• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoinduced phase transitions in two-dimensional charge-density-wave1T-TaS2*

    2019-05-11 07:29:50WenWen文雯ChunheDang黨春鶴andLimingXie謝黎明
    Chinese Physics B 2019年5期
    關鍵詞:黎明

    WenWen(文雯),Chunhe Dang(黨春鶴),and Liming Xie(謝黎明),?

    1CASKey Laboratory ofStandardization and MeasurementforNanotechnology,CASCenterforExcellence in Nanoscience,NationalCenterforNanoscience and Technology,Beijing 100190,China 2University ofChinese Academy ofSciences,Beijing 100049,China

    (Received 23 February 2019;revisedmanuscript received 18March 2019;published online8 April2019)

    Keywords:charge density wave,phase transition,1T-TaS2,photodetection

    1.Introduction to structure and charge-density waves in 1T-TaS2

    Low-dimensional strongly correlated electron systems arise from the couplings between charge,spin,and lattice.They exhibit rich phase transitions,such as superconductivity,ferromagnetism,and charge-density wave(CDW)ordering.[1–4]CDW states comprise a periodic charge-density modulation and a periodic lattice distortion,which originate from the electron–phonon interactions and/or Ferm i surface nesting.[5–9]Due to the collectivemode of charge density,a f initeelectronic bandgap openswith the forming of the CDW phase.[10–12]

    The theory of the electron–phonon interaction of the CDW system was f irst suggested by Peierls in 1955.[6]For a one-dimensional(1D)metal chain at temperature T=0 K withoutconsidering the electron–electron orelectron–phonon interactions,the ground state is schematically presented in Fig.1(a).The atom ic chain possesses a lattice constant of a and the electronic states are f illed up to the Ferm i surface EF.A fter taking electron–phonon interaction into consideration,the lattice distortionwith a period ofλismore energetically favorable.The periodλis related to the Fermiwave vector kFbyλ=π/kF.The lattice distortion opens a f inite energy gap 2Δat the Ferm i level(Fig.1(b)),thus turning the metallic phase into insulating CDW phase.Compared to the metallic phasewith constantcharge density ofρ0,CDW states exhibitaperiodic collectivemodewithmodulated chargedensity,which can be expressed as[6]

    whereρ1andφare the amplitude and phase of periodically modulated electron density,respectively,and r is thedisplacement.

    1T-TaS2,with a plane of Ta atoms sandw iched between two layersof Satoms in an octahedral lattice,exhibits temperature-dependentCDW orderings.Ata temperature below 550 K,the incommensurate(IC)CDW phase formswith slightly distorted lattices.As the temperature is lower than 350K,nearly commensurate(NC)CDW formswith insulating commensuratedomainsand conductivedomainwalls.Further lowering the temperature down to 180 K,insulating commensurate CDW(CCDW)phaseoccurs(Fig.2(a)).In the CCDW phase,the lattice distortion is characterized by asuperlatticeof David-starscomprised of12 Taatomsaround a 13th Ta atom(Fig.2(b)).

    The resistance of 1T-TaS2changes in the differentCDW states.For bulk crystal,two abrupt changes of resistance can be observed at temperatures of 180–220 K and 350–360 K,corresponding to CCDW–NCCDW and NCCDW–

    The fertilephase transitionsin 1T-TaS2havebeen investigated by versatile tools.For instance,the distribution of electronic density in real space,the conf iguration and electronic structure of domain walls,and the manipulation of CDW phases have been extensively studied by scanning tunneling m icroscopy.[15–19]The ultrafast photoem ission spectroscopy has been introduced to monitor the dynamics of electronic structure in the phase transition process.[20–24]The ultrafast diffraction technique has been developed to reveal the lattice dynamicsof CDW phase transition process.[25–27]ICCDW phase transitions,respectively(Fig.2(c)).[13]As the thickness of 1T-TaS2decreases,the NC–C phase transition disappears(Fig.2(d))as the thickness is less than 9 nm and 3 nm,respectively.The thickness-dependent phase transition behaviorwasexplained asslow kineticsofphase transition.[14]Itwas further found that the NC-to-C phase transition process disappeared athigh cooling rate.[14]Zhang and hiscolleagues attributed the thicknessdependence to the periodicity for sustaining long-range order,dielectric environment,and surface impurities.[13]

    Fig.1.Schematic illustration of one-dimensionalperiodicmetallic latticeand Peierls distorted insulating lattice.(a)Withoutelectron–phonon interaction,the latticewith a period of a exhibits a constant charge density and f illed electron states up to Ferm i level.(b)Considering the electron–phonon interaction,the Peierls distortion results in the periodicallymodulated charge density and an energy gap at the Ferm i level.Reproduced from Ref.[6]with perm ission.Copyright1988,American PhysicalSociety.

    Fig.2.CDW phase in 1T-TaS2 at different temperatures.(a)The CCDW,NCCDW,and ICCDW phases at different temperatures.(b)Crystal structure of 1T-TaS2 with David-star clusters consisting of 13 Ta atoms.(c)Temperature-dependent resistance of bulk 1T-TaS2.(d)Temperature-dependent resistanceof 1T-TaS2 with thicknessof 6 nm.As the thicknessof 1T-TaS2 decreases,the phase transition from NC to IC phase isunresolvableow ing to the slow kinetics.(c)and(d)were reproduced from Ref.[13].Copyright2015,Springer Nature.

