• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Nekhoroshev Type Theorem for the Nonlinear Wave Equation in Gevrey Space?

    2019-05-20 13:01:02ChunyongLIUHuayongLIURongZHAO

    Chunyong LIU Huayong LIU Rong ZHAO

    Abstract In this paper,the authors prove a Nekhoroshev type theorem for the nonlinear wave equation

    Keywords Gevrey space,Nonlinear wave equation,Normal form,Stability

    1 Introduction

    We consider the nonlinear wave(NLW for short)equation

    on the finite x-interval[0,π]with Dirichlet boundary conditions

    The parameter m is real and positive,and the nonlinearity f is assumed to be real analytic in u and of the form

    (1.1)is a typical model of in finite-dimensional Hamiltonian system associated with the Hamiltonian function

    where v=ut,,g=f(s)ds anddenotes the usual scalar product in L2.(1.1)is well studied by many authors as an in finite dimensional Hamiltonian system,such as the long time stability result(see[1–4,7–10,19])and the existence of invariant tori by Kolmogorov-Arnold-Moser(KAM for short)theory(see[5,11,16–18,21–26]).

    In[3],Bambusi proved a Birkho ffnormal form theorem which is applied to(1.1)with Dirichlet boundary conditions and obtained the dynamical consequences on the long time behavior of the solutions with small initial Cauchy data in Sobolev spaces Hs.Afterwards,Bambusi and Gr′ebert[6]gave an abstract Birkho ffnormal form theorem for Hamiltonian partial differential equations,which is applied to semi-linear equations with nonlinearity satisfying tame modulus.They got that for s sufficiently large,the Sobolev norm of index s of the solution is bounded by 2? during a polynomial long time(of order ??rwith r arbitrary).Later,Cong-Liu-Yuan[14]and Cong-Gao-Liu[13]generalized the method in[6]and proved the KAM tori are stable in a polynomial long time for nonlinear Schr¨odinger equation and nonlinear wave equation.

    Recently,in[15],Faou and Gr′ebert proved a Nekhoroshev type theorem for the nonlinear Schr¨odinger equation

    in an analytic space.The authors proved that if the initial datum is analytic in a strip of width ρ >0 with a bound on this strip equal to ? then,if ? is small enough,the solution of the nonlinear Schr¨odinger equation above remains analytic in a strip of widthand bounded on this strip by C? during very long time of order ??α|ln?|δfor some constants C>0,α >0 and 0<δ<1.We should point out that there is no so-called tame property in analytic space compared to that in Sobolev space.Later,Mi-Liu-Shi-Zhao[20]generalized the method in[15]to prove the similar result for(1.1)with Dirichlet boundary.

    As Bourgain[12]said,the topology is very important for studying the long time stability result.On the other hand,the Gevrey space is a phase space which is well studied for in finitedimensional Hamiltonian system(see[9–10]).It is natural to ask that whether such a stability result holds in Gevrey space.In this paper,we will prove that if the Gevrey norm of initial datum is small in a strip of width 2ρ >0 with a bound on this strip equal to ?,then,if ? is small enough,the Gevrey norm of the solution of the nonlinear wave equation above remains small in a strip of widthand bounded on this strip by C? during very long time of order ??σ|ln?|βfor some constants C>0,σ >0 and 0< β <.

    Before stating the result,we firstly introduce the Gevrey space.Suppose a function u:[0,π]→ C that can be expressed as

    For ρ>0,we denote

    Note that(Aρ,|·|ρ)is a Banach space.Then our main result is as follows.

    Theorem 1.1 There exist 0< β 0,and the following holds:There exist constants C>0 and ?0>0 such that if

    then the solution of(1.1)with initial datum u0and v0exists infor timesand satisfies

    The rest of the paper is organized as follow.In Section 2,(1.1)is turned into an in finite dimensional Hamiltonian system in complex coordinates.And we give an important lemma which will be used to prove the main result.In Section 3,some important definitions are given.Then,we obtain estimate of the nonlinearity,vector field and Passion bracket.In Section 4,we introduce recursive equation and give two lemmas which we will use to get the normal form result(i.e.,Theorem 4.1).In Section 5,two important lemmas are given.Theorem 1.1 is proved and the long time stability of solutions to NLW equation is obtained in Gevrey space.

    2 Hamiltonian System

    We study(1.1)as an in finite dimensional Hamiltonian system.As the phase space one may take,for example,the product of the usual Sobolev spacewith coordinates u and v=ut,i.e.,

    then the Hamiltonian is

    and the Hamiltonian equations(2.2)is changed into

    Lρ(ρ >0)of all real valued sequences w=(w1,w2,···)with finite norm

    Then the Hamiltonian(2.3)turns into

    with equations of motions turned into

    where

    These are Hamiltonian equations of motion with respect to the standard symplectic structure.Since the nonlinearity f in(1.1)is real analytic in a neighborhood of zero and of the form(1.2),we have

    According to(2.7)–(2.8),we get

    where

    Let Z:=Z1{0}.If the Hamiltonian is defined on the complex Banach space Lρ,bcollecting all the two-side sequences with norm

    the corresponding symplectic structure is.Then for a function P of C1(Lρ,b,C),we define its Hamiltonian vector field by XP=J?P,where J is the symplectic operator on Lρ,b.For two functions P and Q,we define the Poisson bracket by

    Definition 2.1 For a given ρ >0,we define the space of real Hamiltonian P by Hρsatisfying

    Obviously,for P and Q in Hρ,the formula(2.11)is well defined.For a given Hamiltonian function H ∈Hρ,we associate the Hamiltonian system

    which is equivalent to

    Then,let us introduce the complex coordinates

    To simplify calculation,we introduce another set of coordinates(···,w?2,w?1,w1,w2,···)in Lρ,bby setting

    Therefore,the system(2.6)is turned into

    with Hamiltonian(2.5)changed into

    Notice that Fj1,···,j2k=F|j1|,···,|j2k|.

