童玉珂 陳濤 卓澤朋
摘要:基于有限域和代數(shù)理論,研究并證明了布爾函數(shù)Nega-Hadamard變換的一些性質(zhì),給出一些重要結(jié)果。這對今后Negabent函數(shù)的構(gòu)造、性質(zhì)研究和推廣十分有必要。
關(guān)鍵詞:布爾函數(shù);Nega-Hadamard變換;性質(zhì);Negabent函數(shù)
中圖分類號:TN 918.1 文獻標(biāo)識碼:A 文章編號:1009-3044(2019)06-0209-03
Some Properties on Nega-Hadamard Transform of Boolean Functions
TONG Yu-ke,CHEN Tao,ZHUO Ze-peng
(School of Mathematical Science, Huaibei Normal University, Huaibei 235000, China)
Abstract: Based on finite fields and algebraic theory, this paper researched and proved some properties about Nega-Hadamard transform of the Boolean function and some important results is given. This is necessary for the construction and nature of the Negabent function in the future.
Key words: Boolean function;Nega-Hadamard transform;properties;Negabent function
1 引言
布爾函數(shù)在密碼學(xué)和通信領(lǐng)域中廣泛應(yīng)用,其密碼學(xué)性質(zhì)與密碼體制的安全息息相關(guān)。
1976年,Rothaus[1]提出Bent函數(shù)的概念,并證明了Bent函數(shù)的非線性度達到最大,為[2n-2n2-1],可有效抵抗線性攻擊。其中Bent函數(shù)的一個重要特征是它的Walsh-Hadamard變換的絕對值都相等。據(jù)此,Riera等人在文獻[2]中提出Nega-Hadamard變換的概念,為了研究一類特殊布爾函數(shù)—Negabent函數(shù)。
目前,國內(nèi)外眾多學(xué)者對Nega-Hadamard變換的研究已有較豐富成果[2-11]。Riera和Parker等人在文獻[2-3]中提出并研究了Nega-Hadamard變換的性質(zhì),在此基礎(chǔ)上討論了Negabent函數(shù)變元情況以及Negabent函數(shù)的構(gòu)造問題。Stanica等人在文獻[4]和[5]中詳細研究了Nega-Hadamard變換的特征,以及Nega-Hadamard變換與其他密碼學(xué)指標(biāo)之間的關(guān)系,得出一些重要結(jié)果。文獻[6]中研究了Nega-Hadamard變換的若干性質(zhì)并分析了一類級聯(lián)函數(shù)的Nega-Hadamard變換。文獻[7]中研究了Nega-Hadamard變換在布爾函數(shù)仿射子空間中的性質(zhì),并給出布爾函數(shù)Nega-Hadamard變換與其導(dǎo)數(shù)之間的關(guān)系,得到一些結(jié)果。文獻[10]通過利用Nega-Hadamard變換研究了具有最大代數(shù)免疫階Negabent函數(shù)的構(gòu)造。本文在文獻[2-11]的基礎(chǔ)上,繼續(xù)研究Nega-Hadamard變換的性質(zhì)特征,并給出性質(zhì)的證明。
2 預(yù)備知識
用[F2]表示元素為0和1的二元有限域,記[Bn]是[n]元布爾函數(shù)所組成的集合,即[fx∈Bn:Fn2→F2]。[F2],[Fn2],[Bn]上加法記作[⊕],[⊕i]。對任意[fx∈Bn],其代數(shù)正規(guī)型[ANF]可表示為
參考文獻:
[1] Rothaus O S. On bent functions[J]. Journal of Combinatorial Theory, 1976, 20: 300-305.
[2] Riera C, Parker M G. Generalized bent criteria for Boolean function[J]. IEEE Transactions on Information Theory 2006, 52(9) : 4142-4159.
[3] Parker M G, Pott A. On Boolean functions which are bent and negabent [C]//Proc of International Workshop on Sequences, Subse-queuces, aud Consequences. Berlin: Spinier-Ver1ag,2007: 9-23.
[4] Stanica P, Gangopadhyay S, Chaturvedi A, et al. Nega-Hadamard transform, bent and negabent Functions[C]// Proc of the 6th International Conference on Sequences and Their Applications. Berlin: Spinger-Verlag, 2010: 359-372.
[5] Stanica P S, Gangopadhyay S, Chaturvedi A, et al. Investigations on Bent and Negabent functions via the Nega-Hadamard Transform [J]. IEEE Transactions on Information Theory, 2012, 58(6): 4064-4072.
[6] 卓澤朋, 崇金鳳, 魏仕民. Bent-negabent函數(shù)的構(gòu)造[J]. 山東大學(xué)學(xué)報:理學(xué)版, 2015, 50 (10) : 47-58.
[7] 卓澤朋, 崇金鳳, 魏仕民, 等. 布爾函數(shù)Nega-Hadamard變換研究[J]. 計算機應(yīng)用研究, 2015, 32 (9) : 2806-2808.
[8] Sarkar S. Some results on bent-negabent Boolean functions over finite fields[J]. on the symmetric negahent Boolean functions[C]//Progress in Cryptology. Berlin, Heidelberg: Springer-Velag, 2009: 136-143.
[9] Sarkar S. Characterizing negabent Boolean functions over finite fields[J]// Proc of the 7th Internatioual Conference on Sequences and Their Applications. Berlin: Spinger-Verlag, 2012: 77-78.
[10] Su wei, Pott A , Tang Xiaohu. Characterization of negabent functions and construction of bent-negabent functions with maximum algebraic degree[J]. IEEE Transactions on Information Theory, 2013, 59(6): 3387-3395.
[11] 任傳倫, 劉鳳梅, 楊義先, 等. 關(guān)于negabent函數(shù)的若干討論[J]. 通信學(xué)報, 2011, 32(8): 179-182.
【通聯(lián)編輯:代影】