• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental investigation on aero-heating of rudder shaft within laminar/turbulent hypersonic boundary layers

    2019-06-03 08:49:20QingLILingNIEKouliZHANGYuLISuyuCHENGungshengZHU
    CHINESE JOURNAL OF AERONAUTICS 2019年5期

    Qing LI ,Ling NIE ,Kouli ZHANG ,Yu LI ,Suyu CHEN ,Gungsheng ZHU ,*

    a Hypervelocity Aerodynamics Institute,China Aerodynamics Research and Development Center,Mianyang 621000,China

    b Science and Technology on Space Physics Laboratory,China Academy of Launch Vehicle Technology,Beijing 100076,China

    KEYWORDS Heat flux;Hypersonic boundary layer;Rudder;Shock tunnel;Transition;Vortex generator

    Abstract The aero-heating of the rudder shaft region of a hypersonic vehicle is very harsh,as the peak heat flux in this region can be even higher than that at the stagnation point.Therefore,studying the aero-heating of the rudder shaft is of great significance for designing the thermal protection system of the hypersonic vehicle.In the wind tunnel test of the aero-heating effect,we find that with the increase of the angle of attack of the lifting body model,the increasement of the heat flux of the rudder shaft is larger under laminar flow conditions than that under turbulent flow conditions.To understand this,we design a wind tunnel experiment to study the effect of laminar/turbulent hypersonic boundary layers on the heat flux of the rudder shaft under the same wind tunnel freestream conditions.The experiment is carried out in the ?2 m shock tunnel(FD-14A)affiliated to the China Aerodynamics Research and Development Center(CARDC).The laminar boundary layer on the model is triggered to a turbulent one by using vortex generators,which are 2 mm-high diamonds.The aero-heating of the rudder shaft(with the rudder)and the protuberance(without the rudder)are studied in both hypersonic laminar and turbulent boundary layers under the same freestream condition.The nominal Mach numbers are 10 and 12,and the unit Reynolds numbers are 2.4×106 m-1 and 2.1×106 m-1.The angle of attack of the model is 20°,and the deflection angle of the rudder and the protuberance is 10°.The heat flux on the model surface is measured by thin film heat flux sensors,and the heat flux distribution along the center line of the lifting body model suggests that forced transition is achieved in the upstream of the rudder.The test results of the rudder shaft and the protuberance show that the heat flux of the rudder shaft is lower in the turbulent flow than that in the laminar flow,but the heat flux of the protuberance is the other way around,i.e.,lower in the laminar flow than in the turbulent flow.The wind tunnel test results is also validated by numerical simulations.Our analysis suggests that this phenomenon is due to the difference of boundary layer velocities caused by different thickness of boundary layer between laminar and turbulent flows,as well as the restricted flow within the rudder gap.When the turbulent boundary layer is more than three times thicker than that of the laminar boundary layer,the heat flux of the rudder shaft under the laminar flow condition is higher than that under the turbulent flow condition.Discovery of this phenomenon has great importance for guiding the design of the thermal protection system for the rudder shaft of hypersonic vehicles.

    1.Introduction

    Lifting body aircrafts1-6are controlled and stabilized by the elevator and rudder,but the local structure of the air rudder is relatively simple,which consists of a local plate and a rudder structure.The gap7-8between the air rudder and the body surface makes the aero-heating of the rudder shaft very harsh and leads to complicated flow structures in the near-wall region.Therefore,wind tunnel tests and numerical calculations are necessary to be carried out to understand the thermal environment in the rudder gap.

    There are very few works9-11at home and abroad studying the thermal environment of the rudder gap and the rudder shaft due to the following reasons.First,there is a rectifier cap in the front of the air rudder for the re-entry warhead,which can improve the aero-heating of rudder shaft and thus reduces the necessity for respective research.Second,the flow within the rudder gap and on the surface of the rudder shaft is very complicated,but previous numerical computation of the aerothermal characteristics is not very reliable due to limited simulation capability.Third,due to the limitations of wind tunnel size and sensor technology,the diameter of the scale model of the rudder shaft is too small to mount any sensor for heat flux measurement.

    However,in the hypersonic lifting body aircraft,the rectifier cap upstream of the air rudder is dropped,thus the heat flux of the rudder shaft rises sharply,which calls for relevant research urgently. In the meantime, advancement in both numerical modelling and wind tunnel test for aerodynamic thermal problems have enabled high reliability research in this regard.In the ?2 m shock tunnel(FD-14A)in the Hypervelocity Aerodynamics Institute(HAI),CARDC,the heat flux of the rudder shaft of the lifting body model,as shown in Fig.1,is measured.It is found that under the Ma=10 turbulent flow condition,when the angle of attack is increased from 10°to 20°,the heat flux of the rudder shaft is increased by about one time;under the Ma=12 laminar flow condition,the rudder shaft heat flux is increased by about four times.We conjecture that this is the result of different boundary layer flow regimes.In the test,the flow parameters of the two flows are quite different,and the influence of the inflow parameters on the test results cannot be excluded.In order to study the thermal environment of the rudder gap and rudder shaft,we intend to carry out experimental research on the influence of both laminar and turbulent boundary layers on the rudder shaft aero-heating under the same freestream conditions,and investigate the effects of flow regimes on the rudder shaft aero-heating.

