王濤
摘 要 《數(shù)學(xué)課程標(biāo)準(zhǔn)》的總體目標(biāo)中明確指出:“學(xué)生能獲得適應(yīng)未來(lái)的社會(huì)生活和進(jìn)一步發(fā)展所必需的重要數(shù)學(xué)知識(shí)以及基本的數(shù)學(xué)思想方法和必要的應(yīng)用技能?!边@一總體目標(biāo)貫穿于小學(xué)和初中九年的數(shù)學(xué)學(xué)習(xí)中,充分說(shuō)明了數(shù)學(xué)思想的重要性。
關(guān)鍵詞 小學(xué)數(shù)學(xué) 建模思想
中圖分類號(hào):G623.5 文獻(xiàn)標(biāo)識(shí)碼:A
在《數(shù)學(xué)課程標(biāo)準(zhǔn)》我們還會(huì)發(fā)現(xiàn)這樣一句話:“讓學(xué)生親身經(jīng)歷將實(shí)際問(wèn)題抽象成數(shù)學(xué)模型并進(jìn)行解釋與應(yīng)用的過(guò)程,進(jìn)而使學(xué)生獲得對(duì)數(shù)學(xué)理解的同時(shí),在思維能力、情感態(tài)度與價(jià)值觀等多方面得到進(jìn)步和發(fā)展?!边@實(shí)際上就是要求把學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的過(guò)程當(dāng)做建立數(shù)學(xué)模型的過(guò)程,并在建模過(guò)程中培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí),引導(dǎo)學(xué)生自覺(jué)地用數(shù)學(xué)的方法去分析、解決生活中的問(wèn)題。明確要求教師在教學(xué)中引導(dǎo)學(xué)生建立數(shù)學(xué)模型,不但要重視其結(jié)果,更要關(guān)注學(xué)生自主建立數(shù)學(xué)模型的過(guò)程,讓學(xué)生在進(jìn)行探究性學(xué)習(xí)的過(guò)程中科學(xué)地、合理地、有效地建立數(shù)學(xué)模型。
如何指導(dǎo)學(xué)生在數(shù)學(xué)學(xué)習(xí)中進(jìn)行建模呢?我想從以下幾方面來(lái)談一談。
1情境中感知數(shù)學(xué)建模思想
數(shù)學(xué)來(lái)源于生活,又服務(wù)于生活,因此,要將現(xiàn)實(shí)生活中發(fā)生的與數(shù)學(xué)學(xué)習(xí)有關(guān)的素材及時(shí)引入課堂。而北師版的小學(xué)數(shù)學(xué)教材編制中,都是以一個(gè)生活中的主情境展示要學(xué)習(xí)的內(nèi)容,體現(xiàn)數(shù)學(xué)知識(shí)來(lái)源于生活。這些主情境的設(shè)計(jì)讓學(xué)生感到真實(shí)、新奇、有趣、可操作,滿足學(xué)生好奇好動(dòng)的心理需求。這樣很容易激發(fā)學(xué)生的興趣,并在學(xué)生的頭腦中激活已有的生活經(jīng)驗(yàn),也容易使學(xué)生用積累的經(jīng)驗(yàn)來(lái)感受其中隱含的數(shù)學(xué)問(wèn)題,從而促使學(xué)生將生活問(wèn)題抽象成數(shù)學(xué)問(wèn)題,感知數(shù)學(xué)模型的存在。所以在教學(xué)中,我們可以選用教材上的情境在課堂上展示給學(xué)生,描述數(shù)學(xué)問(wèn)題產(chǎn)生的背景,體會(huì)建模的必要性。