    Additionally,Raman spectroscopy is sensitive to the collective lattice vibration,which has been demonstrated as an effective approach for measuring the CDW phase transition.[28–32]Compared to the undistorted metallic lattice,the commensurate domains consisting ofsuperlattice exhibit fold-back acoustic and optical modes with Raman frequency of 50–100 cm-1and 230–400 cm-1,respectively.[28]With the transition from CCDW–NCCDW phase,an abrupt red-shift of Raman peakswas observed.[30]In striking contrast to theelectricalmeasurements,the Raman spectroscopy demonstrated that fold-back acoustic and optical modesare preserved inmonolayer1T-TaS2.This resultpossibly suggests thatCDW phaseordercan bestableatmonolayer 1T-TaS2.

    Further electricalmeasurements have been conducted to investigate the correlation between the CDW states and electron transport properties.The signif icant change of electrical conductivity during the phase-transition process promises the characterization of dynamics of CDW states through electricalsignals.Forexample,the low-frequency noiseofelectrical devices can be employed to understand the sliding of CDW domains.[33]Electricaloscillators,consisting ofa1T-TaS2device in serialwith a load resistor,can beharnessed to study the dynam icsofmultistate phase transitions.[34,35]

    Ow ing to the striking differences in electrical conductivity for various CDW states,themanipulation of CDW phases can be exploited to developmultifunctional devices.For example,Iwasaand his colleagues discovered amem ristive NCto-C phase sw itching behavior,arising from an extremely slow phase transition process with reduced thickness of 1TTaS2.[14,36]This work provided a proof-of-principle demonstration of nonvolatilememory devices based on the sluggish CDW phase transition of nano-thick 1T-TaS2.The NC-to-IC phase transition ismore attractive for the practical device implementations because itoccurs at room temperature and can be triggered by optical pulses or electrical current.By collecting a 1T-TaS2in serialwith a load resistor,electrical oscillation can be achieved by revisable sw itching between NC and IC phases.[34]Compared to the conventional ring oscillators,the CDW oscillators based on phase transition possess much simplif ied electrical circuits.Therefore,multiple CDW phase transition of1T-TaS2,togetherwith itselectrical/optical manipulability and low dimensionality,perm its 1T-TaS2as a platform for fabrication ofmultifunctionalphase-transition devices.

    In addition to thermodynam ic ground states at different temperatures,light pulses can drive the CDW phase transition and create fertile out-of-equilibrium intermediate states.For the phase transition triggered by light pulses,two effects w ill contribute to the collapse of highly ordered commensurate domains.First,the photo-injected electrons can f ill the Mott–Hubbard bands,yielding mobile carriers to screen the Coulomb interaction between Ta atoms.With the collapse of Ta clustersand strongly correlated electronic states,highly conductivemetalstates can nucleate and grow.Second,highf luence photon injection can give rise to Joule heating effect,which w ill increase the local temperature of the sample.Because the local temperature ishigher than the phase-transition temperature,melting of CDW domain occurs.Therefore,special light–matter interactions can be observed in the CDW phaseswith strongly correlated electron system.

    In this review,we have summarized the recent progress on the photoinduced CDW phase transitions in 1T-TaS2,as well as the potential applications.First,the dynam ics of optical pulse induced CDW phase transition in 1T-TaS2is introduced.Second,the out-of-equilibrium intermediate/hidden states,which can only beaccessibleby applying externalstimuli,such as ultrafast laser pulses and electric f ield,are introduced.Third,potential applications of 1T-TaS2as photodetectorsare introduced.Finally,wehave prospected challenges and potentialapplicationsbased on photoinduced CDW phase transitions.

    2.Ultrafast optical pulse induced CDW phase transitions in 1T-TaS2

    Phase-transition dynam ics in 1T-TaS2have been extensively studied by ultrafast optical stimulation.Fem tosecond electron diffraction was used as a powerful tool to investigate the dynamics of crystal lattice during optical pulse induced phase transition.In the experiments,fem tosecond laser pulseswere employed to initiate the phase transition of 1TTaS2from a highly ordered phase to a low ly ordered phase and an ultrafast electron beam was used to probe the lattice dynam ics.[25,27]The dynam icmelting,sw itching,and recovery processes have been extensively studied with this technique.In addition to electron diffraction,time-resolved xray photoelectron spectroscopy is another effective approach for investigating theevolution of CDW ordering underoptical excitation.These ultrafastmeasurements employed different probes,such as x-ray and electron beams,to collect signals characterizing the structural dynamics,while using fem tosecond lightas a pump source to trigger the CDW phase transition.

