• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ricci Positive Metrics on the Moment-Angle Manifolds?

    2019-05-20 13:01:18LimanCHENFeifeiFAN

    Liman CHEN Feifei FAN

    Abstract In this paper,the authors consider the problem of which(generalized)momentangle manifolds admit Ricci positive metrics.For a simple polytope P,the authors can cut o ffone vertex v of P to get another simple polytope Pv,and prove that if the generalized moment-angle manifold corresponding to P admits a Ricci positive metric,the generalized moment-angle manifold corresponding to Pvalso admits a Ricci positive metric.For a special class of polytope called Fano polytopes,the authors prove that the moment-angle manifolds corresponding to Fano polytopes admit Ricci positive metrics.Finally some conjectures on this problem are given.

    Keywords Moment-Angle manifolds,Simple polytope,Cutting o ffface,Positive Ricci curvature,Fano polytope

    1 Introduction

    The moment-angle manifold Z comes from two different ways:

    (1)The transverse intersections in Cnof real quadrics of the formwith the unit Euclidean sphere of Cn.

    (2)An abstract construction from a simple polytope Pnwith m facets.

    The study of the first one led to the discovery of a new special class of compact non-k¨ahler complex manifolds in the work of L′opez,Verjovsky and Meersseman[10–12],now known as the LV-M manifolds,which helps us understand the topology of non-k¨ahler complex manifolds.

    The study of the second one is related to the quasitoric manifolds in the following way:For every quasitoric manifold π :M2n→ Pnthere is a principal Tm?n-bundle Z → M2nwhose composite map with π makes Z a Tm-manifold with orbit space Pn.The topology of the manifolds Z provides an e ff ective tool for understanding inter-relations between algebraic and combinatorial aspects such as the Stanley-Reisner rings,the subspace arrangements and the cubical complexes,etc.

    Nowadays,studies of moment-angle manifolds are mainly focused on the following two aspects:

    (1)The cohomology of moment-angle manifolds and topology of some special moment-angle manifolds.

    (2)The geometry of moment-angle manifolds in its convex,complex-analytic,symplectic and Lagrangian aspects.

    In this paper,we pay attention to the Riemannian metric property of moment-angle manifolds in aspect of Ricci curvature.In Riemannian geometry,one of the most important themes is to study the relationship between the curvature and globally topological or geometrical property of Riemannian manifolds.In three types of curvature,scalar curvature has the weakest relationship with the geometrical property of the manifolds,but it is the best understood one according to the work of Gromov-Lawson[8–9]and Schoen-Yau[13–14].Sectional curvature has the closest relationship with the topological and geometrical property.In some sense,sectional curvature controls nearly all aspects of Riemannian geometry.In order to get some geometric properties of manifolds,usually we should give some restriction of sectional curvature.Besides,one of the most important problems in geometry is the classification of the Riemannian manifolds with sectional positive(or non-negative)metrics and sectional negative(or non-positive)metrics,which as known is far from totally understanding.As a second order symmetric tensor,Ricci curvature is closely related to many elliptic,parabolic and nonlinear differential equations in geometry.Ricci curvature also plays an important role in the general relativity theory in physics and the existence problem of Ricci positive metric(or Einstein metric,K¨ahler-Einstein metric)on a given manifold is also important.However,we have few methods to determine whether a given manifold can admit a Ricci positive metric.Until now,we have not known many examples of manifolds with positive Ricci curvature(Biquotients,connected sums of Sni×Smi(see[15,17]),Fano varieties,some principal G bundles on Ricci positive manifolds(see[6],etc).

    For the moment-angle manifolds,the existence of scalar positive metric can be easily proved(see[16]).As far as we know,[1]is the only paper concerned with the Ricci positive metrics on moment-angle manifolds.The authors constructed Riemannian metrics of positive Ricci curvature on 3 special moment-angle manifolds.In this paper,we also study the problem of which moment-angle manifolds admit Ricci positive metrics.We prove the following two theorems.

    Theorem 1.1 Let P be a simple polytope,Pvbe a simple polytope which is obtained by cutting o ffone vertex v on P.If the generalized moment-angle manifold corresponding to P admits a Ricci positive metric,then the generalized moment-angle manifold corresponding to Pvalso admits a Ricci positive metric.

    Theorem 1.2 If P is a Fano polytope,then the moment-angle manifold corresponding to P admits a Ricci positive metric.

    In the next two sections,we respectively prove these two theorems and finally give two conjectures concerned with the existence of positive Ricci curvature on moment-angle manifolds.

    2 Cutting o ffOne Vertex on a Simple Polytope

    Definition 2.1 A convex polytope P is the convex hull of a finite set of points in some Rn.0-dimensional faces are called vertices,codimension one faces are called facets.If there are exactly n facets meeting at each vertex of n-dimensional convex polytope Pn,this polytope are called simple.

    Given a simple polytope Pn,let F={F1,···,Fm}be the set of facets of P.For each facet Fi∈F,we use TFito denote the 1-dimensional coordinate subgroup of TF~=Tmcorresponding to Fi.Then assign to every face G the coordinate subtorus.For every point q∈P we denote by G(q)the unique face containing q in the relative interior.We can define the moment-angle manifold corresponding to P by the following way.