如教學(xué)《長(zhǎng)方形周長(zhǎng)》一課,教材中的情境課題是《花邊有多長(zhǎng)》,設(shè)計(jì)了一個(gè)迎新年聯(lián)歡會(huì)裝飾黑板時(shí)購(gòu)買多長(zhǎng)的花邊的情境,進(jìn)而引入“花邊有多長(zhǎng)”這個(gè)問(wèn)題,實(shí)際上是探究長(zhǎng)方形周長(zhǎng)計(jì)算方法的問(wèn)題。學(xué)生在經(jīng)過(guò)嘗試探索的過(guò)程中,用了不同的方法來(lái)求花邊的長(zhǎng)度:把四條邊的長(zhǎng)度加起來(lái);把2個(gè)長(zhǎng)和2個(gè)寬的長(zhǎng)度加起來(lái);把一個(gè)長(zhǎng)和一個(gè)寬的長(zhǎng)度加起來(lái),再乘2。在肯定學(xué)生的做法后,再嘗試求兩個(gè)長(zhǎng)方形圖形的周長(zhǎng)。學(xué)生用了不同的方法后引導(dǎo)學(xué)生觀察優(yōu)化方法,得出長(zhǎng)方形周長(zhǎng)的計(jì)算公式:(a+b)x2,從而建立了長(zhǎng)方形周長(zhǎng)計(jì)算公式這一字母表示的模型。
2探究中建構(gòu)數(shù)學(xué)模型
數(shù)學(xué)家華羅庚通過(guò)多年的學(xué)習(xí)、研究經(jīng)歷總結(jié)出:對(duì)書(shū)本中的某些原理、定律、公式,我們?cè)趯W(xué)習(xí)的時(shí)候不僅應(yīng)該記住它的結(jié)論、懂得它的道理,而且還應(yīng)該設(shè)想一下人家是怎樣想出來(lái)的,怎樣一步一步提煉出來(lái)的。只有經(jīng)歷這樣的探索過(guò)程,數(shù)學(xué)的思想、方法才能沉積、凝聚,從而使知識(shí)具有更大的智慧價(jià)值?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中也指出:動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。學(xué)生的數(shù)學(xué)學(xué)習(xí)活動(dòng)應(yīng)當(dāng)是一個(gè)主動(dòng)、活潑的、生動(dòng)和富有個(gè)性的過(guò)程。因此,在教學(xué)時(shí)我們要善于引導(dǎo)學(xué)生自主探索、合作交流,對(duì)學(xué)習(xí)過(guò)程、學(xué)習(xí)材料、學(xué)習(xí)發(fā)現(xiàn)主動(dòng)歸納、提升,力求建構(gòu)出人人都能理解的數(shù)學(xué)模型。
如教學(xué)梯形面積一課:
2.1回顧、猜想
師:請(qǐng)同學(xué)們回憶我們?cè)趯W(xué)習(xí)三角形面積推導(dǎo)過(guò)程中,應(yīng)用了哪些數(shù)學(xué)思想方法?
生:運(yùn)用了轉(zhuǎn)化的方法。將三角形轉(zhuǎn)化成我們學(xué)習(xí)過(guò)的平行四邊形,再研究它的面積計(jì)算方法。
師:猜一猜梯形的面積能否轉(zhuǎn)化成已經(jīng)學(xué)過(guò)的圖形的面積?它會(huì)與學(xué)過(guò)的哪種平面圖形有關(guān)?