    Fig.3.Theultrafastopticalpulse induced NC-to-IC phase transition of 1T-TaS2 monitored by ultrafastelectron diffraction.Realand reciprocal space representation of(a)NCCDW phase,and(b)ICCDW phase.Compared to the ICCDW with slight lattice distortion,the NCCDW phase consists of commensurate supercells,which exhibits~12°-rotated high-order diffraction peaks.(c)The evolution of NC and IC intensities under differentexcitation densities.This f igurewas reproduced from Ref.[25]with perm ission.Copyright2016,American Physical Society.

    Fig.4.The ultrafast optical pulse induced CDW phase transition monitored by time-resolved x-ray photoem ission spectroscopy(TR-XPS).(a)Scheme of CCDW 1T-TaS2 consisting of David-star clusters with inequivalent a,b,and c Ta atoms.(b)Ta 4f XPS spectra at different delay times.The color represents the electron density,which increases towards the center Ta atom.The Ta 4f photoemission is split into two peaks,corresponding to sites b and c,separated by 2Δ(i.e.,ΔCDW).(c)Two-dimensional false colormap of Ta 4f photoem ission spectra at different delays.(d)Time-resolved photoem ission intensity at E-E F=-22.26 eV.(e)Dependenceof 2ΔCDW on the delay time.(f)Delay-time-dependent electron temperature T e.This f igurewas reproduced from Ref.[23]with perm ission.Copyright2010,American Physical Society.

    At room temperature,the ground state of 1T-TaS2is the NCCDW phase,which possesses commensurate CDW domains ref lected by~12°-rotated diffraction peaks in electron diffraction patterns(Fig.3(a)).Under the light excitation exceeding a threshold,themelting of CDW domains occurs,ref lected by the suppressed diffraction of NC superlattice and enhanced diffraction of IC phase(Fig.3(b)).By extracting the timeevolution of NC and IC intensities,a two-stage phase transition process has been discovered.In the f irst stage,the drop of NC diffraction intensity and the rise of IC intensity occurwithin 0.3 psand 1.5 ps,respectively,which is independent of the pump f luence.In the second stage,the drop/rise of NC/IC intensity keeps ranging from 50 ps to 230 ps depending on theexcitation power.The two-stepmelting of NC and buildup of IC phaseareattributed to thenucleation ofnew phase followed by the domain grow th.

    The pump-f luence-independentnucleation rate indicates the absence of a nucleation barrier at the f irst stage.The dynamics of phase transition was proposed by Haupt et al.by combining the experimental results and theoretical calculations.They found that the changes in ionic potential,arising from the fem tosecond laserexcitation,give rise to thecoherent atom ic motion in commensurate domains towards the undistortedmetallic domain walls.At the time scale of~1 ps,the energy dissipation to lattice results in the rise of lattice temperature beyond the critical temperature of NC-to-IC phase transition.Further grow th of IC phase requiresmuch atomic displacementwith the transformation of the previously commensurate domains.Overall,complete transformation of NC to IC phase occurswithin the time of~50 psand can be explained by thenucleation and grow thmechanism.

    In addition to the ultrafast electron diffraction,timeresolved x-ray photoem ission spectroscopy(TR-XPS)is another effective approach for investigating the dynam ics of CDW phase transition.[23]Thismethod employs three inequivalentTasites(labeled as a,b,and c in Fig.4(a))in CCDW 1TTaS2.In the 13-atom David-star clusters,about0.4 electrons are transferred from outer6Taatoms to innerones.Thecharge transfer in CCDW phase is ref lected by the split Ta 4f peaks in XPS spectra(Fig.4(b)),which can be assigned to b and c sites(peak related to a site isweak to be resolved).The b–c splitting 2Δcan beextracted to characterize theCCDW phase order.Beye etal.performed the TR-XPSwith a free-electron x-ray laser at~156 eV as probe in combination with a synchronized optical pump laserat1.55 eV aspump.Figure 4(b)shows the evolution of XPS spectra at different pump–probe delays.The Ta 4f splitting experiences an obvious reduction within a picosecond followed by partial recovery and formation of a quasi-equilibrium state with a lifetime longer than 10 ps.Figure4(c)shows the false-color TR-XPSspectra.The 2Δdecreases from the original value of 0.62 eV to 0.47 eV,and then recovers to aquasi-equilibrium valueof0.54 eV with a time constantof~900 fs.The lattice temperaturewas calculated and thequasi-equilibrium temperaturewas226K.The ultrafastTR-XPS can beexplained by two processes.The f irst process is the transient collapse of charge order by f illing of the Mott–Hubbard band and collapse of the Mott phase,ref lected by the transientheating of electrons.Then,cooling of electronsoccurs through transferring energy of crystal lattice,yielding aquasi-equilibrium state.

    3.Hidden CDW phases in 1T-TaS2

    A single ultrafast laser pulse can also trigger the formation of hidden stateswith well-organized CDW domains and undistorted metallic domain walls in 1T-TaS2.Stojchevska et al.reported the generation of a metallic hidden states at 1.5 K by applying a 35-fs laser pulse.[37]At temperaturesbelow 180 K,1T-TaS2exhibitsan insulating CCDW state.A fter applying a 35-fs laser pulse exceeding the power threshold,an abruptdrop of resistancewasobserved,suggesting a phase transition from CCDW to ahidden state(Fig.5(a)).[38]A constant resistance hasbeen observed up to temperatureof 60 K.Upon 100 K,the resistance is close to thatof the C state.The hidden statescan beerased by a train of10450-pspulses.

