二三四区| 国产伦在线观看视频一区| 露出奶头的视频| 波多野结衣巨乳人妻| 国产三级黄色录像| 午夜日韩欧美国产| 国产精品女同一区二区软件 | 亚洲国产欧美一区二区综合| 一二三四在线观看免费中文在| 啪啪无遮挡十八禁网站| 国产精品1区2区在线观看.| 免费搜索国产男女视频| 国产精品一区二区三区四区免费观看 | 国产精品久久视频播放| 欧美日韩综合久久久久久 | 又黄又爽又免费观看的视频| 欧美在线一区亚洲| 一级黄色大片毛片| 国产亚洲精品久久久com| 国产精品亚洲一级av第二区| 国产亚洲精品久久久com| 日本黄色视频三级网站网址| 午夜精品在线福利| 欧美一区二区精品小视频在线| 亚洲欧美日韩高清专用| 久久久久久九九精品二区国产| 亚洲国产色片| 日韩精品青青久久久久久| 中文字幕精品亚洲无线码一区| 欧美+亚洲+日韩+国产| bbb黄色大片| 久久精品人妻少妇| 亚洲成a人片在线一区二区| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 色在线成人网| 美女扒开内裤让男人捅视频| 男人舔奶头视频| 丝袜人妻中文字幕| x7x7x7水蜜桃| 亚洲国产色片| 日本熟妇午夜| 久久亚洲精品不卡| 又爽又黄无遮挡网站| 每晚都被弄得嗷嗷叫到高潮| 日日干狠狠操夜夜爽| 好看av亚洲va欧美ⅴa在| 床上黄色一级片| 日本三级黄在线观看| 久久精品人妻少妇| 最近最新免费中文字幕在线| 日日夜夜操网爽| 男人舔奶头视频| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 精品福利观看| 国产私拍福利视频在线观看| 成年人黄色毛片网站| 99精品在免费线老司机午夜| 欧美+亚洲+日韩+国产| 成在线人永久免费视频| 狂野欧美激情性xxxx| 曰老女人黄片| 国产精品免费一区二区三区在线| 久久九九热精品免费| 99久久精品一区二区三区| 亚洲精品在线观看二区| 嫩草影院精品99| 色综合欧美亚洲国产小说| 一二三四在线观看免费中文在| 亚洲av免费在线观看| 两性夫妻黄色片| 丁香六月欧美| 午夜福利在线在线| 18禁美女被吸乳视频| 国产av一区在线观看免费| 人妻夜夜爽99麻豆av| 亚洲性夜色夜夜综合| 校园春色视频在线观看| 亚洲熟女毛片儿| 亚洲精品国产精品久久久不卡| xxxwww97欧美| 国语自产精品视频在线第100页| 岛国视频午夜一区免费看| 熟女人妻精品中文字幕| 国产精品99久久久久久久久| 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 波多野结衣巨乳人妻| 欧美在线黄色| 毛片女人毛片| 91九色精品人成在线观看| 色噜噜av男人的天堂激情| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 欧美在线黄色| 欧美乱妇无乱码| 国产亚洲精品av在线| 久久亚洲精品不卡| av女优亚洲男人天堂 | 精品人妻1区二区| 久久亚洲真实| 国产探花在线观看一区二区| 亚洲乱码一区二区免费版| 老鸭窝网址在线观看| 国产精品电影一区二区三区| 亚洲成人精品中文字幕电影| 一进一出抽搐动态| 国产综合懂色| ponron亚洲| 69av精品久久久久久| 久久久精品大字幕| 亚洲成人精品中文字幕电影| 丝袜人妻中文字幕| 91在线观看av| 久久久精品欧美日韩精品| 欧美中文日本在线观看视频| 国产精品影院久久| 一本一本综合久久| 女同久久另类99精品国产91| 一个人观看的视频www高清免费观看 | 精品国内亚洲2022精品成人| 99精品欧美一区二区三区四区| 精品久久久久久久久久久久久| 在线观看一区二区三区| 91麻豆av在线| 亚洲真实伦在线观看| 亚洲成人久久爱视频| 久久久久久人人人人人| 1024手机看黄色片| 每晚都被弄得嗷嗷叫到高潮| 好男人在线观看高清免费视频| 99视频精品全部免费 在线 | 曰老女人黄片| 69av精品久久久久久| 又黄又爽又免费观看的视频| 91在线精品国自产拍蜜月 | 日本黄色视频三级网站网址| www.www免费av| 在线观看66精品国产| 