    Therefore,we design a test scheme as follows.First,we choose the appropriate shock tunnel flow conditions to ensure that the boundary layer upstream of the air rudder of the lifting body model(Fig.1)is laminar flow.Second,vortex generators that can trigger the laminar boundary layer into a turbulent one are mounted in the front part of the model,so as to reach different flow regimes upstream of the air rudder under the given freestream conditions.Finally,the influence of flow regimes on the rudder shaft aero-heating is investigated.For the first and second steps,previous research12has obtained satisfactory results.In addition,Ref.12shows that the aero-heating of the forced turbulent boundary layer on the wall was only affected by the incoming flow parameters,and no obvious difference in aero-heating was observed by the use of different vortex generators.

    2.Experimental and simulation details

    The experiment is conducted in the ?2 m shock tunnel(FD-14A),which is composed of a shock tube and a nozzle,a test section,and a vacuum chamber.The inner diameter of the shock tube is 150 mm,and the length of the high pressure tube and low pressure tube is 9 m and 18 m,respectively.

    The wind tunnel test gas is nitrogen,which is driven by hydrogen or a mixture of hydrogen and nitrogen.The driving pressure can reach as high as 50 MPa.Different flow Mach numbers can be obtained by changing the throat or nozzle,and different flow unit Reynolds Numbers can be obtained by adjusting the pressure ratio of the high and low pressure segments,thus various test environments can be achieved.Currently, the wind tunnel can reach Mach number in the range of 6-16,and Reynolds number in the range of 2.1×105-6.7×107m-1.The nozzle exit diameter is 1.2 m,while the cross-sectional area of the test section is 2.6 m×2.6 m.The effective duration time of the test is 4-18 ms.

    Two types of sensors,13,14i.e.,cylindrical heat flux sensors and contoured heat flux sensors,are used in the experimental measurement,as shown in Fig.2.The contoured sensor with glass as the substrate has been abraded to match the shape of the leading edge of the rudder shaft.A platinum thin film is coated on the polished surface with the vacuum magnetron sputtering method,and the surface heat flux is measured by the platinum film.

    A series of cylindrical heat flux sensors are distributed along the center line upstream of the air rudder to measure the heat flux,so that the flow regime of the boundary layer can be determined.The cylindrical sensor(Fig.2)is fabricated in batches,and the same glass substrate is used to make a glass rod with a diameter of 2 mm and a length of 20 mm.The polished round-end platinized platinum film is connected to the test lead to construct a sensor.Three cylindrical sensors are installed on the front surface of the rudder shaft to measure the effect of boundary layer regimes on the surface aeroheating upstream of the rudder shaft.The transverse coordinates of the test holes are the same,and the perpendicular distance between the center of the test hole and the front of the rudder shaft is 6.125 mm.

    Due to the limitation of the size of the shock tunnel nozzle,the test model is a scale lifting model.The air rudder and the rudder shaft are shown in Fig.3.The rudder gap is 5 mm high.In order to separate the rudder shaft,a 5 mm height protuberance model(Fig.4)is designed with the same shape as the rudder shaft.By measuring the heat flux on the protuberance surface at the same position under the same flow condition,the effects of the flow regimes on the aero-heating on the surface of the rudder shaft with the rudder attached can be compared.

    In order to make comparison of the heat flux between the rudder shaft and the protuberance in both laminar and turbulent flows, we must first ensure that the boundary layer upstream of the rudder is laminar.According to the experience of shock tunnel tests,the surface transition location of the lifting body model can be estimated in the first place.A condition with high Mach number and low Reynolds number in the shock tunnel is selected.The freestream parameters are shown in Table 1,P0∞is the freestream total pressure,T0∞is the freestream total temperature,Ma∞is the actual freestream mach number in the shock tunnel, the unit Reynolds numbers(Re∞/L)for Ma=10 and Ma=12 are 2.4×106m-1and 2.1×106m-1,respectively,δ is the boundary layer thickness at the center location of the vortex generator,k is the height of the vortex generator,δLand δTare the laminar and turbulent boundary layer thickness before the rudder,respectively.The angle of attack of the lifting body model is 20°.The height of the rudder gap is 5 mm,the deflection angle of the rudder is 10°.The height of the protuberance is 5 mm,the deflection angle of the protuberance is also 10°(note that in Fig.3 the air rudder tip is deflected to the left by 10°).

    Fig.2 Cylindrical and contoured heat flux sensors.

    Fig.3 Model of rudder and rudder shaft.

    Fig.4 Protuberance model(height:5 mm).

    Numerical simulations of the aero-heating on the surface of the rudder shaft and the protuberance are performed using the finite volume method,which solves the integral form of the three-dimensional compressible Navier-Stokes equations.The governing equations are as follows:

    3.Boundary layer forced transition

    Under the flow conditions of the shock tunnel in Table 1,tests are carried out to verify that the boundary layer upstream ofthe air rudder is laminar,and then vortex generators are installed to enforce the boundary layer into turbulence.