    Definition 2.2 For a simple polytope P introduce the moment-angle manifold ZP=(TF×P)/~,where(t1,p)~ (t2,q)if and only if p=q and

    Alternatively,we can define moment-angle manifold in another way:Since P is a simple polytope,the dual of the boundary of P is a simplicial(n?1)-sphere,which we denote by K.Let[m]={1,···,m}represent the vertices of K,σ be a simplex in the complex K.Define

    and define the moment-angle complex ZKcorresponding to K as

    From[2],ZKis homeomorphic to ZP.When we study the topology of moment-angle manifold corresponding to simple polytopes(or simplicial complexes),we consider the behavior of moment-angle manifolds under some surgeries on the simple polytopes(or simplicial complexes).One important surgery is cutting o fffaces of polytopes(or bistellar moves on simplicial complexes).

    Definition 2.3 Let P be a simple polytope of dimension n with m facets,which is the convex hull of finitely many vertices in Rn.For any face G in P,we can find a hyperplanesatisfying that H(v)>b and H(w)

    Let K be the dual simplicial complex of the boundary of P on the vertex set[m],and σ∈K be the simplex dual to the face G of P.Then the dual simplicial complex KGof the boundary of PGcan be expressed as

    where linkKσ ={τ∈ K:τ?σ ∈ K}and{?}is an additional point.

    We consider a simple case that linkKσ is the boundary of k-simplex τ.In this case,

    By the definition,the moment-angle complex corresponding to KGis

    Obviously,ZKGis diffeomorphic towhich can be interpreted as performing an“equivariant surgery operation”on ZK×S1.

    It may be very complicated if we consider the topology of the moment-angle manifold corresponding to KGwhen G is a high dimensional face.However,we have known the change of topology of the moment-angle manifold after cutting o ffa vertex v on a polytope P.

    After cutting o ffone vertex v of the simple polytope P,we obtain a new simple polytope Pv.Let KPand KPvbe the duals of the boundary of P and Pv,σ be the maximal simplex in KPdual to the vertex v of the simple polytope P.Then we have KPv=KP#σ?△n(△nis the standard n-dimensional simplex,and the choice of a maximal simplex in?△nis irrelevant).By the definition,the moment-angle complex corresponding to P(or KP)is

    Then we can express the moment-angle complex corresponding to Pv(or KPv)as follows(see[2,6.4]):

    In[7],Gitler and L′opez conjectured that ZPvis diffeomorphic to

    In[3],we proved this conjecture by the following way.

    First,we construct an isotopy ofin Z to move it to the regular embedding(see Remark 2.1)Tm?n? Dm?n+1? Dm+n? Z.The key lemma in the construction is as follows.

    Lemma 2.1 We have two embeddings of Tkin Dk+2:

    (1)Tk=Tk?1×S1? Dk×D2,where Tk?1is the regular embedding in Dk.

    (2)Tk?Dk+1?Dk+1×D1,where Tkis the regular embedding in Dk+1.

    These two embeddings are isotopic.

    Proof The normal bundle of the regular embedding Tk?1in Dkis trivial,so we can choose a neighborhood of Tk?1which is diffeomorphic to Tk?1×R1.We can construct an isotopy of Tkin Dk+2:

    An examination of this isotopy proves the lemma.

    Using this lemma,we can inductively construct an isotopy ofin Z to move it to the regular embedding Tm?n? Dm?n+1? Dm+n? Z,thus prove the following proposition.

    Proposition 2.1 ZPvis diffeomorphic to

    where Tm?n×D2nis the regular embedding in Sm+n.

    Remark 2.1 We construct the regular embedding of Tkinto Rk+1as follows:S1?D2?R2.Assume that we have constructed the embedding of Ti?1into Di? Ri.Represent(i+1)-sphere as Si+1=Di× S1∪ Si?1× D2.By the assumption,the torus Ti=Ti?1× S1can be embedded into Di×S1and therefore into Si+1.Since Tiis compact and Si+1is the one-point compactification of Ri+1,we have Ti?Ri+1.Inductively,we can construct the regular embedding of Tkinto Rk+1(or Dk+1).The regular embedding of Tkinto Rnis Tk? Rk+1×{0}? Rk+1×Rn?k?1,where Tk? Rk+1×{0}is the regular embedding of Tkinto Rk+1.

    Similarly,we can construct the regular embedding of(Sn)kinto Rnk+1.

    Then we prove the following by induction.

    Proposition 2.2 ?[(Sm+n?Tm?n×D2n)×D2]is diffeomorphic to

    where Tm?n×D2nis the regular embedding in Sm+n.

    Combining these two propositions,the conjecture is proved.However,we can replace the pair(D2,S1)with(Dk+1,Sk)(k≥2)in the definition of moment-angle manifolds to obtain generalized moment-angle manifolds.We use ZP,kto denote the generalized moment-angle manifold corresponding to P,then the generalized moment-angle manifold ZPv,kcorresponding to Pvis diffeomorphic to ZPv,k~= ?[(Z ? (Sk)m?nbσ× (Dk+1)nσ)× Dk+1].In a way similar to the case of k=1,we construct an isotopy ofin ZP,kto move it to the regular embedding(Sk)m?n?Dk(m?n)+1?Dkm+n?ZP,kand we have a lemma similar to Lemma 2.1.

    Lemma 2.2 There are two embedding of(Sn)kinto Dnk+2:

    (1)(Sn)k?Dnk+1×{0}?Dnk+2,where(Sn)k?Dnk+1×{0}is the regular embedding.

    (2)(Sn)k=(Sn)k?1× Sn? Dnk?n+1× Dn+1=Dnk+2,where(Sn)k?1? Dnk?n+1and Sn?Dn+1are regular embeddings.

    These two embeddings are isotopic to each other in Dnk+2.