    A mechanism of the hidden-state formation is proposed by combining the experimental results and theoretical considerations.In CCDW states,the electronic states are contributed by the Ta d bands.The 12 electrons contributed by the 12 Ta atoms form occupied states,while the 13th electron is localized at the center Ta atom.The empty upper Hubbard bandsand f illed loweronesare generated by the 13th electron and open an energy gap to sustain the insulating CCDW state(Fig.5(b)).A fter an ultrafast laser pulse,the injected electrons and holes f ill the upper and lower Hubbard bands after ultrafast intraband thermalization,thus inducing themelting of C clusters.The organization of insulating CCDW domains and domain walls after the partial breakdown of the Davidstar clusters promote the formation of a long-range ordered hidden state.Note that thismodel is consistentwith experimental results and theoretical understandings.However,direct characterization of the C domain structure in this hidden state is required to provide deep understandings in its formationmechanism and physicalproperties.

    The electric f ield can also be harnessed to trigger phase transitions in 1T-TaS2.[39–42]Vaskivskyi et al.reported the buildup of the conductive hidden states by pulsed current injection.[39]The currentpulse passed through the sample can turn the insulating CCDW phase to ametallic hidden state with a high sw itching speed(30 ps),which provided a proofof-principle demonstration of CDW phase transition for nonvolatilememory.

    Fig.5.The buildup of a hidden state by applying a35-fs laser pulse.(a)An abruptdrop of electrical resistance can be observed after a single 35-fs laser pulse,which can be attributed to the formation of a hidden state.(b)Representation of energy diagram presents the buildup of the hidden states.(c)The phase diagram after a35-fs laser pulse.(a)was reproduced from Ref.[38]with perm ission.(b)and(c)were reproduced from Ref.[37]with permission.Copyright2014,AAAS.

    Fig.6.CDW phase transition driven by electricalpulse.(a)The phase transition can be driven by electricalpulse.Asan electricalpulse travels through thesample,themelting ofC phaseoccurs togeneratehighly conductivehidden states.(b)Temporalresponseof1T-TaS2 by applyingacurrentpulse.(c)The pulsed V–I characteristic atdifferent temperatures.(d)The temperature-dependent V0 and I T.V0 is the voltage at I=0mA and I T is the threshold current for the phase transition.This f igurewas reproduced from Ref.[39]with perm ission.Copyright2016,Springer Nature.

    During the currentpulse triggered phase transition,there are several characteristics.First,with the increase of current density of electrical pulse,an abrupt drop of electrical resistanceoccurs in 1T-TaS2,indicating the phase transition from a Mottinsulator to ahighly conductivemetallic state(Fig.6(b)).Second,the CDW phase sw itching is strongly dependent on the pulse duration time.For pulseswith duration time higher than 0.1 ps,phase sw itching is incomplete or cannot occur.Themeasurablephasesw itching speed can reach30 ps.Third,electrical-pulse-driven phase transition presents a signif icant dependenceon temperature(Figs.6(c)and 6(d)).Theobvious sw itching only occurswith temperature ranging from 10 K to 55K.In the rangeof55K to 165K,unstablevoltage response wasobserved above a threshold current.Based on these facts,Vaskivskyi etal.proposed amechanism based on the formation of a hidden state sim ilar to the fem tosecond laser pulse excitation.[39]The injected charges can cause the partial collapse of the David-star clusters and the establishment of organized David-star domains separated by conductive domain walls.

    Optical pulses and electric f ield can drive CDW phase transitions in 1T-TaS2.However,themechanism for the phase transition triggered by electric f ield and optical pulses is still under debate.Recently,Shao etal.studied the electron and hole doping of 1T-TaS2by using density-functional-theory(DFT)calculations.[43]They found that the stability of CDW domainscan besuppressed by holedopingwhichweakens the electron density at the center of star-of-David,while the stability of CDW phase isnotsensitive to electron doping.

    Compared to the out-of-plane electric f ield,the phasetransition mechanisms driven by optical pulses and in-plane electric f ield aremore complex and still under debate.Two mechanisms are proposed.First,optical excitation and inplane electric f ield can injectmobile holes in 1T-TaS2,which triggers themelting of star-of-David.Second,light irradiation and electrical currentcan generate Joule heat,giving rise to the increase of local temperature over the phase-transition point.Bymeasuring the Stokes and anti-Stokes Raman spectra of 1T-TaS2during the phase-transition process driven by in-planeelectric f ield,[44]we found that the local temperatures range from 295 K to 320 K,which excludes the Joule heating mechanism in thiscase.

    4.Bolometers based on CDW phase transitions in 1T-TaS2

    The CDW phase sw itching can be driven by light irradiation in 1T-TaS2,thus leading to their practical application as photodetectors.In contrast from semiconductorswith a f inite bandgap and thus the photodetectorswith a narrow spectral response,the photodetection based on phase transition possess a broadband response.Due to itsmetallic nature,1T-TaS2exhibitsbroadband lightabsorptionwith wavelength ranging from severalhundreds of nanometers to 100m icrometers(Fig.7(a)).