    Table 1 Test flow conditions and calculated boundary layer thickness.

    According to the previous work,a series of 2 mm high diamond vortex generators,as shown in Fig.5,is installed on the surface of the lifting body model at x/L=0.32 from the head,where x is the streamwise coordinate and L the length of the lifting body.As shown in Table 1,the boundary layer thickness(δ)at the center location of the vortex generator is 1.4 mm and 1.7 mm for Ma=10 and Ma=12,respectively,and the corresponding k/δ values are 1.4 and 1.2. The thickness of the laminar(δL)and turbulent(δT)boundary layers at the front location of the air rudder is 3.9 mm and 10.6 mm,4.6 mm and 11.3 mm,respectively,and the corresponding thickness ratio of turbulent to laminar boundary layers is 2.7 and 2.5,respectively.Based on various tests in Refs.15-22and our previous work experience,the current vortex generators with a height of 2 mm can effectively enforce the laminar boundary layer into turbulence without bringing in too much disturbance,which might affect the rudder shaft aero-heating measurement under turbulence conditions.

    The flow regime of the boundary layer is determined by measuring the heat flux along the center line upstream of the air rudder.Fig.6 shows the measured and calculated distribution of the heat flux along the center line for both laminar and forced turbulent flows at Ma=10 and Ma=12(q is the measured heat flux result,qtis corresponding stagnation point heat flux).It can be seen that when there are no vortex generators,the measured heat flux distribution along the center line monotonously decreases,which suggests that the boundary layer upstream of the air rudder is laminar,consistent with the simulation results.After installing the vortex generators,the heat flux along the center line downstream of the vortex generators first rises and then stabilizes,which is almost in line with the simulation result for the turbulent flow.This suggests that the boundary layer upstream of the air rudder has become turbulence.Therefore,under the same shock tunnel flow conditions,two different boundary layer regimes are reached.

    In Fig.6,for the test results,it can be seen that regardless of laminar or turbulent flow regimes,the non-dimensional heat flux along the center line at Ma=12 is slightly higher than that at Ma=10.The reasons for this difference are relatively complex,related to the Mach number,the Reynolds number,the ratio of the outer edge pressure to total pressure of the local boundary layer,the temperature and velocity of the outer edge of boundary layer, and the viscosity coefficient. At x/L=0.67,the heat flux sharply decreases,which is due to the small expansion angle of the model surface.

    Fig.5 Diamond type vortex generators.

    Fig.6 Distribution of heat flux along center line.

    4.Results

    The heat flux measurement results for the rudder shaft and the protuberance are shown in Fig.7(the horizontal coordinate N is the measurement point number).A comparison of the heat flux on the windward side of the rudder shaft and the protuberance under two different flow regimes at Ma=10 is shown in Fig.7(a).Similar results at Ma=12 are shown in Fig.7(b).The two figures indicate that the heat flux on the rudder shaft is higher in the laminar flow than that in the forced turbulent flow.However,the heat flux on the protuberance is higher under the turbulent flow condition,as predicted by the conventional law.Fig.7(c)shows the heat flux for the rudder shaft with different flow regimes and different Mach numbers.Within the same flow regime,the heat flux of the rudder shaft at Ma=12 is higher than that at Ma=10.The heat flux of the rudder shaft monotonously increases from left to right due to the influence of the rudder deflection angle(from Point 1 to Point 5).The peak-valley ratio for the heat flux reaches 3.7.The same comparison but for the protuberances is shown in Fig.7(d).Within the same flow regime,the relation in the heat flux between Ma=12 and Ma=10 is unclear.Affected by the deflection angle of the protuberance,the heat flux on the right for Point 3-Point 5 is only slightly higher than that on the left side.Table 2 compares the averaged ratio of the heat flux under the turbulent and laminar flow conditions in different regions.It can be seen that the heat flux for the last six points along the center line and for the protuberance region(including the protuberance surface and upstream protuberance,as shown in Fig.4)at both Ma=10 and Ma=12 are about 2.5-4.2 times larger under the turbulent flow condition than that under the laminar flow condition,which is consistent with the conventional viewpoint.However,on the rudder shaft area(including the rudder shaft surface and upstream rudder shaft),the heat flux under the turbulent flow condition is only 0.6-0.7 times that under the laminar flow condition.This is contrary to the conventional understanding on how the boundary layer flow regime affects the heat flux on the model surface.

    Fig.7 Comparison of heat flux distribution of rudder shaft and protuberance.

    Table 2 Averaged ratio of turbulent heat flux to laminar heat flux in each region.

    The test data of the aero-heating flux is averaged for better quality,and the repeatability error is within±15%.During the test,the whole batch of the heat flux sensors is replaced in each round.According to the shock tunnel calibration data,if we repeat the same test without replacing the heat flux sensors,the repeatability error under the laminar flow condition is within±5%,and under the turbulent flow condition is within±10%(in this case,the error is mainly due to the uncertainty in the shock tunnel operation).