    In the end of the section,we give a lemma that shows the relation between the space Aρand the space Lρ,b,which will be used in the proof of the main result.

    Lemma 2.1 Let u,v be valued in finite differentiable functions on the closure of the xinterval[0,π],and let(wj)j∈Zbe the sequence of its coordinates defined by(2.4)and(2.13)–(2.14).Then for anyμ<ρ,we have

    where cμ,ρis a constant depending on μ and ρ.

    ProofDue to(2.13)–(2.14),we know

    and

    Due to(2.4),it is clear to know that

    and

    So,forμ< ρ and for any u,v∈ Aρ,we have the estimation

    Therefore,(2.18)is also proved.

    3 Space of Polynomial and Some Properties

    Firstly,let us introduce some terminologies and notions about the polynomial on CZ.Let?≥ 2 and j=(j1,j2,···,j?)∈ Z?.We define

    (1)the monomial associated with j,

    (2)the divisor associated with j,

    where for ji∈ Z,,i=1,2,···,?.

    In addition,we also denote the set of indices with zero momentum by

    Furthermore,if ? is even and j is of the form(j1,?j1,···,,?j2?)or some permutation of it,we say that j=(j1,j2,···,j?) ∈ Z?is resonant writing j∈ N?.Specially,if j is resonant,its associated divisor vanishes,i.e.,?(j)=0,and its associated monomials depend only on the actions

    where for j≥1,Ij=wjw?jdenotes the action associated with the index j.

    We note that if w is real,then Ij=|wj|2and if ? is odd,the resonant set N?is the empty set.So,we know that the orders of monomials in the nonlinearity F are all even.

    Definition 3.1 If P is real,then for k≥2,a formal polynomial P(w)=Σajwj∈Pk,of degree k,has a zero of order at least 2 in w=0,and satisfies the following conditions:

    (1)P contains only monomials having zero momentum(i.e.,such that j∈ I?for some ?,when aj≠0),and P denotes

    (2)The coefficients ajare bounded,i.e.,for all ?=2,···,k.

    We endow Pkwith the norm

    Recall that we assume that the nonlinearity f in(1.1)is complex analytic in a neighbourhood of zero in C.Therefore,there exist two positive constants M and R0such that the Taylor expansion of its primary function(2.8)is uniformly convergent and bounded by M on the district of|u|≤ R0of C.So the formula(2.9)defines an analytic function on the ball kwkρ≤ R0of Lρ,band we have

    where P2k∈P2kis a homogeneous polynomial of degree 2k.By Cauchy integral formula,(2.10)and(2.16),we have

    Finally,we will give some useful estimates of the polynomial space which are used in the following section.And we note that the zero momentum will play an important role in the estimates.

    Proposition 3.1 For k≥ 2 and ρ>0,we obtain Pk? Hρ.Moreover,for any homogeneous polynomial F∈Pk,of degree k,we get the following two estimates:

    and

    Proof Let

    We obtain

    where k·kl1denotes the l1-norm of vector.Thus(3.7)is proved.

    To prove the second estimate,let us take ?∈ Z,by using the zero momentum condition,we have

    So we have the estimate

    Due to j1± j2± ···±jk?1= ±?,then we have the inequality

    Therefore,after summing in j1,···,jk?1and ?,we have

    So(3.8)is also proved.

    Proposition 3.2 If F and G are homogeneous polynomials of degree k and ? respectively in Pkand P?,then{F,G} ∈ Pk+??2and we have the estimate

    ProofNow we assume that F and G are homogeneous polynomials of degrees k and ?respectively and with coefficients ak,k ∈ Ikand bl,l∈ I?.It is clear that{F,G}is a homogeneous polynomial of degree k+??2 satisfying the zero momentum condition.Furthermore,we can write

    where cjis expressed as a sum of coefficients akblfor which there exists a j∈Z such that

    and such that if for instance j=k1and ?j= ?1,we necessarily have(k2,···,kk,?2,···,??)=j.Hence,for a given j,the zero momentum condition on k and on l determines the value of j which in turn determines 2min{k,?}?1possible values of j.

    This proves(3.9)for monomials.The extension to polynomials follows from the definition of the norm(3.5).

    The last assertion and the fact that the Poisson bracket of two real Hamiltonian is real follow immediately from the definitions.

    4 Recursive Equation and Normal Form Results

    In this section,let us firstly introduce the definition of the N-normal form.For r≥4 and j=(j1,···,jr)∈ Zr,we denote the third largest integer amongst|j1|,···,|jr|by μ(j),and set

    Definition 4.1(N-Normal Form)Let N be an integer.We say that a polynomial W∈Pkis in N-normal form if it can be written as

    Namely,W contains either monomials depending only on the actions or monomials whose indices j satisfyμ(j)>N,i.e.,monomials involving at least three modes with index greater than N.