    Before discussing the photodetection applications,we brief ly summarize the synthesismethods for high-quality 1TTaS2two-dimensional(2D)nanof lakes,which isimportant for scalable construction of high-performance devices.Mechanical exfoliated nanof lakes exhibit high crystallinity,but their practical device applications are limited by the low fabrication eff iciency.The chem icalvapor deposition(CVD)method has been employed to fabricate 1T-TaS2.Liu and his colleaguesdemonstrated that few-layer1T-TaS2can begrown by CVD.[45]Huang etal.synthesized vertically oriented 1T-TaS2with abundant edge sites on nanoporous gold substrates.[46]Xie etal.also demonstrated theCVD grow th of1T-TaS2on h-BN substrate.[30]These resultsprovide thepossibility forscalable fabrication of high-performance devices based on CDW phase transition.

    Fig.7.Photodetectors based on the CDW phase transition in 1T-TaS2.(a)Absorption spectrum of 1T-TaS2.(b)The I–V curves of 1T-TaS2 at the dark state and the light illum ination of 0.7W·cm-2.(c)Voltage threshold of NC-to-IC phase transition under different light irradiance.(d)The time response of photodetectors under the light pulse of 5 Hz and 0.7mW·cm-2.(e)The current of device under different light intensities.(f)Spectral responseof photodetector.This f igurewas reproduced from Ref.[47]with perm ission.Copyright2018,AAAS.

    At room temperature,the phase transition from NC-to-IC states can be triggered by an ultrafast fem tosecond laser pulsewith a threshold of light intensity.In contrast,Wu etal.demonstrated that the sliding of C domain under the applied electric f ield can bemanipulated by applying lightwithmuch lower power,ref lected by the striking decrease of threshold voltage for the NC-to-IC phase transition(Fig.7(b)).[47]The decreaseof threshold voltage is linearly dependenton the light intensity and the good linearity enables the high-performance light sensing(Fig.7(c)).The abrupt rise and decay of electrical currentwere observed in 1T-TaS2by applying a 5-Hz pulsed light(Fig.7(d)),suggesting the fast temporal response of this photodetector.Wu etal.also studied the evolution of device currentwith the lightintensity atdifferentapplied voltages and the wavelength-dependent responsivity(Figs.7(e)and 7(f)).The highest responsivity can achieve~4 A·W-1for this photodetector.Even under lightwith wavelength of 10μm,the photoresponsivity exceeds 1 A·W-1.Therefore,due to the lack of bandgap for 1T-TaS2at room temperature,it is an ultra-broadband photodetectorwith relatively high response.Since the sliding of CDW domains requiressome lattice distortion,the photodetector exhibits ultrahigh response speed.The rise and decay timeswere recorded as~1.5 ns and 30 ns,respectively.

    The ultrathin nature of suspended 2D 1T-TaS2f ilm can haveultralow thermalcapacitanceand then hasextremely high bolometric response.Xie and his colleagues demonstrated highly responsive bolometers based on suspended 1T-TaS2.

    The as-grown 1T-TaS2f ilm(around 100 nm thick)exhibits broadband opticalabsorptionwith relatively low transmittance ranging from 20%to 40%(Fig.8(a)).Devices were fabricated by suspending of1T-TaS2and apairofmetalelectrodes(Fig.8(b)).Interestingly,the bolometric effect can contribute to the NC-to-IC phase transition process.At voltages ranging from 0.5 V to 1.4 V,prominentdecreaseof resistancewas observed under applied infrared light(Fig.8(c)).For applied voltageexceeding 1.3V,the resistanceof1T-TaS2experienced a signif icant reduction.When the applied voltage increased to 1.5 V,the change was hard to be observed,caused by the buildup of IC phase under the applied voltage.Therefore,incident photons can heatup the 1T-TaS2and contribute to the NC to IC phase transition through thebolometric effect.

    Fig.8.Bolometric performanceof a 1T-TaS2 f ilm.(a)Transm ittance spectrum of 1T-TaS2.(b)Currentand resistance of 1T-TaS2 atdifferent applied voltages.(c)Bolometric resistance response of 1T-TaS2 under IR lightwith irradiance of 10μW·mm-2 atdifferentapplied voltages.(d)Scheme of circuit and the AC electricalwaveform used in the voltage responsivity measurements.(e)Voltage response at different IR irradiance.(f)Derived voltageand responsivity under different illum ination powers.This f igure is reproduced from Ref.[30]with perm ission.Copyright2018,W iley-VCH.

    The f igures of merit of 1T-TaS2bolometers were evaluated by constructing a circuit,in which 1T-TaS2was connected in serialwith a load resistor.An alternating current(AC)biaswassupplied to tune the phase transition of1T-TaS2(Fig.8(d)).Under light irradiation,a striking voltage drop of 1T-TaS2was observed due to the decrease of resistance.The responsivity RVis calculated by RV=Vresp/Plight,where Vrespis the voltage difference before and after light irradiation and Plightis the light power.A highest responsivity of 2600 V·W-1·mm2was observed,which ishigher than thatof other bolometers thatare based on strongly correlated phase transition,such as VOXand sem iconducting yttrium barium copperoxide(YBCO).