    5.Discussion

    To get a deep understanding of the flow physics,we have conducted numerical simulations of the heat flux distribution on the rudder shaft and on the protuberance under the laminar and turbulent flow conditions.The flow conditions in the simulation setup,such as freestream condition,model scale ratio,angle of attack,air rudder angle,rudder gap height,etc.,remain the same as the experimental configuration.The distribution of rudder shaft heat flux at Ma=10 and Ma=12 is shown in Fig.8.It can be seen that the heat flux on the rudder shaft is higher under the laminar condition than that under the turbulent one,which agrees with the wind tunnel test result.

    Fig.8 Numerical simulation results of rudder shaft heat flux distribution.

    Further analysis suggests that the surprising result observed in both the experiment and the simulation is mainly caused by the difference in the boundary layer velocities within the rudder gap for the two flow regimes.This is due to the difference of thickness of turbulent/laminar boundary layers and the‘‘restricted flow”in the rudder gap.Taking the Ma=10 case as an example,as shown in Fig.9(h is the wall outside normal height,T0is the local total temperature,u is the local flow velocity),upstream of the air rudder(x/L=0.87),we define the line where the total temperature in the flow field is equal to 99%of the total temperature in the freestream as the outer edge of the boundary layer,and this defined thickness is much larger(2.5 times)for the turbulent boundary layer than that for the laminar one.At the gap entrance,the velocity of the laminar flow is significantly greater than that of the turbulent flow,which makes the energy of the fluid entering the gap under the laminar flow condition greater than that under the turbulent flow condition.Within the gap,the laminar flow is more likely to generate the separation vortex,and the restriction of the separation vortex and the upper and lower walls of the gap have narrowed the mainstream flow path that can act as an energy concentrator.The accumulated energy bumps on the rudder shaft to produce high heat flux bands(as shown in Fig.10).

    Fig.10 Comparison of flow situations in gap of rudder.

    Fig.11 Comparison of flow conditions near protuberance.

    From the above numerical and experimental results,it can be seen that in the absence of the air rudder,heat flux on the protuberance in the laminar flow is significantly smaller than in the turbulent case.The Ma=10 state is also taken as an example for illustration.As shown in Fig.11,the laminar flow state is more likely to separate.At the same time,since there is no constraint on the air rudder gap,the separation vortex is fully developed,and the separation vortex lifts the low energy fluid at the bottom of the boundary layer.The larger the laminar-flow separation vortex is,the higher the low-energy fluid is lifted.Consequently,the fluid energy that hits the protuberance is lower than that in the turbulent flow,thus the heat flux is smaller than that in the turbulent flow.

    Fig.9 Temperature and velocity profiles for boundary layers upstream of rudder(x/L=0.87,Ma=10).

    6.Conclusions

    In this paper,vortex generators mounted on a lifting body model in the shock tunnel are used to enforce boundary layer transition.Under the same wind tunnel flow conditions,different flow regimes,i.e.,laminar and turbulent boundary layers,are realized.Under the two flow conditions,i.e.,Ma=10,Re∞/L=2.4×106m-1and Ma=12,Re∞=2.1×106m-1,the difference of thickness of the forced turbulent flow and the laminar one is large.In these conditions,experiments on the effect of the boundary layer flow regime on the aero-heating of the rudder shaft are carried out.The aero-heating of the protuberance,which is the same as that of the rudder shaft in the absence of the rudder,is measured for a comparison under the same conditions.The experimental results show that the heat flux on the rudder shaft in the laminar flow is higher than that in the turbulent flow,but the corresponding heat flux on the protuberance follows the conventional law,i.e.,higher in the turbulent flow than that in the laminar flow.Numerical simulations of the heat flux distribution on the rudder shaft and on the protuberance are performed as well,and the results are in agreement with the wind tunnel test results.Finally,we briefly analyze the causes for the difference in the aero-heating of the air rudder,and find that these are mainly due to the difference in the boundary layer velocities in turbulent/laminar boundary layers and the‘‘restricted flow”within the rudder gap.Of course,the reasons for this situation are complicated,and the study of other possible factors,including shock wave boundary layer interaction,boundary layer separation and reattachment,requires more in-depth numerical simulation research in the future.

    We have conducted the shock tunnel test to verify that the heat flux of the rudder shaft under the laminar condition is higher than that under the turbulent condition.The discovery of this phenomenon suggests that when the thickness of the turbulent boundary layer reaches three or more times larger than that of the laminar one,the thermal protection system of the rudder shaft on the hypersonic vehicle must be designed according to the laminar boundary layer condition,rather than the turbulent one.This is especially the case for the aircraft flying at the critical height,or the boundary layer flow regime cannot be accurately predicated due to the complexity of transition.

    Acknowledgement

    This study was supported by the National Key Research and Development Program of China(No.2016YFA0401201).