學(xué)生大膽進(jìn)行猜想,有的猜能轉(zhuǎn)化成三角形、有的猜能轉(zhuǎn)化成長(zhǎng)、正方體,有的認(rèn)為能轉(zhuǎn)化成平行四邊形。
2.2動(dòng)手驗(yàn)證
師:請(qǐng)同學(xué)們利用手中的學(xué)具進(jìn)行操作,研究梯形面積的計(jì)算方法。
2.3反饋交流
生1:我們用兩個(gè)完全一樣的梯形拼成一個(gè)平形四邊形。
生2:我們把梯形分成了兩個(gè)三角形。
生3:我們把梯形先分成兩個(gè)小梯形,再轉(zhuǎn)化成平行四邊形。
2.4歸納總結(jié)
師:轉(zhuǎn)化后的圖形與原圖形有什么關(guān)系?怎樣計(jì)算梯形的面積?與小組同學(xué)交流。
學(xué)生匯報(bào)后,師生共同總結(jié)梯形的面積計(jì)算公式。
………
在上述教學(xué)過(guò)程中,教師提供豐富的實(shí)驗(yàn)材料,學(xué)生需要從中挑選出解決問(wèn)題必須的材料進(jìn)行研究。學(xué)生的問(wèn)題不是一步到位的,通過(guò)不斷地猜測(cè)、驗(yàn)證、修訂實(shí)驗(yàn)方案,再猜測(cè)、再驗(yàn)證這樣的過(guò)程,逐步過(guò)渡到復(fù)雜的、更一般的情景,學(xué)生在主動(dòng)探索嘗試過(guò)程中,進(jìn)行了再創(chuàng)造學(xué)習(xí),以抽象概括方式自主總結(jié)出梯形面積的計(jì)算公式。這一環(huán)節(jié)的設(shè)計(jì),不僅發(fā)展了學(xué)生的策略性知識(shí),同時(shí)讓學(xué)生經(jīng)歷猜測(cè)與驗(yàn)證、分析與歸納、抽象與概括的數(shù)學(xué)思維過(guò)程。學(xué)習(xí)過(guò)程中學(xué)生有時(shí)獨(dú)立思考,有時(shí)小組合作學(xué)習(xí),有時(shí)是獨(dú)立探索和合作學(xué)習(xí)相結(jié)合,學(xué)生在新知探索中充分體驗(yàn)了數(shù)學(xué)模型的形成過(guò)程。
3解釋應(yīng)用中掌握數(shù)學(xué)模型
前面提到過(guò),數(shù)學(xué)知識(shí)來(lái)源于生活,又服務(wù)于生活。用所建立的數(shù)學(xué)模型來(lái)解釋生活中的實(shí)際問(wèn)題,讓學(xué)生能體會(huì)到數(shù)學(xué)模型的實(shí)際應(yīng)用價(jià)值,體驗(yàn)到所學(xué)知識(shí)的用途和益處,進(jìn)一步培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和綜合應(yīng)用數(shù)學(xué)知識(shí)解決問(wèn)題的能力,讓學(xué)生體驗(yàn)實(shí)際應(yīng)用帶來(lái)的快樂(lè)。
比如:吳正憲老師的“雞兔同籠”的教學(xué),讓學(xué)生對(duì)“8頭26足”的雞兔同籠現(xiàn)象進(jìn)行研究,建立模型之后再探究35頭94足的雞兔同籠問(wèn)題,這時(shí)給學(xué)生一個(gè)模型通用的基本練習(xí),利于全體學(xué)生掌握模型。最后指出,生活中把雞和兔關(guān)在一個(gè)籠子的事不常見(jiàn),用這個(gè)知識(shí)可以解決生活中的哪些問(wèn)題呢?學(xué)生的思維大開(kāi),意識(shí)到模型的建立旨在解決生活中的實(shí)際問(wèn)題。從而彰顯數(shù)學(xué)“基本思想”和“模型思想”的力量。
綜上所述,小學(xué)數(shù)學(xué)建模思想的形成過(guò)程是一個(gè)綜合性的過(guò)程,是數(shù)學(xué)能力和其他各種能力協(xié)同發(fā)展的過(guò)程。通過(guò)建模教學(xué),為學(xué)生的終身學(xué)習(xí)、可持續(xù)發(fā)展奠定基礎(chǔ)。因此在數(shù)學(xué)課堂教學(xué)中,教師應(yīng)逐步培養(yǎng)學(xué)生數(shù)學(xué)建模的思想、方法,形成學(xué)生良好的思維習(xí)慣和用數(shù)學(xué)的能力。