    5.Conclusion and perspectives

    Extensive research has been made in CDW phase transitions and their dynamics:from ultrafast melting of CDW domains to the buildup of out-of-equilibrium hidden/intermediate states.The phase transition processes,including themelting of David-star domains and the buildup of new phase,are accompanied with the striking change of electricalconductivity.FertileCDW phasesand theirstriking contrast of electrical conductivity offer an interesting avenue to createmultifunctionaldevices,including photodetectors.Photodetection based on strongly correlated electronic system is strikingly different from conventional semiconductors.Without a bandgap,the CDW-based photodetectors can exhibit broadband photodetection with wavelength ranging from severalhundredsofnanometers to hundredsofmicrometers.The ultrafastmelting,nucleation,and grow th ofCDW ordering offer a core opportunity for the fabrication of ultrafast devices.Although the potentialphotodetection application of 1T-TaS2hasbeen outlined in this review,research on CDW-based photodetectors isstillprelim inary.

    First,the mechanism of the photoresponse is still unclear. The photodetectors operated at room temperatures should originate from the NC to IC phase transition.The lattice dynam ics research is carried outby employing fem tosecond optical excitation,in which high f luence of photons are injected into 1T-TaS2within ultra-short time.However,photodetection experimentsare usually performed under continuouswave lightexcitationwith relatively lower f luence,which cannotachieve theultrafastmelting of CDW orderingwithout thehelp of theapplied electric f ield.Therefore,theunderlying mechanisms for theCDW phase transition driven by fem tosecond laser pulse and continuouswave lightare possibly different.In thisrespect,furtherstudiesinto the latticedynamicsunder electric f ield and continuouswave lightexcitation should be carried out to reveal the underlyingmechanism.

    Second,the signal-to-noise ratio of the CDW-based photodetectors need to be further improved.Currently,1T-TaS2is stillhighly conductive even at the dark condition,which is due to the conductive domain walls in the NCCDW phase as well as the small CDW gaps.So further research is needed to f ind CDW materialswith amuch lower conductivity in the ground CDW state and amuch higher conductivity in the excited state.We believe that the concept of photodetection based on the CDW phase transition offers new opportunities for creating high-performance photodetectorswith broadband spectralsensitivity,ultrafast response,and an ultrahigh signalto-noise ratio.

