• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      動力總成懸置系統(tǒng)剛度優(yōu)化研究

      2019-05-14 01:41:24劉勺華邵亭亭路紀雷
      關(guān)鍵詞:扁擔坐標系柔性

      劉勺華,邵亭亭,路紀雷

      (1. 常州機電職業(yè)技術(shù)學院 車輛工程學院,江蘇 常州 213164; 2. 南京徐工汽車技術(shù)中心,江蘇 南京 210012)

      0 引 言

      動力總成系統(tǒng)是汽車的重要組成部分之一。但隨著汽車工業(yè)發(fā)展,汽車速度逐漸提高,重量逐漸減輕,使得車輛振動問題變得日益突出。發(fā)動機在工作過程中產(chǎn)生不平衡力和力矩與路面不平度是汽車振動的主要激勵源[1]。

      發(fā)動機作為汽車最重要的振源之一,其產(chǎn)生的振動若得不到很好控制,則會引起車身部件、車架以及與車架相連的其他零件異常振動和噪聲。一方面會降低這些重要部件的疲勞壽命,另一方面劇烈的振動使駕乘人員產(chǎn)生不舒服和疲憊感,對汽車平順性的主觀評價造成嚴重負面影響。

      因此如何通過設(shè)計性能良好的動力總成懸置系統(tǒng),以減少動力總成向車架及車身振動能量傳遞,一直是車輛設(shè)計師們關(guān)注的重要課題。自動力總成懸置系統(tǒng)能量解耦方法提出后得到極大推廣,成為設(shè)計師們解決此問題最重要方法之一[2-3]。

      筆者利用能量解耦方法,借助動力學分析軟件ADAMS建立了由濰柴發(fā)動機及法士特變速箱組成的動力總成懸置系統(tǒng)模型,從能量法角度出發(fā)對懸置剛度進行匹配優(yōu)化,取得了較好結(jié)果。

      1 動力總成懸置系統(tǒng)

      1.1 動力總成懸置系統(tǒng)簡化建模

      動力總成懸置系統(tǒng)固有頻率遠遠小于動力總成彈性模態(tài)頻率,因此在對懸置系統(tǒng)進行研究時常將動力總成和車架假定為剛體。用于發(fā)動機和車架連接的橡膠懸置,由于阻尼不大,且動力總成是小幅振動,因此建模時其阻尼予以忽略;懸置的3向剛度則用3個相互垂直的彈簧連接表示,這3條軸線為彈性主軸[4]。

      此外,建立模型時需建立幾個坐標系:① 定坐標系G0-XYZ,原點G0位于動力總成靜平衡時的質(zhì)心;Z軸平行于曲軸軸線,指向發(fā)動機前方;Y軸垂直于曲軸方向向上;X軸按右手定則確定。② 動坐標系GXYZ,原點G固結(jié)在動力總成質(zhì)心處,靜平衡時動、定坐標系重合。動力總成剛體振動是由動坐標系相對于定坐標系平動和繞3個坐標軸轉(zhuǎn)動合成。因此廣義坐標為X、Y、Z、θx、θy、θz[5-6]。

      基于此,動力總成懸置系統(tǒng)簡化力學模型和ADAMS模型分別如圖1。發(fā)動機為4點懸置,前后各2點,變速箱前面與發(fā)動機后部螺栓連接,后面為1點懸置,每個點為3自由度,故動力總成懸置系統(tǒng)模型共15自由度。

      圖1 動力總成懸置系統(tǒng)力學模型

      1.2 變速箱彈性支撐剛度

      發(fā)動機懸置的3向剛度一般可從懸置供應商處直接獲得,但變速箱彈性支撐——扁擔梁則需要通過一定技術(shù)手段獲取。筆者采用柔性體建模方法獲得扁擔梁剛度曲線,圖2為扁擔梁3D模型。

      圖2 扁擔梁3D模型

      圖3 模態(tài)垂直振動

      采用柔性體方法獲取剛度曲線具體步驟為:將3D模型導入有限元分析軟件,劃分網(wǎng)格、定義外連接點、設(shè)置模態(tài)信息,將模型導出mnf柔性體文件,最后將柔性體文件導入ADAMS添加約束及載荷,查看剛度曲線。

      扁擔梁柔性體前3階模態(tài)如圖3。前3階模態(tài)頻率分別為83、117、241 Hz。由圖3可看出:扁擔梁前3階柔性體模態(tài)振型正對應于總體坐標系Z、Y、X這3向振動。

      在扁擔梁柔性體相應位置施加X、Y、Z這3個方向力得到力-變形曲線,其斜率即為單向剛度,其X、Y、Z這3個方向剛度分別為:12 000、3 100、1 420 N/mm。

      1.3 優(yōu)化前仿真結(jié)果

      對模型中各元件賦值,如對于動力總成輸入質(zhì)心位置、轉(zhuǎn)動慣量等參數(shù),各懸置輸入初始剛度值。經(jīng)過ADAMS振動分析求解器Vibration求解得到優(yōu)化前系統(tǒng)前6階模態(tài)頻率及能量占比分布,見表1。