    ProofThe normal bundle of the regular embedding(Sn)k?1in Dn(k?1)+1is trivial,so we can choose a neighborhood of(Sn)k?1which is diffeomorphic to(Sn)k?1× R1.We can construct an isotopy of(Sn)kin Dnk+2:

    where we use(y1,y2,···,yn+1)to express the unit sphere Sn(1)in Rn+1.An examination of this isotopy proves the lemma.

    By this lemma,we can construct an isotopy ofin ZP,kto move it to the regular embeddingthus prove the following proposition.

    Proposition 2.3 ZPv,kis diffeomorphic to

    where(Sk)m?n×D(k+1)nis the regular embedding in Skm+n.

    Then using the same method of proving Proposition 1.2 in[3],we can prove the following by induction(see Section 4).

    Proposition 2.4 ?[(Skm+n?(Sk)m?n×D(k+1)n)×Dk+1]is diffeomorphic to

    where(Sk)m?n×D(k+1)nis the regular embedding in Skm+n.

    Combining these two propositions,we can prove the following theorem.

    Theorem 2.1 If P is a simple polytope,the generalized moment-angle manifold ZPv,kcorresponding to Pvis diffeomorphic to

    In order to prove Theorem 1.1,we firstly recall some notations and theorems.

    Suppose that we are given a Riemannian manifold Mp+dhaving positive Ricci curvature and an isometric embedding: ι:Sp(ρ)×Dd(R,N)→ M where Sp(ρ)is the p-sphere with the round metric of radius ρ,Dd(R,N)denotes a geodesic ball of radius R in the d-sphere with the round metric of radius N.We can regard ι as a trivialization of the normal bundle of ι(Sp× {0}).A corollary of the main Lemma 1 in[15]is the following result.

    Theorem 2.2(see[17,Section 4,Theorem])Let~=(M ?Sp×Dd)∪Dp+1×Sd?1be the result of performing surgery on ι(Sp× {0})using the trivialization ι,and assume p ≥ 1,d ≥ 3.Then there exists κ(p,d,RN?1)>0 such that if<κ thencan be equipped with a Ricci positive curvature,the metric on a neighborhood Sd?1× Dp+1of Sd?1is the product of the metric on a round sphere Sd?1and the metric on a geodesic ball Dp+1in the(p+1)-sphere.

    Remark 2.2 In[15],the authors used the warped product to construct a Ricci positive metric on Dd×Spsuch that the metric on a submanifold(Sd?1×I)×Sp? Dd×Sp(Sd?1×{0}×Spis the boundary?Dd×Sp)is Ricci positive satisfying that

    (1)the metric on the submanifold Sd?1× [0,?]× Spis isomeric to a neighborhood of the boundary of the product of a geodesic ball Ddin the d-sphere and a round sphere Sp,

    (2)the metric on the submanifold Sd?1×[1??,1]×Spis isometric to a neighborhood of the boundary of the product of a round sphere Sd?1and a geodesic ball Dp+1in the(p+1)-sphere.

    So there exists a Ricci positive metric on

    such that

    (1)the metric on M?Sp×Ddinherits from the Ricci positive metric on M,

    (2)the metric on Sd?1×I×Spis the Ricci positive metric constructed above,

    (3)the metric on Dp+1× Sd?1is isometric to the product of the metric on a geodesic ball Dp+1in the(p+1)-sphere and the metric on a round sphere Sd?1.

    The proof of Theorem A in[17]shows the following theorem.

    Theorem 2.3 Let Sm×Dn(m>n≥3)be a neighborhood of an embedded sphere Smin M.If manifold M admits a Ricci positive metric such that the restricted metric on Sm×Dnis the product metric of the round metric of sphere Smand a geodesic ball Dnin the n-sphere,then any connected sum M#Sm1× Sn1#···#Smk× Snkadmits a metric of positive Ricci curvature for mi,ni≥3 and mi+ni=m+n for all i.

    Remark 2.3 Consider the Ricci positive metrics on Dn×Sp+q+1,where n≥3,p≥2,q≥1.Let Dn+q+1×Sp=Dn×(Dq+1×Sp)?Dn×Sp+q+1be the product of embedding DnId→Dnand Dq+1×Sp?Sp+q+1.Then there is a Ricci nonnegative metric on Dn×Sp+q+1such that

    (1)a neighborhood of?Dn×Sp+q+1is isomeric to a neighborhood of the boundary of the product of a geodesic ball Dnin the n-sphere and a round sphere Sp+q+1,

    (2)the submanifold Dn+q+1×Spis isometric to the product metric of a geodesic ball Dn+q+1in the(n+q+1)-sphere and a round sphere Sp.

    Without loss of generality,assume that mi≥ni,so m?ni≥1.M#Smi×Snican be expressed by(M ?Sni?1×Dmi+1)∪Dni×Smi,where Sni?1×Dmi+1? Sm×Dn? M is the product of embedding(Sni?1×Dm+1?ni)?Smand DnId→Dn.So there exists a Ricci nonnegative metric on(M ?Sni?1×Dmi+1)∪Dni×Smisuch that

    (1)the metric on M?Sm×Dninherits from the Ricci positive metric on M,

    (2)the metric on Sm×Dn?Sni?1×Dmi+1inherits from the Ricci nonnegative metric on Sm×Dnconstructed by the method above,

    (3)the metric on Dni×Smiis isometric to the product of the metric on a geodesic ball Dniin the ni-sphere and the metric on a round sphere Smi.

    By choosing several small geodesic sub-balls Dnof Dnand constructing a Ricci nonnegative metric on each Sm×Dnby the method above,we obtain a metric of nonnegative Ricci curvature on M#Sm1×Sn1#···#Smk×Snk.As the metric is Ricci positive at many points,by[5]this metric can be deformed to one with everywhere strictly positive Ricci curvature.