    4.1 Recursive equation

    Firstly,we give a lemma which is an easy consequence of the nonresonance condition and the definition of the normal forms.

    Lemma 4.1 Firstly,we suppose that the nonresonance condition(6.6)is satisfied,and let N be fixed.Also suppose thatis the integrable part of Hamiltonian(2.5)and Q is a homogenous polynomial of degree n.Then the homological equation

    admits a polynomial solution(χ,W)homogenous of degree n such that W is in N-normal form,and such that

    where ?(j)is given in(3.1).We then define

    In view of(6.6),this leads to(4.2).

    In the following section,we will introduce the recursive equation.The solutions of recursive equation can generate a canonical transformation Φ such that in the new variables,the Hamiltonian H0+F is in normal form modulo a small remainder term.To obtain the recursive equation,we consider the following problem.

    Recall that for two Hamiltonian functions χ and K,we have for all k ≥ 0,

    where adχK={χ,K}.Moreover,if K and L are homogeneous polynomials of degree respectively n and ?,then{K,L}is a homogeneous polynomial of degree n+ ?? 2.Hence,we obtain

    by using the Taylor formula,where Orstands for any smooth function R satisfying ?αR(0)=0 for all α ∈ NZwith|α|≤ r.On the other hand,we know that for ζ∈ C,the following relation holds:

    where Bkare the Bernoulli numbers defined by the expansion of the generating function.Hence,by defining the two differential operators

    we get

    where Cris a differential operator satisfying

    Applying Brto the two sides of(4.4),we obtain

    Plugging the decompositions in homogeneous polynomials of χ,W and F in the last equation and equating the terms of same degree,after a straightforward calculation,we obtain the recursive equations

    where

    In the last sum,?i≤ n?2k appears as a consequence of ?i≥ 4 and ?1+···+?k+1=n+2k.Once these recursive equations solved,we define the remainder term asBy construction,R is analytic on a neighborhood of the origin in Lρ,band R=Or.So,by the Taylor’s formula,

    Lemma 4.2 Suppose that the nonresonance condition(6.6)is fulfilled for some constants γ,ν.Then there exists C>0 such that for all r,N,and for n=4,···,r,there exist two homogeneous polynomials χnand Wnof degree n,with Wnin N-normal form,which are solutions of the recursive equation(4.5)and satisfy

    Proof We define χnand Wnby induction using Lemma 4.1.Note that(4.8)is clearly satisfied for n=4,provided C big enough.Estimate(4.2)yields

    Using the definition(4.6)of the term Qnand the estimate on the Bernoulli numbers,|Bk|≤k!Ckfor some C>0,together with(3.9),which implies that for all ?≥ 4,kadχ?Rk ≤2min{n,?}?1n?kRkkχ?k for any polynomial R of degree less than n,we have for all n ≥ 4,

    where

    and C is a constant.It is easy to know C(n,k)≤4n.

    We set βn=n(kχnk+kWnk).Equation(4.9)implies that

    for some constant C independent of n.

    where

    and

    where C depends on M and R0.It remains to prove by induction thatAssume that,j=4,···,n ? 1.Then for C>1,we have

    so we get

    provided C>2.

    Using(4.14)again and the induction hypothesis,we obtain

    for n≥5 and after adapting C if necessary.

    4.2 Normal form result

    For any R1>0,we set Bρ(R1)={w ∈ Lρ,b|kwkρ

    Theorem 4.1 Suppose that F is analytic on a ball Bρ(R1)for some R1>0 and ρ >0.Also suppose that the nonresonance condition(6.6)is satisfied,and let β1 be fixed.Then there exists a constant ?0>0 such that for all ?< ?0,there exist a polynomial χ,a polynomial W in N-normal form,and a Hamiltonian R analytic on Bρ(M?),such that

    Furthermore,for all w ∈ Bρ(M?),

    Proof Using Lemma 4.2,for all N and r,we can construct polynomial Hamiltonians

    with W in N-normal form,such that(4.15)holds with R=Or.Now for fixed ?>0,we choose

    This choice is motivated by the necessity of balance between W and R in(4.15).The error induced by W is controlled as in Lemma 5.2,while the error induced by R is controlled by Lemma 4.2.By(4.8),we get

    and thus

    for ? small enough.

    Similarly,we have for all k≤r,

    and

    for ? small enough.Similar bounds clearly hold for,which shows the first estimate in(4.16).

    On the other hand,using adχ?kH0=W?k+Q?k(see(4.5))and then combining Lemma 4.2 with the definition of Qn(see(4.6)),we can obtain

    where the last inequality proceeds as in(4.17).Therefore,due to(4.7),(4.17)and,we obtain by Proposition 3.1 that for w ∈ Bρ(M?),

    Since r=|ln?|β>2(? small enough),we getfor w ∈ Bρ(M?).

    5 Proof of the Main Result

    Firstly,before giving the proof of the main theorem,we will introduce two important lemmas.