中亚洲国语对白在线视频| 激情在线观看视频在线高清| 亚洲黑人精品在线| 国内精品一区二区在线观看| 黄频高清免费视频| 日韩国内少妇激情av| 搡老妇女老女人老熟妇| 老司机深夜福利视频在线观看| 在线观看美女被高潮喷水网站 | 黄频高清免费视频| 天天一区二区日本电影三级| 两个人视频免费观看高清| 在线十欧美十亚洲十日本专区| 最近最新中文字幕大全免费视频| 成人高潮视频无遮挡免费网站| 51午夜福利影视在线观看| 国产精品乱码一区二三区的特点| 亚洲欧美日韩卡通动漫| 欧美日韩精品网址| 久久精品91无色码中文字幕| 日本成人三级电影网站| 日本一二三区视频观看| 999精品在线视频| 18禁黄网站禁片午夜丰满| 亚洲真实伦在线观看| 久久精品国产99精品国产亚洲性色| 欧美av亚洲av综合av国产av| 精品久久蜜臀av无| 日本 av在线| 国产精品 欧美亚洲| 久久久成人免费电影| 精品久久久久久久久久免费视频| 日韩三级视频一区二区三区| 国产1区2区3区精品| 国产精品爽爽va在线观看网站| 亚洲午夜理论影院| 叶爱在线成人免费视频播放| www日本在线高清视频| 黄色视频,在线免费观看| 成人高潮视频无遮挡免费网站| 亚洲精华国产精华精| 亚洲电影在线观看av| 真人一进一出gif抽搐免费| 成人国产一区最新在线观看| 日本黄色片子视频| 美女大奶头视频| 国产精品久久电影中文字幕| 精品国产美女av久久久久小说| 亚洲av成人精品一区久久| 久久久久久久午夜电影| 中文字幕久久专区| 90打野战视频偷拍视频| 99国产精品一区二区三区| 国产精品久久视频播放| 亚洲一区二区三区色噜噜| 亚洲欧美日韩高清专用| 三级男女做爰猛烈吃奶摸视频| 嫁个100分男人电影在线观看| 一区二区三区高清视频在线| e午夜精品久久久久久久| 五月伊人婷婷丁香| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 精品国产乱子伦一区二区三区| 亚洲国产欧美人成| 熟妇人妻久久中文字幕3abv| 老鸭窝网址在线观看| 午夜两性在线视频| 亚洲成人久久爱视频| 色在线成人网| 日本在线视频免费播放| 天堂动漫精品| 欧美一级a爱片免费观看看| 90打野战视频偷拍视频| 日韩国内少妇激情av| 欧美成人一区二区免费高清观看 | 男人的好看免费观看在线视频| 香蕉久久夜色| av视频在线观看入口| 久久精品91蜜桃| 久久这里只有精品19| 国产真人三级小视频在线观看| 日韩欧美国产在线观看| 亚洲精品美女久久av网站| 久久精品国产综合久久久| 免费人成视频x8x8入口观看| 欧美三级亚洲精品| 国内精品久久久久久久电影| 最新中文字幕久久久久 | 欧美一区二区精品小视频在线| 无人区码免费观看不卡| 久久香蕉精品热| 在线观看免费午夜福利视频| 亚洲美女黄片视频| 国产精品永久免费网站| 亚洲熟妇熟女久久| 国产亚洲精品一区二区www| 中亚洲国语对白在线视频| 不卡一级毛片| 亚洲人成伊人成综合网2020| 国产精品香港三级国产av潘金莲| 精品99又大又爽又粗少妇毛片 | 天堂动漫精品| 中文字幕最新亚洲高清| 亚洲精品国产精品久久久不卡| 久久久久免费精品人妻一区二区| а√天堂www在线а√下载| 日本成人三级电影网站| 久99久视频精品免费| www日本黄色视频网| 观看免费一级毛片| 国产三级黄色录像| 不卡av一区二区三区| 国产亚洲av嫩草精品影院| 2021天堂中文幕一二区在线观| 高清在线国产一区| 国产一区二区激情短视频| 岛国在线观看网站| 欧美成狂野欧美在线观看| 久久久国产欧美日韩av| 国产综合懂色| 成人特级av手机在线观看| 激情在线观看视频在线高清| 免费观看的影片在线观看| 久久久久久九九精品二区国产| 两人在一起打扑克的视频| 国产三级在线视频| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片| 亚洲在线观看片| 亚洲中文av在线| 久久精品国产综合久久久| 岛国在线免费视频观看| 女同久久另类99精品国产91| 精品熟女少妇八av免费久了| 此物有八面人人有两片| 人妻久久中文字幕网|