    Now we come to the proof of Theorem 1.1.

    Proof of Theorem 1.1 As noted in[15,p.134],if manifold Mmadmits a Ricci positive metric,then the metric can be deformed to be a Ricci positive one containing a geodesic ball Dmin the m-sphere.So we can always assume that the manifold M with a Ricci positive metric contains a geodesic ball Dmin the m-sphere.If the generalized moment-angle manifold ZP,kadmits a Ricci positive metric,the product of the metric on ZP,kand a round metric on Skis Ricci positive containing Dn+km×Skthe metric of which is the product of the metric on a geodesic ball Dn+kmin the(n+km)-sphere and the metric on a round sphere Sk.With Theorem 2.2,we can prove that

    admits a Ricci positive metric,the restricted metric on a neighborhood Sn+km?1×Dk+1of Sn+km?1is the product of the metric on a round sphere Sn+km?1and the metric on a geodesic ball Dk+1in the(k+1)-sphere,when m,n,k ≥ 2,n+km?1>k+1.By Theorems 2.2–2.3,we can prove that the generalized moment-angle manifold

    admits a Ricci positive metric if generalized moment-angle manifold ZP,kadmits a Ricci positive metric.

    3 Fano Polytope

    In this section,we will prove that the moment-angle manifolds corresponding to Fano polytopes admit Ricci positive metrics.Now we come to the definition of Fano polytope.

    Definition 3.1 Let Q be a simplicial convex polytope in Rnwhose vertices are primitive lattice vectors{li}(li∈ Zn),and which contains 0 in the interior.If a1,···,anare the vertices of a facet of Q,we suppose det(a1,···,an)= ±1 for every facet.Then we call Q a Fano polytope.

    The boundary of Q is a simplicial sphere K,from which we can construct a moment-angle manifold ZK.Alternatively,we can define the moment-angle manifold in another way:The dual of Q:P={u ∈ Rn|hu,vi≤ 1,?v∈ Q}is a simple polytope.The normal vector of each facet can be chosen as one of the lattice vectors{li},we assume that the lattice vector corresponding to facet Fiis li.We can construct the moment-angle manifold ZPcorresponding to P which is homeomorphic to ZK.

    In order to prove Theorem 1.2,we firstly recall a theorem in[6].

    Theorem 3.1 Let Y be a compact connected Riemannian manifold with a metric of positive Ricci curvature.Let π:P →Y be a principal bundle over Y with compact connected structure group G.If the fundamental group of P is finite,then P admits a G invariant metric with positive Ricci curvature so that π is a Riemannian submersion.

    Now we come to the proof of Theorem 1.2.

    Proof of Theorem 1.2 Given a Fano polytope Q,we can define the complete fan Σ(Q)whose cones are generated by those sets of vertices li1,···,likwhich are in one face of Q.From this fan,we can construct a toric variety MP.This toric variety is smooth and Fano(see[4])(Fano means that the anticanonical divisor is ample).By Calabi-Yau’s theorem(see[18]),the Fano variety MPadmits a Ricci positive metric.

    Topologically,toric Fano variety can be constructed from the polytope P and the lattice vectors{li}by the following way(see[2]):We identify the torus Tnwith the quotient Rn/Zn.For each point q∈P,define G(q)as the smallest face that contains q in its relative interior.The normal subspace to G(q)is spanned by the primitive vectors licorresponding to those facets Fiwhich contain G(q).Since N is a rational space,it projects to a subtorus of Tn,which we denote by T(q).Then as a topological space,the toric Fano variety

    where(t1,p)~ (t2,q)if and only if p=q and t1t?12∈ T(q).

    From[2],the moment-angle manifold ZPis a principal Tm?nbundle ZP→ MP.Since ZPis simply connected and MPadmits a Ricci positive metric,by Theorem 3.1,ZPadmits a Tm?ninvariant metric with positive Ricci curvature.

    Now we give a conjecture.

    Conjecture 3.1 P is a simple polytope.

    (1)k≥1.If a generalized moment-angle manifold ZP,kadmits a Ricci positive metric,so does ZP,k+1.

    (2)For k≥2,ZP,kadmits a Ricci positive metric for every simple polytope P.Momentangle manifold ZPadmits a Ricci positive metric for every irreducible simple polytope P.

    If the conjecture(1)is true,by Theorem 1.2,the generalized moment-angle manifolds corresponding to Fano polytopes admit Ricci positive metrics;by Theorem 1.1,we can prove that the generalized moment-angle manifolds corresponding to polytopes obtained by cutting o ffvertices of Fano polytopes admit Ricci positive metrics.So we can obtain a class of polytopes that the corresponding generalized moment-angle manifolds admit Ricci positive metrics.Besides,in[1],the authors constructed a Ricci positive metric on the moment-angle manifold corresponding to the polytope Pvobtained by cutting o ffone vertex v on the 3-cube P3.However,the dual of Pvis a Fano polytope.So by Theorem 1.2,we can prove that the corresponding moment-angle manifold admits a Ricci positive metric.