    猜你喜歡
    黎明
    風云三號E星——黎明星
    黎明之光
    黎明之子
    趣味(語文)(2020年5期)2020-11-16 01:34:56
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    黎明被一群鳥兒啄出
    誰家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    黎明的軍號
    灶神星上的“黎明”
    太空探索(2015年4期)2015-07-12 14:16:21
    谷神星迎來新“黎明”
    太空探索(2015年4期)2015-07-12 14:16:08
    丰满乱子伦码专区| 国产人伦9x9x在线观看| 亚洲欧美成人综合另类久久久| 亚洲免费av在线视频| 精品久久蜜臀av无| 国产欧美亚洲国产| 在线观看www视频免费| 欧美国产精品一级二级三级| 午夜福利免费观看在线| 韩国高清视频一区二区三区| 久久久久精品国产欧美久久久 | 国产无遮挡羞羞视频在线观看| 久久影院123| 女人精品久久久久毛片| 肉色欧美久久久久久久蜜桃| 精品人妻在线不人妻| 美女国产高潮福利片在线看| 嫩草影院入口| 久久精品国产综合久久久| 成年人午夜在线观看视频| 国产精品免费视频内射| 麻豆乱淫一区二区| 精品一品国产午夜福利视频| 精品少妇黑人巨大在线播放| 秋霞伦理黄片| 国产一区有黄有色的免费视频| 日本91视频免费播放| 搡老岳熟女国产| 80岁老熟妇乱子伦牲交| 日韩av在线免费看完整版不卡| 亚洲综合色网址| 国产精品久久久久成人av| 韩国精品一区二区三区| 在线天堂最新版资源| 极品人妻少妇av视频| 国产av国产精品国产| 一二三四在线观看免费中文在| 曰老女人黄片| 亚洲欧美一区二区三区国产| 秋霞在线观看毛片| 在线观看www视频免费| 飞空精品影院首页| 一本一本久久a久久精品综合妖精| 日韩av在线免费看完整版不卡| 亚洲av欧美aⅴ国产| 久久人人97超碰香蕉20202| 一级片'在线观看视频| 国产一区亚洲一区在线观看| 国产男人的电影天堂91| 中国国产av一级| 亚洲成人手机| 曰老女人黄片| 999久久久国产精品视频| 国产色婷婷99| 成年人免费黄色播放视频| 国产av码专区亚洲av| 久久性视频一级片| 精品久久久久久电影网| av天堂久久9| 咕卡用的链子| 热99国产精品久久久久久7| 亚洲自偷自拍图片 自拍| av不卡在线播放| 国产片特级美女逼逼视频| 欧美日韩国产mv在线观看视频| 亚洲综合精品二区| 亚洲精品av麻豆狂野| 久久久久久久久免费视频了| 亚洲精品成人av观看孕妇| 熟妇人妻不卡中文字幕| 丝袜美腿诱惑在线| 免费久久久久久久精品成人欧美视频| 天堂俺去俺来也www色官网| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 亚洲av电影在线观看一区二区三区| 亚洲精品成人av观看孕妇| 亚洲成人国产一区在线观看 | 久久精品久久久久久噜噜老黄| 亚洲精品av麻豆狂野| 熟妇人妻不卡中文字幕| 男女免费视频国产| av天堂久久9| 韩国高清视频一区二区三区| 性高湖久久久久久久久免费观看| bbb黄色大片| 国产免费视频播放在线视频| 亚洲av在线观看美女高潮| 国产欧美亚洲国产| 高清黄色对白视频在线免费看| 日本午夜av视频| 久久青草综合色| 国产成人欧美| 国产av码专区亚洲av| 国产一区亚洲一区在线观看| 免费黄色在线免费观看| 国产成人精品福利久久| 一本—道久久a久久精品蜜桃钙片| 日韩免费高清中文字幕av| 少妇精品久久久久久久| 久久99一区二区三区| 日韩av免费高清视频| 欧美日韩av久久| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 欧美国产精品一级二级三级| 女人被躁到高潮嗷嗷叫费观| 亚洲av日韩精品久久久久久密 | 街头女战士在线观看网站| 国产精品人妻久久久影院| 免费日韩欧美在线观看| 亚洲成人国产一区在线观看 | av国产精品久久久久影院| 久久人人97超碰香蕉20202| 免费高清在线观看日韩| 色吧在线观看| 日韩一区二区三区影片| 成人亚洲欧美一区二区av| 日韩大片免费观看网站| 少妇人妻精品综合一区二区| 国产精品.久久久| 少妇人妻久久综合中文| 久久人人爽人人片av| 99re6热这里在线精品视频| 中文字幕人妻熟女乱码| 老司机深夜福利视频在线观看 | 97在线人人人人妻| 亚洲精品自拍成人| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 精品国产露脸久久av麻豆| 2018国产大陆天天弄谢| 如何舔出高潮| 国产精品av久久久久免费| xxx大片免费视频| 日韩 亚洲 欧美在线| 午夜福利,免费看| 看非洲黑人一级黄片| 9191精品国产免费久久| 少妇被粗大的猛进出69影院| 亚洲国产av影院在线观看| 国产精品熟女久久久久浪| 人妻 亚洲 视频| 91国产中文字幕| 日日爽夜夜爽网站| 精品视频人人做人人爽| 如日韩欧美国产精品一区二区三区| 毛片一级片免费看久久久久| 久久久精品免费免费高清| 成人黄色视频免费在线看| av国产久精品久网站免费入址| 国产日韩欧美在线精品| 国产精品一国产av| 日本欧美国产在线视频| www.av在线官网国产| 操美女的视频在线观看| 建设人人有责人人尽责人人享有的| 黄色视频不卡| 夫妻午夜视频| 亚洲伊人色综图| 亚洲一码二码三码区别大吗| av国产精品久久久久影院| 日本91视频免费播放| 日韩av在线免费看完整版不卡| 日本爱情动作片www.