    丝袜人妻中文字幕| 一区二区三区精品91| 国产av一区二区精品久久| 三上悠亚av全集在线观看| 少妇 在线观看| 黄网站色视频无遮挡免费观看| 97精品久久久久久久久久精品| 热re99久久精品国产66热6| 午夜日韩欧美国产| 久久久久久久久免费视频了| 高清av免费在线| 国产国语露脸激情在线看| 又大又黄又爽视频免费| 亚洲天堂av无毛| 亚洲国产av新网站| av又黄又爽大尺度在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷成人精品国产| 久久国产亚洲av麻豆专区| 咕卡用的链子| 老司机在亚洲福利影院| 建设人人有责人人尽责人人享有的| 国产免费一区二区三区四区乱码| 黄色怎么调成土黄色| 精品第一国产精品| 99热网站在线观看| 黄色一级大片看看| 精品国产超薄肉色丝袜足j| 久久久久国产精品人妻一区二区| 美女福利国产在线| 咕卡用的链子| 最近中文字幕高清免费大全6| 久久久亚洲精品成人影院| 日韩熟女老妇一区二区性免费视频| 人人妻人人澡人人爽人人夜夜| 天天添夜夜摸| 久久国产精品大桥未久av| 高清黄色对白视频在线免费看| 欧美在线一区亚洲| 亚洲国产精品一区二区三区在线| 亚洲激情五月婷婷啪啪| 亚洲精品日韩在线中文字幕| 亚洲精品久久久久久婷婷小说| 美女主播在线视频| 日韩一区二区视频免费看| 在线亚洲精品国产二区图片欧美| 国产精品嫩草影院av在线观看| 免费高清在线观看视频在线观看| 国产日韩欧美在线精品| 女性被躁到高潮视频| 免费观看性生交大片5| 亚洲精品乱久久久久久| 国产精品成人在线| 欧美日韩亚洲综合一区二区三区_| 久久国产精品男人的天堂亚洲| 亚洲av综合色区一区| 国产精品嫩草影院av在线观看| 又黄又粗又硬又大视频| 中文字幕高清在线视频| 亚洲,一卡二卡三卡| 久久精品久久精品一区二区三区| 久久韩国三级中文字幕| 亚洲国产欧美网| 下体分泌物呈黄色| 久热爱精品视频在线9| 黄色 视频免费看| av在线老鸭窝| 亚洲在久久综合| 男女之事视频高清在线观看 | 亚洲国产精品国产精品| 欧美变态另类bdsm刘玥| 美女高潮到喷水免费观看| 秋霞在线观看毛片| 一级毛片我不卡| 国产爽快片一区二区三区| 热99久久久久精品小说推荐| 亚洲精品aⅴ在线观看| av片东京热男人的天堂| 久久午夜综合久久蜜桃| 曰老女人黄片| 国产一级毛片在线| 久久天堂一区二区三区四区| 国产成人精品久久二区二区91 | 菩萨蛮人人尽说江南好唐韦庄| 一级毛片电影观看| 亚洲成人手机| 日韩 亚洲 欧美在线| 九九爱精品视频在线观看| 国产不卡av网站在线观看| 波野结衣二区三区在线| 一级,二级,三级黄色视频| 日韩制服骚丝袜av| 成人影院久久| 一本久久精品| 国产无遮挡羞羞视频在线观看| 一级爰片在线观看| 日本黄色日本黄色录像| 色吧在线观看| 亚洲欧美精品综合一区二区三区| 日本黄色日本黄色录像| 狂野欧美激情性xxxx| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| a级毛片在线看网站| av天堂久久9| 精品国产超薄肉色丝袜足j| 老汉色av国产亚洲站长工具| 精品一区二区免费观看| 久久久久精品性色| 日本黄色日本黄色录像| 狂野欧美激情性xxxx| 9热在线视频观看99| 另类亚洲欧美激情| 欧美日韩一级在线毛片| 五月天丁香电影| 日韩欧美一区视频在线观看| 欧美日韩一级在线毛片| 五月天丁香电影| 国产午夜精品一二区理论片| 看非洲黑人一级黄片| 日韩欧美精品免费久久| 一区二区日韩欧美中文字幕| 99香蕉大伊视频| 嫩草影院入口| 国产精品女同一区二区软件| 老熟女久久久| 久久免费观看电影| 啦啦啦在线免费观看视频4| 老司机靠b影院| 成人免费观看视频高清| 色综合欧美亚洲国产小说| 亚洲欧美精品综合一区二区三区| 岛国毛片在线播放| 99热网站在线观看| 99热全是精品| 亚洲成人av在线免费| 国产一区亚洲一区在线观看| 激情视频va一区二区三区| 在线天堂中文资源库| 香蕉国产在线看| 热re99久久国产66热| 国产一区有黄有色的免费视频| 欧美精品一区二区大全| av国产精品久久久久影院| 99久久人妻综合| 亚洲中文av在线| 国产熟女欧美一区二区| 蜜桃国产av成人99| 不卡av一区二区三区| 国产精品一区二区精品视频观看| 日日摸夜夜添夜夜爱| 免费黄网站久久成人精品| 国产精品.