    Lemma 5.1(see[15])Let f:R→R+be a continuous function and y:R→R+be a differentiable function satisfying the inequality

    Then we have the estimate

    Fix N>1.For all w ∈ Lρ,b,we set

    Notice that if w ∈ Lρ+μ,b,then

    Lemma 5.2 Let N∈N and k≥4.Suppose that W is a homogeneous polynomial of degree k in N-normal form.Let w(t)be a real solution of the flow generated by the Hamiltonian H0+W.Then we have

    and

    Proof Fix j∈Z and let Ij(t)=wj(t)w?j(t)be the actions associated with the solution of the Hamiltonian system generated by H0+W.Due to(3.9),we can obtain

    Then using Lemma 5.1,we can get

    Ordering the multi-indices in such a way that|j1|and|j2|are the largest,and making use of the fact that w(t)is real,we have,after summation in|j|>N,

    Inequality(5.3)can be proved in the same way.

    Now we are in position to prove the main theorem in Section 1 in which we will take advantage of the bootstrap argument.

    Proof of Theorem 1.1 Let u0,v0∈ A2ρwith?,and denotes by w(0)the corresponding sequence of its Fourier coefficients which belongs towithby Lemma 2.1.Let w(t)be the local solution in Lρ,bof the Hamiltonian system associated with H=H0+F.

    Let χ,W and R given by Theorem 4.1 with M=cρand let y(t)=(w(t)).We recall that sincethe transformationis close to the identity,and thus,for ? small enough,we haveSpecially,note that

    Let T?be the maximum of time T such thatand ky(t)kρ≤cρ? for all|t|≤ T?.By construction,we have

    So using(5.2)for the first vector field and(4.16)for the second one,we get for|t|≤ T?,

    where in the last inequality we have used

    Using Lemma 4.2,we then verify

    and thus,for ? small enough,

    Similarly,we obtain

    In view of the definition of T?,(5.6)–(5.7)imply.Specially,kw(t)kρ≤ 2cρ? for.Using(2.18),we finally obtain(1.4).

    6 Appendix

    In this section,we will give some technical lemmas and nonresonance condition.This section can be also find in[20].

    Lemma 6.1 For any K ≤ r,consider K indexes j1< ···

    It holds

    Proof By explicit computation,one has

    Substituting(6.3)into the right hand site of(6.1),we get the determinant to be estimated.To obtain the estimate factorize from the j-th column term λj=(j2+m)12,and from the n-th row term.Forgetting the essential power of?1,we obtain that the determinant to be estimated is given by

    where we denoted by xj=(j2+m)?1.The last determinant is a Vandermond determinant whose value is given by

    Now we have

    with a suitable C.So(6.4)is estimated by

    from which,using the asymptotics of the frequencies,the thesis immediately follows.

    Next we need the lemma from[8,Appendix B].

    Lemma 6.2 (see[8])Let u(1),···,u(K)be K independent vectors with ku(i)kl1≤ 1.Let w ∈ RKbe an arbitrary vector.Then there exists i∈ [1,···,K],such that

    where det(u(i))is the determinant of the matrix formed by the components of the vectors u(i).

    Proof The proof can be found in the proposition of Appendix B in[8].

    Combining Lemmas 6.1 and 6.2,we deduce the following lemma.

    Lemma 6.3 Let w∈Z∞be a vector with K components different from zero,namely those with indices j1,···,jK.Assume that K ≤ r and j1< ···

    where λ =(λj1,λj2,···,λjK)is the frequency vector.

    From[24]we learn the following lemma.

    Lemma 6.4 Suppose that g(m)is r times differentiable on an interval J?R.Let Jγ:={m ∈ J||g(m)|< γ},γ >0.If|g(r)(m)|≥ d>0 on J,then|Jγ|≤ Mγ1r,where M:=2(2+3+ ···+r+d?1).

    Proof The proof can be found in[24,Lemma 2.1].

    Nonresonance condition In order to control the divisors(3.1),we need to impose the nonresonance condition on the linear frequencies λj,j ∈ Z.

    Recall that ?(j)=sgnj1λ|j1|+sgnj2λ|j2|+ ···+sgnjrλ|jr|.We define a set

    and let k=(k?)?∈N,where

    Recalling the definition ofμ(j)in Section 4,then we have the following proposition.

    Proposition 6.1 For a given positive number N,there exists a set J satisfying Meas([m0,?]?J)→0 as N→+∞,such that for any m∈J,

    where|k|≤ r+2,ε1,ε2∈ {?1,0,1},|j1|,|j2|>N and μ(j)

    Proof For a given positive number N,we define the resonant setby

    where|k|≤ r+2,ε1,ε2∈ {?1,0,1},|j1|,|j2|>N.

    Case 1 ε1= ε2=0.

    where the last inequality is based on N>r and C?1N<1 if N is large enough.Here|·|denotes the Lebesgue measure of set and C is a constant in Lemma 6.3.We set

    Then we have

    Case 2 ε1= ±1,ε2=0 or ε1=0,ε2= ±1 or ε1ε2=1.

    In this case,we take ε1= ±1,ε2=0 without loss of generality.Denote the resonant.Due to,one has

    when|j1|≥2(r+2)N+1.Then the resonant Rkj1is empty.So we only consider|j1|<.Settingin place ofandin place of N,then according to Case 1,we have

    Case 3 ε1ε2= ?1.

    In this case,we take ε1=1,ε2= ?1 without loss of generality.