    From[8],we know that any manifold obtained from a manifold which admits scalar positive curvature by performing surgeries in codimension≥3 also admits a scalar positive curvature.For the Ricci curvature,when we perform surgery on manifolds with Ricci positive metrics,whether the manifold(M ? Sp× Dn?p)∪ Dp+1× Sn?p?1obtained by surgery can admit Ricci positive curvature may depend on the restricted metric of Sp×Dn?pin M(see[15,17]).Similarly,suppose that the generalized moment-angle manifold ZP,kcorresponding to P admits a Ricci positive metric.After cutting o ffa face G of P,the dual simplicial complex KGof the boundary of PGcan be expressed as

    where linkKσ ={τ∈ K:τ?σ ∈ K}and{?}is an additional point.We hope that the restricted metric of the submanifold in ZP,kcorresponding to σ ?linkKσ can be“good” enough that we can extend the Ricci positive metric to ZPG,k.

    4 Appendix

    In this appendix,we will prove Proposition 2.4 by induction.

    While m?n=1,the manifold

    Inductively suppose that we have proved thatis diffeomorphic to

    where(Sk)i×D(k+1)n? D(k+1)n+kiis the regularembedding.So the manifold ?[(S(k+1)n+k(i+1)?(Sk)i+1×D(k+1)n)×Dk+1]is diffeomorphic to

    By induction,it is diffeomorphic to

    As

    is diffeomorphic to

    Recalling Lemmas 1–2 in[7],we can generalize these two lemmas as the following.

    Lemma 4.1 Assume k≥2,

    (1)Let M and N be connected and closed n-manifolds.Then?[(M#N?Dn)×Dk]is diffeomorphic to?[(M ?Dn)×Dk]#?[(N ?Dn)×Dk].

    (2)Let M,N be connected n-manifolds.If M is closed but N has non-empty boundary,then?[(M#N)×Dk]is diffeomorphic to?[(M ?Dn)×Dk]#?(N ×Dk).

    (3)?[(Sp×Sq?Dp+q)×Dk]=Sp×Sq+k?1#Sp+k?1×Sq.

    The proof of the lemma is the same as that of Lemma 1 and Lemma 2 in[7].

    By induction,we can prove Proposition 2.4.