久久久| 极品人妻少妇av视频| 亚洲婷婷狠狠爱综合网| 97在线人人人人妻| 久久女婷五月综合色啪小说| 国产熟女午夜一区二区三区| 色婷婷av一区二区三区视频| 亚洲av电影在线观看一区二区三区| 欧美国产精品va在线观看不卡| 国产成人欧美| 女性生殖器流出的白浆| 中文字幕人妻熟女乱码| 伦理电影免费视频| 麻豆乱淫一区二区| 免费少妇av软件| 国产熟女欧美一区二区| 七月丁香在线播放| 色播在线永久视频| 久久久久久人妻| 国产精品.久久久| 别揉我奶头~嗯~啊~动态视频 | 捣出白浆h1v1| 国产 一区精品| 久久人人爽av亚洲精品天堂| 欧美精品亚洲一区二区| 人妻 亚洲 视频| 天天操日日干夜夜撸| 午夜老司机福利片| 我的亚洲天堂| 少妇 在线观看| 国产精品香港三级国产av潘金莲 | 亚洲av欧美aⅴ国产| 可以免费在线观看a视频的电影网站 | 成年女人毛片免费观看观看9 | 视频在线观看一区二区三区| 大片电影免费在线观看免费| 老司机深夜福利视频在线观看 | 免费黄色在线免费观看| 你懂的网址亚洲精品在线观看| 一级毛片电影观看| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看 | 永久免费av网站大全| 精品第一国产精品| 韩国av在线不卡| 亚洲国产毛片av蜜桃av| 一本一本久久a久久精品综合妖精| 亚洲第一区二区三区不卡| 少妇被粗大猛烈的视频| www.精华液| 男人爽女人下面视频在线观看| av在线app专区| 精品少妇黑人巨大在线播放| 亚洲精品,欧美精品| 亚洲欧洲精品一区二区精品久久久 | 免费日韩欧美在线观看| 搡老岳熟女国产| 亚洲七黄色美女视频| 久久久久视频综合| 久久精品亚洲熟妇少妇任你| 巨乳人妻的诱惑在线观看| 中文字幕人妻丝袜制服| 99热网站在线观看| 丰满少妇做爰视频| 国产亚洲精品第一综合不卡| 深夜精品福利| 国产成人欧美在线观看 | 久久久久精品人妻al黑| 2018国产大陆天天弄谢| 乱人伦中国视频| 亚洲av中文av极速乱| 伦理电影免费视频| 欧美国产精品va在线观看不卡| 亚洲欧美成人综合另类久久久| 伦理电影免费视频| 亚洲自偷自拍图片 自拍| 午夜福利视频在线观看免费| 国产伦人伦偷精品视频| √禁漫天堂资源中文www| 九色亚洲精品在线播放| 欧美av亚洲av综合av国产av | 欧美日韩视频精品一区| 久久人人爽av亚洲精品天堂| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 最黄视频免费看| 色播在线永久视频| av福利片在线| 日韩中文字幕欧美一区二区 | 亚洲av福利一区| 三上悠亚av全集在线观看| 久久久亚洲精品成人影院| 9191精品国产免费久久| 91精品三级在线观看| 熟女少妇亚洲综合色aaa.| 狠狠精品人妻久久久久久综合| 亚洲激情五月婷婷啪啪| 欧美国产精品va在线观看不卡| 欧美激情极品国产一区二区三区| 人人澡人人妻人| 欧美在线黄色| 久久久久视频综合| 亚洲少妇的诱惑av| 成人国产麻豆网| 亚洲精品成人av观看孕妇| 中文字幕人妻丝袜制服| 久久精品国产综合久久久| 久久久欧美国产精品| 91aial.com中文字幕在线观看| 91aial.com中文字幕在线观看| 国产精品二区激情视频| 男女之事视频高清在线观看 | 大陆偷拍与自拍| 少妇的丰满在线观看| 午夜激情av网站| 女人久久www免费人成看片| 搡老乐熟女国产| 久久国产精品男人的天堂亚洲| 视频区图区小说| 久久人人爽人人片av| 国产免费福利视频在线观看| 一本大道久久a久久精品| 国产又色又爽无遮挡免| 国产一区二区三区av在线| 一二三四中文在线观看免费高清| 999久久久国产精品视频| 色网站视频免费| 精品一区二区三区av网在线观看 | 精品久久久久久电影网| 晚上一个人看的免费电影| 1024视频免费在线观看| 色婷婷久久久亚洲欧美| 51午夜福利影视在线观看| 久久综合国产亚洲精品| 一级黄片播放器| 日韩欧美一区视频在线观看| av在线观看视频网站免费| 黄色怎么调成土黄色| 国产精品久久久人人做人人爽| 一级毛片 在线播放| 黄色 视频免费看| 又大又爽又粗| 在线免费观看不下载黄p国产| 国产伦人伦偷精品视频| 毛片一级片免费看久久久久| 国产精品.