    Therefore,

    with

    and a=j1?j2.Then we get

    Hence,

    If j>j0,we get

    Then it is sufficient to consider

    and let

    In view of(6.9)–(6.11),we obtain

    Let J=[m0,?]?R.Then the proposition is proved.

    AcknowledgementsThe authors would like to thank Hongzi Cong for his invaluable discussions and suggestions.The authors would also like to thank the anonymous referee for helpful comments and suggestions.

    日韩欧美三级三区| 侵犯人妻中文字幕一二三四区| 最近最新免费中文字幕在线| 亚洲成人国产一区在线观看| 亚洲,欧美精品.| 欧美午夜高清在线| 午夜免费观看网址| 成年版毛片免费区| 久久青草综合色| 日本vs欧美在线观看视频| av超薄肉色丝袜交足视频| 国产午夜精品久久久久久| 久久国产乱子伦精品免费另类| 亚洲欧美精品综合一区二区三区| 精品久久久久久久久久免费视频 | 国产人伦9x9x在线观看| a在线观看视频网站| 国产精品久久久人人做人人爽| 黄网站色视频无遮挡免费观看| 亚洲色图综合在线观看| 首页视频小说图片口味搜索| 国产国语露脸激情在线看| 两性夫妻黄色片| 久久午夜亚洲精品久久| 亚洲精品一二三| 日韩免费av在线播放| 国产精品1区2区在线观看. | 悠悠久久av| 精品国产超薄肉色丝袜足j| 欧美激情久久久久久爽电影 | 国产av精品麻豆| 国产一区二区激情短视频| 大香蕉久久网| 国产又爽黄色视频| 国产精品电影一区二区三区 | 欧美+亚洲+日韩+国产| 中文字幕制服av| 久久久久久人人人人人| 久久精品国产a三级三级三级| 午夜激情av网站| 91老司机精品| 精品欧美一区二区三区在线| 国产麻豆69| 首页视频小说图片口味搜索| 一级片'在线观看视频| 中文字幕色久视频| 99热网站在线观看| 久久久国产成人免费| 欧美亚洲 丝袜 人妻 在线| 在线看a的网站| 亚洲一码二码三码区别大吗| 在线看a的网站| 免费看十八禁软件| 青草久久国产| 中文字幕人妻熟女乱码| 在线观看午夜福利视频| 日本精品一区二区三区蜜桃| 国产成人系列免费观看| 国产一区在线观看成人免费| 一区二区日韩欧美中文字幕| 热re99久久精品国产66热6| 国产成人精品久久二区二区免费| 亚洲一区二区三区不卡视频| 色婷婷久久久亚洲欧美| 欧美 亚洲 国产 日韩一| 在线播放国产精品三级| 成人国语在线视频| 日韩有码中文字幕| 亚洲五月婷婷丁香| 母亲3免费完整高清在线观看| 男女之事视频高清在线观看| 99国产综合亚洲精品| 国产精品久久久久久人妻精品电影| 亚洲av第一区精品v没综合| 久久久水蜜桃国产精品网| 亚洲欧美色中文字幕在线| 国产亚洲一区二区精品| 久久精品亚洲精品国产色婷小说| 怎么达到女性高潮| 校园春色视频在线观看| 无人区码免费观看不卡| 18禁裸乳无遮挡免费网站照片 | 中文字幕精品免费在线观看视频| 国产高清videossex| 69精品国产乱码久久久| 亚洲av熟女| 免费看十八禁软件| 国产熟女午夜一区二区三区| tocl精华| 亚洲国产欧美一区二区综合| 99在线人妻在线中文字幕 | 中出人妻视频一区二区| 国产高清国产精品国产三级| 亚洲精品av麻豆狂野| 搡老熟女国产l中国老女人| 看片在线看免费视频| 啦啦啦在线免费观看视频4| 成人精品一区二区免费| 亚洲中文日韩欧美视频| av不卡在线播放| 一本大道久久a久久精品| 久久午夜亚洲精品久久| 国产欧美日韩精品亚洲av| 捣出白浆h1v1| 亚洲国产精品一区二区三区在线| 又大又爽又粗| 日韩一卡2卡3卡4卡2021年| 欧美日韩一级在线毛片| 午夜福利在线观看吧| 久久人妻福利社区极品人妻图片| 91精品三级在线观看| 91av网站免费观看| a在线观看视频网站| 久久久久久亚洲精品国产蜜桃av| 久久国产精品人妻蜜桃| 搡老熟女国产l中国老女人| 久久精品亚洲精品国产色婷小说| 国产成人精品久久二区二区免费| 亚洲专区国产一区二区| 十八禁高潮呻吟视频| 亚洲国产看品久久| 免费黄频网站在线观看国产| 久久亚洲精品不卡| 久久久久精品人妻al黑| 男女免费视频国产| 国产欧美日韩一区二区精品| bbb黄色大片| 99香蕉大伊视频| 国产精品 国内视频| 国产欧美日韩综合在线一区二区| 女人被狂操c到高潮| 欧美最黄视频在线播放免费 | 精品国产美女av久久久久小说| 啦啦啦免费观看视频1| 