      表1 優(yōu)化前系統(tǒng)頻率及能量分布

      2 動力總成懸置系統(tǒng)優(yōu)化

      2.1 動力總成懸置系統(tǒng)數(shù)學模型

      拉格朗日自由振動微分方程如式(1):

      (1)

      式中:T為系統(tǒng)動能;Qi為系統(tǒng)廣義坐標;V為系統(tǒng)勢能。

      將系統(tǒng)各參量代入式(1)可得動力總成懸置系統(tǒng)振動微分方程,如式(2):

      (2)

      系統(tǒng)自由振動微分方程如式(3):

      (3)

      式中:[M]為系統(tǒng)質(zhì)量矩陣;[K]為系統(tǒng)剛度矩陣。

      2.2 設(shè)計變量選擇

      通過改變系統(tǒng)剛度矩陣K可控制系統(tǒng)振型及固有頻率,剛度矩陣是彈性支撐安裝位置、角度、剛度的函數(shù)。因此可將發(fā)動機各懸置點剛度和彈性中心點作為設(shè)計變量。

      2.3 目標函數(shù)

      根據(jù)振動匹配思想,懸置系統(tǒng)振動解耦關(guān)鍵是各方向上能量占比達到100%,且頻率滿足最值要求。但在工程實踐中,使系統(tǒng)6個自由度方向完全解耦是沒有必要的,同時也是很難實現(xiàn)的,故通常都是使幾個主要振動方向得到解耦即可。根據(jù)一般汽車特點,其激勵主要來自于繞發(fā)動機曲軸的轉(zhuǎn)動和垂直向上的來自路面激勵,因此只需使Y方向和Rzz方向解耦即可。

      2.4 約束函數(shù)

      進行優(yōu)化時除了頻率要滿足最值頻率之外,設(shè)計變量也有一定限制。懸置剛度變量要充分考慮軟墊的可制造性,彈性中心點位置也要考慮整車布置方便性和可操作性。因此懸置剛度變量上下限值為初始剛度的30%,彈性中心點范圍為初始點上下各移動30 mm。

      3 優(yōu)化結(jié)果

      設(shè)定好設(shè)計變量、約束函數(shù)及目標函數(shù)之后利用ADAMS的優(yōu)化功能進行優(yōu)化。優(yōu)化前后部分懸置各向剛度變化見表2;優(yōu)化后系統(tǒng)各頻率及能量占比分布見表3。

      表2 優(yōu)化前后部分懸置各向剛度對比

      表3 優(yōu)化后系統(tǒng)各頻率及能量分布

      4 結(jié) 論

      筆者建立了基于ADAMS的動力總成懸置系統(tǒng)自由振動模型,并以某方向能量解耦度為目標,以懸置參數(shù)為設(shè)計變量進行優(yōu)化。

      通過對比可以發(fā)現(xiàn):系統(tǒng)優(yōu)化后6個方向上解耦度分別提高了21.87%、3.06%、17.42%、3.91%、0.53%、4.56%。另外固有頻率方面,除第3階比優(yōu)化之前有所增加外,其余各階次頻率均有降低,隔振率有所提高。

      結(jié)果表明:利用ADAMS軟件進行懸置系統(tǒng)建模仿真優(yōu)化可達到預期。另外利用此方法可縮短設(shè)計周期,提高設(shè)計效率,對設(shè)計結(jié)果進行有效預測并減小了設(shè)計風險,為動力總成懸置系統(tǒng)設(shè)計開發(fā)及優(yōu)化提供了一條有效途徑。

      猜你喜歡
      扁擔坐標系柔性
      一種柔性拋光打磨頭設(shè)計
      灌注式半柔性路面研究進展(1)——半柔性混合料組成設(shè)計
      石油瀝青(2021年5期)2021-12-02 03:21:18
      楊存懷:“土專家”挑起增收“金扁擔”
      金扁擔
      草原歌聲(2020年3期)2021-01-18 06:52:02
      高校學生管理工作中柔性管理模式應用探索
      扁擔村挑上了“金扁擔”
      解密坐標系中的平移變換
      坐標系背后的故事
      挑扁擔
      基于重心坐標系的平面幾何證明的探討
      涞水县| 迭部县| 盈江县| 交口县| 商城县| 鸡泽县| 新余市| 汉川市| 合川市| 乌恰县| 长泰县| 原阳县| 揭东县| 麻江县| 静乐县| 象山县| 霍山县| 平原县| 昌乐县| 木兰县| 恩平市| 怀化市| 潜山县| 文昌市| 桐庐县| 通渭县| 南陵县| 绥阳县| 师宗县| 安新县| 库伦旗| 黄梅县| 乐业县| 凭祥市| 张掖市| 赣榆县| 黑龙江省| 凭祥市| 德惠市| 海阳市| 金华市|