久久久| 综合色丁香网| 99re6热这里在线精品视频| 男女国产视频网站| 精品人妻在线不人妻| 精品久久久久久电影网| 久久精品国产a三级三级三级| 亚洲天堂av无毛| 成年人午夜在线观看视频| 考比视频在线观看| 欧美中文综合在线视频| 日韩一区二区视频免费看| 狂野欧美激情性xxxx| 国产乱人偷精品视频| 国产极品粉嫩免费观看在线| 国产爽快片一区二区三区| 国产 一区精品| 下体分泌物呈黄色| 19禁男女啪啪无遮挡网站| 这个男人来自地球电影免费观看 | 国产成人欧美在线观看 | 中文字幕人妻熟女乱码| 亚洲av综合色区一区| 婷婷色麻豆天堂久久| 老司机在亚洲福利影院| 天天躁夜夜躁狠狠久久av| 精品久久久精品久久久| 最近中文字幕2019免费版| 91精品伊人久久大香线蕉| 国产欧美亚洲国产| 国产免费视频播放在线视频| 深夜精品福利| 久久青草综合色| 国产毛片在线视频| 9色porny在线观看| 国产一卡二卡三卡精品 | 丝袜喷水一区| 亚洲国产欧美在线一区| 天天躁狠狠躁夜夜躁狠狠躁| xxx大片免费视频| 丝袜喷水一区| 自拍欧美九色日韩亚洲蝌蚪91| 少妇精品久久久久久久| 狂野欧美激情性xxxx| 老熟女久久久| 亚洲国产av影院在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲国产日韩| av线在线观看网站| 操美女的视频在线观看| 亚洲成人免费av在线播放| 精品一区二区三区四区五区乱码 | 久久精品aⅴ一区二区三区四区| 久久久国产一区二区| 巨乳人妻的诱惑在线观看| 可以免费在线观看a视频的电影网站 | 日本av免费视频播放| 五月天丁香电影| 久久99一区二区三区| 免费日韩欧美在线观看| 一级片免费观看大全| 欧美日韩精品网址| 午夜日本视频在线| 下体分泌物呈黄色| 又大又爽又粗| 亚洲成人一二三区av| 街头女战士在线观看网站| 亚洲欧美激情在线| 一区在线观看完整版| 悠悠久久av| 最黄视频免费看| 亚洲精品国产av蜜桃| 日韩精品有码人妻一区| 国产日韩欧美亚洲二区| 亚洲av福利一区| 青春草视频在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 三上悠亚av全集在线观看| 操出白浆在线播放| 国产在线一区二区三区精| 精品久久久久久电影网| 国产一区有黄有色的免费视频| 日韩中文字幕视频在线看片| h视频一区二区三区| 美女扒开内裤让男人捅视频| 80岁老熟妇乱子伦牲交| 两个人看的免费小视频| 久久av网站| 黄色怎么调成土黄色| 亚洲精品美女久久av网站| 日日爽夜夜爽网站| 国产av精品麻豆| 午夜福利影视在线免费观看| 欧美在线一区亚洲| 亚洲熟女毛片儿| 国产精品偷伦视频观看了| 丰满饥渴人妻一区二区三| 亚洲精品,欧美精品| 精品免费久久久久久久清纯 | 日韩电影二区| 欧美精品av麻豆av| 久久av网站| 黄色怎么调成土黄色| 国产在线视频一区二区| 久久精品国产综合久久久| 一级毛片黄色毛片免费观看视频| 亚洲国产精品成人久久小说| 亚洲av欧美aⅴ国产| 九色亚洲精品在线播放| 欧美精品一区二区免费开放| 天天躁夜夜躁狠狠躁躁| 亚洲成国产人片在线观看| 国产一区有黄有色的免费视频| 一级片'在线观看视频| 秋霞伦理黄片| 欧美久久黑人一区二区| 九草在线视频观看| 国产免费视频播放在线视频| 伦理电影大哥的女人| 亚洲欧美一区二区三区久久| 男女下面插进去视频免费观看| 不卡av一区二区三区| 老司机影院毛片| 亚洲精品久久午夜乱码| 在线观看www视频免费| 日韩制服丝袜自拍偷拍| 欧美xxⅹ黑人| 高清不卡的av网站| 日韩电影二区| 国产麻豆69| 欧美成人午夜精品| 国产伦人伦偷精品视频| 在线观看免费高清a一片| 人妻一区二区av| 多毛熟女@视频| 在线观看免费视频网站a站| 伦理电影免费视频| www.av在线官网国产| 大片免费播放器 马上看| 欧美日韩亚洲综合一区二区三区_| 久久久久网色| 免费人妻精品一区二区三区视频| 美女视频免费永久观看网站| 色婷婷av一区二区三区视频| 精品一品国产午夜福利视频| 观看美女的网站| 五月开心婷婷网| 欧美日韩国产mv在线观看视频| 制服丝袜香蕉在线| 欧美成人午夜精品| 日韩伦理黄色片| 国产野战对白在线观看| 国产亚洲午夜精品一区二区久久| 一本一本久久a久久精品综合妖精| 91精品国产国语对白视频| 99国产综合亚洲精品| 9热在线视频观看99| 免费高清在线观看视频在线观看| www.