久久国产乱子伦精品免费另类| 人人妻,人人澡人人爽秒播| 久久精品国产a三级三级三级| 婷婷精品国产亚洲av在线 | 久久久久国内视频| 中文字幕人妻熟女乱码| 99精品久久久久人妻精品| 国产激情久久老熟女| 亚洲在线自拍视频| 人人妻人人添人人爽欧美一区卜| 高清av免费在线| 69av精品久久久久久| 国产一区二区激情短视频| 欧美黄色片欧美黄色片| 嫩草影视91久久| 一级黄色大片毛片| 亚洲综合色网址| 亚洲人成伊人成综合网2020| 久久香蕉激情| 制服诱惑二区| 91国产中文字幕| 中文欧美无线码| 在线av久久热| 国产成人欧美在线观看 | 99国产精品一区二区三区| 免费在线观看日本一区| 男男h啪啪无遮挡| 美女国产高潮福利片在线看| 日本黄色视频三级网站网址 | 男女床上黄色一级片免费看| 高清视频免费观看一区二区| 精品福利永久在线观看| 国产成人一区二区三区免费视频网站| 国产高清国产精品国产三级| 久久精品亚洲精品国产色婷小说| 麻豆乱淫一区二区| 欧美日韩黄片免| 亚洲美女黄片视频| 99re6热这里在线精品视频| 久久精品国产亚洲av高清一级| 免费在线观看黄色视频的| 亚洲欧洲精品一区二区精品久久久| 亚洲一区中文字幕在线| 国产99白浆流出| av线在线观看网站| 亚洲精品在线美女| 又紧又爽又黄一区二区| 91字幕亚洲| 亚洲av美国av| 亚洲av欧美aⅴ国产| 欧美丝袜亚洲另类 | 午夜精品国产一区二区电影| 国产欧美日韩一区二区三区在线| 国产av一区二区精品久久| 香蕉丝袜av| 免费观看a级毛片全部| 无人区码免费观看不卡| 欧美日韩亚洲国产一区二区在线观看 | 男人操女人黄网站| 免费不卡黄色视频| 久久青草综合色| 精品少妇一区二区三区视频日本电影| 国产男靠女视频免费网站| 日本精品一区二区三区蜜桃| 最近最新免费中文字幕在线| 91国产中文字幕| 国产精品久久久久久人妻精品电影| 两性夫妻黄色片| 女人被狂操c到高潮| 淫妇啪啪啪对白视频| 手机成人av网站| 十八禁高潮呻吟视频| 亚洲美女黄片视频| 亚洲精品久久成人aⅴ小说| 一本一本久久a久久精品综合妖精| 19禁男女啪啪无遮挡网站| 少妇裸体淫交视频免费看高清 | 精品一区二区三区四区五区乱码| 在线av久久热| 美女福利国产在线| 丰满饥渴人妻一区二区三| 男人舔女人的私密视频| 天天躁夜夜躁狠狠躁躁| 亚洲av成人不卡在线观看播放网| 无遮挡黄片免费观看| 国产免费av片在线观看野外av| 日本精品一区二区三区蜜桃| 亚洲av第一区精品v没综合| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区av网在线观看| 一边摸一边抽搐一进一出视频| 免费在线观看影片大全网站| 亚洲专区中文字幕在线| 亚洲欧美色中文字幕在线| 国产精品久久久人人做人人爽| 一夜夜www| 国产97色在线日韩免费| 国精品久久久久久国模美| 日韩中文字幕欧美一区二区| 免费看a级黄色片| 国产一卡二卡三卡精品| 午夜福利在线免费观看网站| 国产av又大| 黑人欧美特级aaaaaa片| 侵犯人妻中文字幕一二三四区| av欧美777| 亚洲av日韩精品久久久久久密| 国产亚洲欧美在线一区二区| 极品教师在线免费播放| 最近最新免费中文字幕在线| 欧美成人免费av一区二区三区 | 水蜜桃什么品种好| 国产又色又爽无遮挡免费看| 国产一区二区三区在线臀色熟女 | 捣出白浆h1v1| 亚洲国产精品一区二区三区在线| 久久久久国内视频| 亚洲精品国产一区二区精华液| 高清欧美精品videossex| av线在线观看网站| 90打野战视频偷拍视频| 一区在线观看完整版| 国产在线精品亚洲第一网站| 美女国产高潮福利片在线看| av欧美777| 香蕉久久夜色| 大型黄色视频在线免费观看| 亚洲av成人av| 波多野结衣一区麻豆| 成熟少妇高潮喷水视频| 好看av亚洲va欧美ⅴa在| 亚洲精品在线观看二区| 90打野战视频偷拍视频| 99热国产这里只有精品6| 久久青草综合色| 亚洲精品国产区一区二| 午夜福利乱码中文字幕| 国产欧美日韩精品亚洲av| 免费高清在线观看日韩| 欧美日韩成人在线一区二区| √禁漫天堂资源中文www| av不卡在线播放| 不卡一级毛片| 搡老岳熟女国产| 久久中文看片网| 91av网站免费观看| 免费在线观看黄色视频的| 亚洲精品国产色婷婷电影| 亚洲欧美一区二区三区久久| 国产亚洲一区二区精品| 一级a爱片免费观看的视频| 成人免费观看视频高清| 1024视频免费在线观看| 黑人猛操日本美女一级片| 97人妻天天添夜夜摸| 久久久国产欧美日韩av| 久久中文看片网| 久久中文字幕一级| 欧美乱妇无乱码| 亚洲第一欧美日韩一区二区三区| 丰满迷人的少妇在线观看| 搡老熟女国产l中国老女人| 嫩草影视91久久| 午夜福利免费观看在线| 午夜精品久久久久久毛片777| 午夜久久久在线观看| 