    欧美日韩成人在线一区二区| 免费av中文字幕在线| 国产深夜福利视频在线观看| xxxhd国产人妻xxx| 两人在一起打扑克的视频| 99国产精品一区二区三区| 国产熟女午夜一区二区三区| 国产精品免费一区二区三区在线 | 国产精品 欧美亚洲| 一级片免费观看大全| 亚洲久久久国产精品| 亚洲伊人色综图| 亚洲精品av麻豆狂野| 亚洲免费av在线视频| av中文乱码字幕在线| 色老头精品视频在线观看| 欧美精品一区二区免费开放| 午夜影院日韩av| 成年女人毛片免费观看观看9 | 国产精品免费视频内射| 国产精品久久视频播放| 老司机午夜十八禁免费视频| 天天躁狠狠躁夜夜躁狠狠躁| 色婷婷av一区二区三区视频| 巨乳人妻的诱惑在线观看| 多毛熟女@视频| 国产又爽黄色视频| 欧美一级毛片孕妇| 亚洲全国av大片| 亚洲专区中文字幕在线| 最近最新中文字幕大全电影3 | 日本黄色视频三级网站网址 | 国产成人精品久久二区二区91| 深夜精品福利| 久久亚洲精品不卡| 午夜视频精品福利| 一级a爱视频在线免费观看| 亚洲精品一卡2卡三卡4卡5卡| 国产在线精品亚洲第一网站| 成人18禁在线播放| 婷婷丁香在线五月| 美女扒开内裤让男人捅视频| 丰满迷人的少妇在线观看| 国产在线精品亚洲第一网站| 午夜免费鲁丝| 成年人黄色毛片网站| 久久久久久久精品吃奶| 成年人免费黄色播放视频| 免费黄频网站在线观看国产| 成人特级黄色片久久久久久久| 亚洲av片天天在线观看| 国产精品欧美亚洲77777| av福利片在线| 天天操日日干夜夜撸| 午夜免费观看网址| 国产在视频线精品| 两个人看的免费小视频| 久久精品国产99精品国产亚洲性色 | 久久精品国产综合久久久| 国产精品久久电影中文字幕 | 国产精品一区二区免费欧美| 国产亚洲欧美精品永久| 成人国语在线视频| 视频区图区小说| 欧美激情极品国产一区二区三区| 午夜视频精品福利| 欧美日韩av久久| 老司机午夜十八禁免费视频| 亚洲一码二码三码区别大吗| av在线播放免费不卡| 国产日韩一区二区三区精品不卡| 老司机福利观看| 日本a在线网址| 不卡一级毛片| 欧美精品av麻豆av| 国产精品98久久久久久宅男小说| 制服诱惑二区| 亚洲黑人精品在线| 国产精品久久久久久精品古装| 美女国产高潮福利片在线看| 91在线观看av| 9色porny在线观看| 99久久综合精品五月天人人| 日韩有码中文字幕| 视频在线观看一区二区三区| 久久天躁狠狠躁夜夜2o2o| 男女之事视频高清在线观看| 国产黄色免费在线视频| 男女免费视频国产| 香蕉丝袜av| 亚洲av第一区精品v没综合| 午夜福利在线免费观看网站| 国产免费现黄频在线看| 国产免费现黄频在线看| 久久久久久久午夜电影 | 精品人妻在线不人妻| 99热国产这里只有精品6| 人人妻人人爽人人添夜夜欢视频| 女人被躁到高潮嗷嗷叫费观| 久久九九热精品免费| 好男人电影高清在线观看| 久久久国产成人免费| 丰满的人妻完整版| 多毛熟女@视频| 日本a在线网址| 日韩欧美国产一区二区入口| 久久精品国产综合久久久| 十分钟在线观看高清视频www| 色94色欧美一区二区| 国产精品久久久久久精品古装| 欧美乱码精品一区二区三区| 亚洲情色 制服丝袜| 国产高清videossex| 国产成人免费观看mmmm| 亚洲人成伊人成综合网2020| 男人的好看免费观看在线视频 | 国产野战对白在线观看| 下体分泌物呈黄色| 我的亚洲天堂| 亚洲免费av在线视频| 国产成人影院久久av| 亚洲九九香蕉| 80岁老熟妇乱子伦牲交| 成人av一区二区三区在线看| 怎么达到女性高潮| 人人妻人人澡人人看| 最近最新中文字幕大全免费视频| 久久久精品免费免费高清| 午夜免费成人在线视频| 欧美人与性动交α欧美软件| 男女高潮啪啪啪动态图| 在线天堂中文资源库| 好男人电影高清在线观看| 不卡av一区二区三区| 亚洲国产中文字幕在线视频| 午夜福利在线免费观看网站| 成年动漫av网址| 动漫黄色视频在线观看| 精品久久久久久久久久免费视频 | 91九色精品人成在线观看| 正在播放国产对白刺激| 中文欧美无线码| 国产免费av片在线观看野外av| 久久久久久久国产电影| 少妇 在线观看| 热re99久久国产66热| 中文字幕av电影在线播放| 精品久久久久久电影网| 久久天堂一区二区三区四区| 国产男靠女视频免费网站| 亚洲中文字幕日韩| 成人18禁高潮啪啪吃奶动态图| 成年人免费黄色播放视频| 欧美亚洲日本最大视频资源| 国产精品乱码一区二三区的特点 | 久99久视频精品免费| 精品久久久久久久毛片微露脸| 久久久精品免费免费高清| 免费在线观看影片大全网站| 亚洲精品一卡2卡三卡4卡5卡| 熟女少妇亚洲综合色aaa.| 免费看十八禁软件| 日韩人妻精品一区2区三区| 他把我摸到了高潮在线观看| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久久久免费视频 | 不卡av一区二区三区| 国内久久婷婷六月综合欲色啪| 久久久国产成人免费| 欧美黄色片欧美黄色片| 欧美+亚洲+日韩+国产| 国产精品电影一区二区三区 | 亚洲一区中文字幕在线| 窝窝影院91人妻| svipshipincom国产片| 青草久久国产| 亚洲精品中文字幕一二三四区| av有码第一页| avwww免费| 老熟女久久久| 日韩欧美国产一区二区入口| 好男人电影高清在线观看| 亚洲国产欧美日韩在线播放| 亚洲色图av天堂| 91大片在线观看| 热99re8久久精品国产| 99国产精品免费福利视频| tube8黄色片| 日韩制服丝袜自拍偷拍| 好看av亚洲va欧美ⅴa在| 脱女人内裤的视频| xxx96com| av网站在线播放免费| 欧美日韩视频精品一区| 久久人妻福利社区极品人妻图片| 一本一本久久a久久精品综合妖精| 人妻 亚洲 视频| 午夜福利视频在线观看免费| 老熟女久久久| 嫩草影视91久久| 欧美国产精品va在线观看不卡| 自拍欧美九色日韩亚洲蝌蚪91| 