自偷自拍.com| 一边亲一边摸免费视频| 中文字幕人妻丝袜一区二区 | 美女高潮到喷水免费观看| 夜夜骑夜夜射夜夜干| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美| 国产一区亚洲一区在线观看| 成年人免费黄色播放视频| 国产av国产精品国产| 最近中文字幕2019免费版| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 国产在线一区二区三区精| 又粗又硬又长又爽又黄的视频| 欧美激情 高清一区二区三区| 91精品国产国语对白视频| 国产伦人伦偷精品视频| 日韩一区二区三区影片| 日韩制服骚丝袜av| 成人午夜精彩视频在线观看| 免费观看性生交大片5| 国产有黄有色有爽视频| 欧美成人午夜精品| 久久这里只有精品19| 欧美在线黄色| 校园人妻丝袜中文字幕| 国产伦人伦偷精品视频| 国产亚洲一区二区精品| 极品人妻少妇av视频| 午夜福利乱码中文字幕| 久久97久久精品| 国产有黄有色有爽视频| 麻豆精品久久久久久蜜桃| 亚洲国产av新网站| 国产av一区二区精品久久| 久久97久久精品| 亚洲欧美一区二区三区黑人| 性色av一级| 日日撸夜夜添| 亚洲欧美成人精品一区二区| 亚洲成人手机| 久久天躁狠狠躁夜夜2o2o | 久久久久久久久久久免费av| 国产片特级美女逼逼视频| 午夜av观看不卡| 女人高潮潮喷娇喘18禁视频| 国产人伦9x9x在线观看| 久久国产精品大桥未久av| 亚洲欧美精品综合一区二区三区| 日本一区二区免费在线视频| 秋霞伦理黄片| 91精品伊人久久大香线蕉| 人成视频在线观看免费观看| 国产成人欧美| 成人三级做爰电影| 亚洲久久久国产精品| 又黄又粗又硬又大视频| 两性夫妻黄色片| 亚洲成人免费av在线播放| 久久影院123| 99国产综合亚洲精品| 精品少妇一区二区三区视频日本电影 | 啦啦啦中文免费视频观看日本| 肉色欧美久久久久久久蜜桃| 国产无遮挡羞羞视频在线观看| 亚洲精品乱久久久久久| 在线精品无人区一区二区三| 日本欧美国产在线视频| 国产熟女午夜一区二区三区| 亚洲国产看品久久| 中文字幕av电影在线播放| 纵有疾风起免费观看全集完整版| 在线亚洲精品国产二区图片欧美| 免费久久久久久久精品成人欧美视频| 女人久久www免费人成看片| 久久久久精品性色| 成人国产麻豆网| 午夜福利一区二区在线看| 精品少妇内射三级| 国产黄色免费在线视频| 国产亚洲精品第一综合不卡| 久久久久久久久免费视频了| 亚洲欧美一区二区三区黑人| 女人被躁到高潮嗷嗷叫费观| www.精华液| videosex国产| 少妇人妻精品综合一区二区| 精品一区二区免费观看| 尾随美女入室| 美国免费a级毛片| 在线观看免费日韩欧美大片| 国产精品久久久av美女十八| 综合色丁香网| 天天操日日干夜夜撸| 熟妇人妻不卡中文字幕| 国产亚洲最大av| 国产精品av久久久久免费| 日韩一区二区三区影片| 亚洲精品乱久久久久久| 欧美日本中文国产一区发布| 欧美日韩av久久| 亚洲国产av影院在线观看| 宅男免费午夜| 最近手机中文字幕大全| 免费观看a级毛片全部| 久久精品熟女亚洲av麻豆精品| 久久韩国三级中文字幕| 最新的欧美精品一区二区| 国产日韩欧美亚洲二区| 天堂8中文在线网| 男女之事视频高清在线观看 | 国产xxxxx性猛交| 日日爽夜夜爽网站| 1024视频免费在线观看| 免费黄频网站在线观看国产| 看免费av毛片| 日韩一本色道免费dvd| av在线app专区| 午夜免费鲁丝| 老鸭窝网址在线观看| 十八禁高潮呻吟视频| 青青草视频在线视频观看| 国产女主播在线喷水免费视频网站| 自线自在国产av| 亚洲av电影在线观看一区二区三区| av.在线天堂| 纯流量卡能插随身wifi吗| 欧美国产精品一级二级三级| 叶爱在线成人免费视频播放| 丝袜在线中文字幕| 国产精品免费大片| 亚洲av电影在线进入| 亚洲熟女毛片儿| 亚洲综合色网址| 国产精品.久久久| 亚洲熟女毛片儿| 成人三级做爰电影| 欧美最新免费一区二区三区| 精品国产超薄肉色丝袜足j| 2018国产大陆天天弄谢| 国产男女超爽视频在线观看| 亚洲精品国产区一区二| 国产精品欧美亚洲77777| 精品国产露脸久久av麻豆| 飞空精品影院首页| 久久久久精品国产欧美久久久 | 欧美97在线视频| 亚洲国产欧美网| 日本av免费视频播放| 日韩欧美一区视频在线观看| 国产亚洲av片在线观看秒播厂| 日韩成人av中文字幕在线观看| a级毛片在线看网站| 日本91视频免费播放| 亚洲 欧美一区二区三区| 又大又爽又粗| 美女中出高潮动态图| 精品卡一卡二卡四卡免费| 男人操女人黄网站|