黄色毛片三级朝国网站| 久久香蕉精品热| 国产蜜桃级精品一区二区三区 | 丰满迷人的少妇在线观看| 国产99白浆流出| 成年人免费黄色播放视频| 精品国产一区二区久久| 怎么达到女性高潮| 麻豆乱淫一区二区| 80岁老熟妇乱子伦牲交| 日韩大码丰满熟妇| 我的亚洲天堂| 欧美日韩亚洲高清精品| 成人免费观看视频高清| 男人的好看免费观看在线视频 | 超碰97精品在线观看| 亚洲精品一二三| 99精品久久久久人妻精品| 看片在线看免费视频| 亚洲av成人不卡在线观看播放网| 午夜福利一区二区在线看| 中文字幕人妻丝袜制服| 99热国产这里只有精品6| 久久人人爽av亚洲精品天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 人人妻人人爽人人添夜夜欢视频| 久久久国产成人免费| 精品少妇久久久久久888优播| 久热爱精品视频在线9| 国产精品国产av在线观看| 午夜精品在线福利| 日日夜夜操网爽| 精品国产超薄肉色丝袜足j| 1024香蕉在线观看| 午夜精品在线福利| 国精品久久久久久国模美| 天天躁夜夜躁狠狠躁躁| 国产av精品麻豆| 女人精品久久久久毛片| 国产成人精品久久二区二区91| 久久久久国内视频| 黄色a级毛片大全视频| 久久久久久免费高清国产稀缺| 日本黄色日本黄色录像| 亚洲国产精品一区二区三区在线| 亚洲一区高清亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 日韩免费av在线播放| 十八禁网站免费在线| 午夜精品在线福利| 亚洲欧美日韩高清在线视频| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看 | 国产熟女午夜一区二区三区| 国产在线精品亚洲第一网站| 激情视频va一区二区三区| 19禁男女啪啪无遮挡网站| 精品久久久久久电影网| 国产成人免费无遮挡视频| 亚洲 国产 在线| a级片在线免费高清观看视频| 欧美精品人与动牲交sv欧美| 可以免费在线观看a视频的电影网站| 亚洲国产欧美网| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀| 亚洲五月天丁香| 亚洲精品国产色婷婷电影| 日韩免费av在线播放| 欧美激情高清一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲精品成人av观看孕妇| 亚洲精品美女久久av网站| 美女 人体艺术 gogo| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 精品国产国语对白av| 在线观看免费视频日本深夜| 久热这里只有精品99| 国产黄色免费在线视频| 久久人人爽av亚洲精品天堂| 嫩草影视91久久| 黄频高清免费视频| 两个人看的免费小视频| 十八禁高潮呻吟视频| cao死你这个sao货| 黑人猛操日本美女一级片| 麻豆乱淫一区二区| 久久久水蜜桃国产精品网| 国产单亲对白刺激| 亚洲成人免费电影在线观看| 五月开心婷婷网| 正在播放国产对白刺激| 纯流量卡能插随身wifi吗| 国产一区二区三区在线臀色熟女 | 国内毛片毛片毛片毛片毛片| 精品一区二区三区四区五区乱码| 日韩免费高清中文字幕av| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 色综合婷婷激情| av欧美777| 波多野结衣一区麻豆| 91九色精品人成在线观看| 国产又爽黄色视频| 69av精品久久久久久| av天堂久久9| 身体一侧抽搐| 捣出白浆h1v1| 精品无人区乱码1区二区| 国产精品国产高清国产av | 中出人妻视频一区二区| 日韩中文字幕欧美一区二区| 天天添夜夜摸| 国产亚洲欧美精品永久| 欧美精品亚洲一区二区| 99在线人妻在线中文字幕 | 日韩欧美国产一区二区入口| 国产精品久久视频播放| 亚洲情色 制服丝袜| 飞空精品影院首页| 欧美激情高清一区二区三区| 精品第一国产精品| 国产亚洲精品第一综合不卡| 嫁个100分男人电影在线观看| 9191精品国产免费久久| 亚洲视频免费观看视频| 中文字幕人妻熟女乱码| 超碰成人久久| 欧美黑人精品巨大| 久久精品成人免费网站| 怎么达到女性高潮| 搡老岳熟女国产| 久久精品亚洲av国产电影网| 香蕉久久夜色| 亚洲男人天堂网一区| 麻豆国产av国片精品| 91九色精品人成在线观看| 精品一区二区三卡| 桃红色精品国产亚洲av| 看免费av毛片| 婷婷成人精品国产| 免费高清在线观看日韩| 老司机午夜福利在线观看视频| 欧美日韩av久久| 天堂动漫精品| 日本vs欧美在线观看视频| 757午夜福利合集在线观看| 午夜福利乱码中文字幕| 久久性视频一级片| 国产1区2区3区精品| 亚洲av成人不卡在线观看播放网| 日本a在线网址| 欧美大码av| ponron亚洲| 