波多野结衣一区麻豆| 国产成人精品久久二区二区91| 久久久久久久午夜电影 | x7x7x7水蜜桃| 国产精品 国内视频| 19禁男女啪啪无遮挡网站| 久久久水蜜桃国产精品网| 天堂√8在线中文| 日韩欧美一区视频在线观看| 色在线成人网| 丝瓜视频免费看黄片| 午夜激情av网站| 少妇 在线观看| 亚洲专区字幕在线| netflix在线观看网站| 又紧又爽又黄一区二区| 色综合婷婷激情| 女性被躁到高潮视频| 岛国在线观看网站| 国产亚洲精品一区二区www | 婷婷成人精品国产| 无限看片的www在线观看| 久久精品亚洲精品国产色婷小说| 高潮久久久久久久久久久不卡| 免费av中文字幕在线| 日本一区二区免费在线视频| 国产精华一区二区三区| av有码第一页| 欧美激情 高清一区二区三区| 久久久国产欧美日韩av| 精品一区二区三区视频在线观看免费 | 免费人成视频x8x8入口观看| 狠狠狠狠99中文字幕| 久久久久久久精品吃奶| 免费高清在线观看日韩| 国产av一区二区精品久久| 久久人人97超碰香蕉20202| 欧美日韩av久久| 欧美乱码精品一区二区三区| 亚洲精品久久午夜乱码| 色婷婷av一区二区三区视频| 国产色视频综合| 在线观看免费午夜福利视频| 亚洲人成电影免费在线| 大片电影免费在线观看免费| 免费在线观看日本一区| 欧洲精品卡2卡3卡4卡5卡区| svipshipincom国产片| 日韩大码丰满熟妇| 男人的好看免费观看在线视频 | 国产麻豆69| 香蕉国产在线看| 一进一出抽搐动态| 亚洲欧美激情综合另类| 亚洲七黄色美女视频| 满18在线观看网站| 亚洲七黄色美女视频| 超色免费av| 久久精品91无色码中文字幕| 十八禁人妻一区二区| 日韩一卡2卡3卡4卡2021年| 狂野欧美激情性xxxx| 成人18禁高潮啪啪吃奶动态图| 99精品在免费线老司机午夜| 欧美国产精品va在线观看不卡| 欧美成人午夜精品| 手机成人av网站| 高清欧美精品videossex| 好看av亚洲va欧美ⅴa在| av天堂久久9| 制服人妻中文乱码| 午夜日韩欧美国产| 一进一出抽搐gif免费好疼 | 日韩欧美国产一区二区入口| 日韩欧美一区视频在线观看| 国产一区二区三区在线臀色熟女 | 大陆偷拍与自拍| 亚洲人成电影免费在线| 国产99久久九九免费精品| 精品国产国语对白av| 黄色成人免费大全| 999久久久国产精品视频| 亚洲国产毛片av蜜桃av| 新久久久久国产一级毛片| 成人av一区二区三区在线看| 亚洲精品国产区一区二| 久久青草综合色| 精品久久久精品久久久| 久久久久视频综合| 久久九九热精品免费| 亚洲五月天丁香| 欧美亚洲 丝袜 人妻 在线| 欧美成狂野欧美在线观看| 亚洲国产欧美一区二区综合| 夜夜爽天天搞| 超色免费av| 大型av网站在线播放| 1024视频免费在线观看| 国产精品偷伦视频观看了| 女警被强在线播放| 久9热在线精品视频| 欧美色视频一区免费| av福利片在线| 久久性视频一级片| 一区二区三区精品91| tocl精华| 久久这里只有精品19| av网站在线播放免费| 人人澡人人妻人| 免费在线观看视频国产中文字幕亚洲| 久久久久国产精品人妻aⅴ院 | 久久国产精品影院| 成年人午夜在线观看视频| a级毛片黄视频| 国产野战对白在线观看| 欧美日韩成人在线一区二区| 午夜91福利影院| 精品国产美女av久久久久小说| 99香蕉大伊视频| 免费在线观看视频国产中文字幕亚洲| 黄色女人牲交| 一进一出抽搐动态| 久久久久国产精品人妻aⅴ院 | 两个人看的免费小视频| ponron亚洲| 免费高清在线观看日韩| 90打野战视频偷拍视频| 久久午夜亚洲精品久久| av一本久久久久| 午夜福利影视在线免费观看| 热re99久久精品国产66热6| 黄网站色视频无遮挡免费观看| 精品亚洲成a人片在线观看| 1024香蕉在线观看| 日韩视频一区二区在线观看| 久久久久国内视频| 欧美乱妇无乱码| 欧美一级毛片孕妇| 搡老熟女国产l中国老女人| 老熟妇仑乱视频hdxx| 国产精品国产av在线观看| 久久精品成人免费网站| 大片电影免费在线观看免费| 岛国在线观看网站| 国产av一区二区精品久久| 久久九九热精品免费| 脱女人内裤的视频| 丁香欧美五月| 亚洲七黄色美女视频| 国产成人免费观看mmmm| 国产精品久久久久成人av| 99久久人妻综合| 亚洲九九香蕉| 久久久久视频综合| 免费日韩欧美在线观看| 精品久久久精品久久久| 91精品国产国语对白视频| 精品少妇一区二区三区视频日本电影| av欧美777| 亚洲精品美女久久av网站| 18在线观看网站| 无人区码免费观看不卡| www.精华液| 国产在线精品亚洲第一网站| 国产精品久久久久成人av| 日本黄色视频三级网站网址 | 精品人妻熟女毛片av久久网站| 国产精品一区二区在线观看99| 亚洲av熟女| 国产三级黄色录像| 最近最新中文字幕大全免费视频| 91国产中文字幕| 欧美色视频一区免费| 国产精品亚洲av一区麻豆| 国产片内射在线| 免费一级毛片在线播放高清视频 | 操出白浆在线播放| 欧美色视频一区免费| av超薄肉色丝袜交足视频| 后天国语完整版免费观看| 夜夜爽天天搞| 在线观看日韩欧美| 日韩一卡2卡3卡4卡2021年| 国产人伦9x9x在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品国产99精品国产亚洲性色 | 国内毛片毛片毛片毛片毛片| av网站免费在线观看视频| 午夜精品久久久久久毛片777| 成熟少妇高潮喷水视频| 国产成+人综合+亚洲专区| 久久精品亚洲精品国产色婷小说| 精品国产亚洲在线| 国产99白浆流出| 村上凉子中文字幕在线| 亚洲成人国产一区在线观看| 99精国产麻豆久久婷婷| 亚洲av第一区精品v没综合| 一区二区三区精品91| 亚洲avbb在线观看| 少妇猛男粗大的猛烈进出视频| 淫妇啪啪啪对白视频| 久久 成人 亚洲| 亚洲五月色婷婷综合| a级毛片黄视频| 美女福利国产在线| 