狠狠狠狠99中文字幕| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品一卡2卡三卡4卡5卡| 99re6热这里在线精品视频| 免费在线观看亚洲国产| 欧美精品啪啪一区二区三区| 亚洲精品一二三| 精品国产一区二区久久| 一本大道久久a久久精品| 国产xxxxx性猛交| 欧美乱妇无乱码| 国产在视频线精品| 精品国产美女av久久久久小说| 视频区图区小说| 亚洲五月色婷婷综合| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 少妇被粗大的猛进出69影院| 欧美黄色淫秽网站| 少妇粗大呻吟视频| 欧美日韩成人在线一区二区| 亚洲午夜理论影院| 国产主播在线观看一区二区| 日本一区二区免费在线视频| 亚洲欧美精品综合一区二区三区| 成人亚洲精品一区在线观看| 久久人妻av系列| 久久精品熟女亚洲av麻豆精品| 国产成人一区二区三区免费视频网站| 黄网站色视频无遮挡免费观看| 国产精品98久久久久久宅男小说| 日韩三级视频一区二区三区| 国产亚洲欧美精品永久| 91字幕亚洲| 成人黄色视频免费在线看| 国产乱人伦免费视频| 国产91精品成人一区二区三区| 国产精华一区二区三区| 一本综合久久免费| 午夜福利乱码中文字幕| 热99re8久久精品国产| 久久精品亚洲精品国产色婷小说| 自线自在国产av| 满18在线观看网站| 国产精品一区二区在线不卡| 999久久久精品免费观看国产| 国产成人精品无人区| 看黄色毛片网站| 国产精品二区激情视频| 欧洲精品卡2卡3卡4卡5卡区| av天堂在线播放| 制服诱惑二区| 一边摸一边抽搐一进一出视频| 亚洲人成77777在线视频| 亚洲色图综合在线观看| 深夜精品福利| 国产亚洲欧美精品永久| 日韩中文字幕欧美一区二区| 亚洲性夜色夜夜综合| 夜夜躁狠狠躁天天躁| 免费黄频网站在线观看国产| 少妇裸体淫交视频免费看高清 | 欧美国产精品va在线观看不卡| 久久香蕉国产精品| 免费av中文字幕在线| 人人妻,人人澡人人爽秒播| 久久九九热精品免费| 女性被躁到高潮视频| 露出奶头的视频| 久久人人爽av亚洲精品天堂| 国产一区在线观看成人免费| 夜夜夜夜夜久久久久| 欧美 日韩 精品 国产| 国产精品久久视频播放| 色婷婷久久久亚洲欧美| 国产av精品麻豆| 99精品在免费线老司机午夜| 亚洲成人国产一区在线观看| 大片电影免费在线观看免费| 精品人妻1区二区| 麻豆国产av国片精品| 日本黄色视频三级网站网址 | 一区二区三区国产精品乱码| 欧美日本中文国产一区发布| 久久国产精品人妻蜜桃| 日韩欧美一区二区三区在线观看 | 黄色怎么调成土黄色| 国产主播在线观看一区二区| 国产成人欧美在线观看 | 麻豆av在线久日| 欧美精品啪啪一区二区三区| 国产男女超爽视频在线观看| av国产精品久久久久影院| 在线免费观看的www视频| 午夜久久久在线观看| 村上凉子中文字幕在线| 国产麻豆69| ponron亚洲| 亚洲熟女精品中文字幕| 亚洲精品成人av观看孕妇| 亚洲一码二码三码区别大吗| 一本综合久久免费| 亚洲人成77777在线视频| 亚洲中文日韩欧美视频| videosex国产| 亚洲国产欧美网| 亚洲中文av在线| 看免费av毛片| 黄片小视频在线播放| 免费久久久久久久精品成人欧美视频| 极品少妇高潮喷水抽搐| 在线观看日韩欧美| 亚洲精品在线美女| 色精品久久人妻99蜜桃| www日本在线高清视频| 成在线人永久免费视频| 久久国产亚洲av麻豆专区| 亚洲成av片中文字幕在线观看| 黑人猛操日本美女一级片| 在线观看一区二区三区激情| 美女 人体艺术 gogo| 女同久久另类99精品国产91| 久久久久久久久久久久大奶| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 一级毛片女人18水好多| 国产精品久久久人人做人人爽| 大码成人一级视频| 国产日韩欧美亚洲二区| 99热国产这里只有精品6| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 在线十欧美十亚洲十日本专区| 叶爱在线成人免费视频播放| 王馨瑶露胸无遮挡在线观看| 国产男女超爽视频在线观看| 看黄色毛片网站| 成在线人永久免费视频| 丝袜美足系列| 五月开心婷婷网| 国产成人精品久久二区二区免费| 国产欧美亚洲国产| 亚洲情色 制服丝袜| 他把我摸到了高潮在线观看| 国产精品 欧美亚洲| 黄色女人牲交| 国产人伦9x9x在线观看| 午夜福利一区二区在线看| 黑人猛操日本美女一级片| 一区二区日韩欧美中文字幕| 久久久国产一区二区| 日韩欧美一区视频在线观看| 日韩欧美在线二视频 | 制服诱惑二区| ponron亚洲| 视频区图区小说| 无遮挡黄片免费观看| 国产成人欧美在线观看 | 国产精品成人在线| 黄色 视频免费看|