中文亚洲av片在线观看爽 | 99久久99久久久精品蜜桃| 国产无遮挡羞羞视频在线观看| 午夜福利视频在线观看免费| 日韩三级视频一区二区三区| 成人手机av| 欧美中文综合在线视频| 亚洲国产欧美网| 一区二区三区激情视频| 99国产极品粉嫩在线观看| 在线永久观看黄色视频| 国产免费现黄频在线看| 国产av精品麻豆| 亚洲五月婷婷丁香| 99热网站在线观看| 成人18禁高潮啪啪吃奶动态图| a级毛片黄视频| 建设人人有责人人尽责人人享有的| av欧美777| 亚洲av第一区精品v没综合| 亚洲av第一区精品v没综合| 天堂√8在线中文| 久99久视频精品免费| 王馨瑶露胸无遮挡在线观看| 午夜视频精品福利| 国产成人精品在线电影| 99热国产这里只有精品6| 色播在线永久视频| 国产蜜桃级精品一区二区三区 | 成人影院久久| 日韩免费av在线播放| 午夜亚洲福利在线播放| 欧美精品av麻豆av| 午夜影院日韩av| 亚洲熟女精品中文字幕| 超碰成人久久| 深夜精品福利| 性少妇av在线| 国产精品亚洲一级av第二区| 国产免费现黄频在线看| 法律面前人人平等表现在哪些方面| 黄色 视频免费看| 电影成人av| 啦啦啦视频在线资源免费观看| av欧美777| 女警被强在线播放| av福利片在线| 成年女人毛片免费观看观看9 | 亚洲伊人色综图| 男女下面插进去视频免费观看| 国产精品一区二区免费欧美| 精品亚洲成国产av| 一级片免费观看大全| 精品久久久久久久久久免费视频 | 伦理电影免费视频| 黄色 视频免费看| 99精国产麻豆久久婷婷| 色尼玛亚洲综合影院| 午夜视频精品福利| 久久亚洲真实| 黑人操中国人逼视频| 亚洲精品久久成人aⅴ小说| 久久久国产成人免费| 老司机在亚洲福利影院| 久久香蕉国产精品| 免费av中文字幕在线| 国产成人欧美| 欧美日韩亚洲综合一区二区三区_| 成人国语在线视频| 成人特级黄色片久久久久久久| 国产精品.久久久| 成熟少妇高潮喷水视频| 999精品在线视频| 国产成人精品久久二区二区91| 五月开心婷婷网| 久99久视频精品免费| 在线观看舔阴道视频| 成年动漫av网址| 视频区图区小说| 在线观看免费视频日本深夜| 老司机影院毛片| 人人妻人人添人人爽欧美一区卜| 日韩 欧美 亚洲 中文字幕| 午夜精品在线福利| 成人精品一区二区免费| 午夜福利欧美成人| 美女 人体艺术 gogo| 国产视频一区二区在线看| 免费看十八禁软件| 老司机亚洲免费影院| 国产欧美亚洲国产| xxx96com| 女人被躁到高潮嗷嗷叫费观| 18在线观看网站| 亚洲av成人一区二区三| 午夜免费观看网址| 亚洲成国产人片在线观看| 欧美 日韩 精品 国产| av网站免费在线观看视频| 天天躁日日躁夜夜躁夜夜| 十八禁网站免费在线| 欧美中文综合在线视频| 99久久人妻综合| 日韩大码丰满熟妇| www日本在线高清视频| 亚洲,欧美精品.| 国产精品亚洲av一区麻豆| ponron亚洲| 狠狠狠狠99中文字幕| 91在线观看av| 欧美日本中文国产一区发布| 男女高潮啪啪啪动态图| 在线视频色国产色| 99热网站在线观看| 在线观看免费视频日本深夜| 亚洲精品国产精品久久久不卡| xxx96com| av视频免费观看在线观看| 中出人妻视频一区二区| 久久人人97超碰香蕉20202| 国产成人影院久久av| 亚洲一区中文字幕在线| 老司机影院毛片| 窝窝影院91人妻| 99re6热这里在线精品视频| www.熟女人妻精品国产| 美女午夜性视频免费| 视频区图区小说| 动漫黄色视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 欧美老熟妇乱子伦牲交| 免费不卡黄色视频| 12—13女人毛片做爰片一| 久久精品亚洲av国产电影网| 欧美激情久久久久久爽电影 | 王馨瑶露胸无遮挡在线观看| 国产三级黄色录像| 久久热在线av| 成年动漫av网址| 视频在线观看一区二区三区| 91九色精品人成在线观看| 亚洲精品一二三| 国产精品欧美亚洲77777| 伊人久久大香线蕉亚洲五| 久久精品成人免费网站| 老司机深夜福利视频在线观看| 久久中文字幕人妻熟女| 在线国产一区二区在线| 国产三级黄色录像| 亚洲在线自拍视频| 在线视频色国产色| 免费不卡黄色视频| 99久久人妻综合| 亚洲五月天丁香| 一本综合久久免费| 国产精品av久久久久免费| 国精品久久久久久国模美| 亚洲成av片中文字幕在线观看| 午夜久久久在线观看| 免费少妇av软件| 中文字幕色久视频| 亚洲成人免费av在线播放| 中文字幕人妻熟女乱码| 日韩免费av在线播放| 麻豆国产av国片精品| 亚洲精品国产区一区二| 久久九九热精品免费| 久久久久久免费高清国产稀缺| av超薄肉色丝袜交足视频| 欧美日韩精品网址| 国产亚洲精品久久久久5区| 亚洲午夜理论影院| 大香蕉久久网| 最近最新中文字幕大全电影3 | 久久人人爽av亚洲精品天堂| 亚洲男人天堂网一区| 最新美女视频免费是黄的| 欧美黑人精品巨大| 男女高潮啪啪啪动态图| 亚洲视频免费观看视频| 夜夜躁狠狠躁天天躁| 国产三级黄色录像| 午夜福利影视在线免费观看| 久久精品国产亚洲av高清一级| 超碰成人久久| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| 交换朋友夫妻互换小说| 国产视频一区二区在线看| 在线观看午夜福利视频| 久久久精品区二区三区| av福利片在线| 久久久国产欧美日韩av| 欧美另类亚洲清纯唯美| 国产一区在线观看成人免费| 中出人妻视频一区二区| 啦啦啦免费观看视频1| 成熟少妇高潮喷水视频| 国产在线观看jvid| 国产亚洲欧美精品永久| 精品一品国产午夜福利视频| svipshipincom国产片| 他把我摸到了高潮在线观看| 丰满迷人的少妇在线观看| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 极品教师在线免费播放|