在线观看| 亚洲少妇的诱惑av| 十八禁人妻一区二区| 卡戴珊不雅视频在线播放| 无遮挡黄片免费观看| 麻豆av在线久日| 又粗又硬又长又爽又黄的视频| 一二三四中文在线观看免费高清| 久热爱精品视频在线9| 亚洲精品久久成人aⅴ小说| 国产精品.久久久| 日韩一本色道免费dvd| 国产男人的电影天堂91| 国产av国产精品国产| 女人被躁到高潮嗷嗷叫费观| 欧美日韩一区二区视频在线观看视频在线| 国产麻豆69| 黄片播放在线免费| 欧美成人精品欧美一级黄| 色网站视频免费| 午夜久久久在线观看| 久久久久久久大尺度免费视频| 狠狠婷婷综合久久久久久88av| 免费av中文字幕在线| 欧美亚洲日本最大视频资源| 天天操日日干夜夜撸| 最近中文字幕高清免费大全6| av在线app专区| 日韩人妻精品一区2区三区| 国产av国产精品国产| 国产xxxxx性猛交| 国产精品一国产av| 国产 精品1| 久久久久精品人妻al黑| 男女边吃奶边做爰视频| 三上悠亚av全集在线观看| 国产福利在线免费观看视频| 午夜日韩欧美国产| 国产成人一区二区在线| 亚洲精品国产一区二区精华液| 丝袜在线中文字幕| 亚洲国产av新网站| 妹子高潮喷水视频| 国产福利在线免费观看视频| 亚洲国产欧美网| 午夜免费男女啪啪视频观看| 各种免费的搞黄视频| 一区二区三区激情视频| 男女免费视频国产| 精品国产国语对白av| 国产av一区二区精品久久| 日本一区二区免费在线视频| 青春草国产在线视频| 亚洲成人av在线免费| 国产片内射在线| 乱人伦中国视频| 日韩av在线免费看完整版不卡| 亚洲成人手机| 精品人妻熟女毛片av久久网站| 一本色道久久久久久精品综合| 99热全是精品| 亚洲精品aⅴ在线观看| 国产成人啪精品午夜网站| 少妇人妻精品综合一区二区| 亚洲成人国产一区在线观看 | 黄色毛片三级朝国网站| 国产av一区二区精品久久| 精品一区二区三区四区五区乱码 | 久久久久久久国产电影| 亚洲精品久久久久久婷婷小说| 大片免费播放器 马上看| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看 | 夜夜骑夜夜射夜夜干| 1024香蕉在线观看| 免费久久久久久久精品成人欧美视频| 极品少妇高潮喷水抽搐| 婷婷色综合大香蕉| 日韩中文字幕欧美一区二区 | 久久久久国产一级毛片高清牌| 另类精品久久| 国产精品 国内视频| 嫩草影院入口| 在线天堂中文资源库| 夫妻午夜视频| 日韩视频在线欧美| 欧美日韩一级在线毛片| 国产乱来视频区| 国产熟女欧美一区二区| 嫩草影院入口| 黄色一级大片看看| 久久ye,这里只有精品| 欧美成人午夜精品| 欧美黄色片欧美黄色片| 亚洲av福利一区| 999久久久国产精品视频| 1024视频免费在线观看| 女性被躁到高潮视频| 久久久久久久久久久免费av| 啦啦啦中文免费视频观看日本| 午夜免费观看性视频| 久久这里只有精品19| 丰满饥渴人妻一区二区三| 亚洲七黄色美女视频| 亚洲精品av麻豆狂野| 蜜桃在线观看..| 最近最新中文字幕免费大全7| 妹子高潮喷水视频| 免费高清在线观看视频在线观看| 最近2019中文字幕mv第一页| 一级毛片黄色毛片免费观看视频| 亚洲婷婷狠狠爱综合网| 国产精品.久久久| 久久影院123| 男女无遮挡免费网站观看| 婷婷色综合大香蕉| 高清欧美精品videossex| 高清欧美精品videossex| 亚洲欧美中文字幕日韩二区| 成年动漫av网址| 久久天躁狠狠躁夜夜2o2o | 91精品国产国语对白视频| 秋霞伦理黄片| 精品国产乱码久久久久久小说| 高清欧美精品videossex| 丝袜喷水一区| 一级片免费观看大全| 亚洲情色 制服丝袜| 18禁动态无遮挡网站| 你懂的网址亚洲精品在线观看| 欧美中文综合在线视频| 啦啦啦啦在线视频资源| 黄色视频不卡| 成人国产麻豆网| av网站在线播放免费| 亚洲 欧美一区二区三区| 亚洲国产精品成人久久小说| 久久久久久久国产电影| 伦理电影大哥的女人| 亚洲av成人精品一二三区| 一二三四中文在线观看免费高清| 久久久久久久国产电影| 国产精品.久久久| 99久久精品国产亚洲精品| av女优亚洲男人天堂| 1024香蕉在线观看| 久久久久精品久久久久真实原创| 国产1区2区3区精品| 波多野结衣av一区二区av| 亚洲av欧美aⅴ国产| 中文字幕最新亚洲高清| 纯流量卡能插随身wifi吗| 亚洲欧美一区二区三区黑人| 激情五月婷婷亚洲| 丝袜在线中文字幕| 精品国产一区二区三区久久久樱花| 熟女少妇亚洲综合色aaa.| 啦啦啦啦在线视频资源| 大陆偷拍与自拍| 国产亚洲最大av| 99久久人妻综合| 欧美精品一区二区大全| 青青草视频在线视频观看| 十八禁高潮呻吟视频| 久久免费观看电影| 热re99久久国产66热| 少妇被粗大的猛进出69影院| 亚洲美女视频黄频| 在线观看www视频免费| 日韩av不卡免费在线播放| 男人爽女人下面视频在线观看| 久久人妻熟女aⅴ| 天天躁日日躁夜夜躁夜夜| 90打野战视频偷拍视频| 王馨瑶露胸无遮挡在线观看| 人体艺术视频欧美日本| 一本大道久久a久久精品| 国产高清不卡午夜福利| 一本久久精品| 天堂中文最新版在线下载| 一本久久精品| 国产成人精品久久久久久| 一本大道久久a久久精品| 在线天堂中文资源库| av网站在线播放免费| 欧美精品亚洲一区二区| 亚洲精品av麻豆狂野| 晚上一个人看的免费电影| 天堂中文最新版在线下载| 精品少妇久久久久久888优播| 国产色婷婷99| 男的添女的下面高潮视频| 伦理电影免费视频| 国产成人系列免费观看| av福利片在线| 在线免费观看不下载黄p国产| 国产av精品麻豆| 亚洲精品国产色婷婷电影| 欧美av亚洲av综合av国产av | 午夜福利影视在线免费观看| 人妻一区二区av| 久久久精品94久久精品| 国产精品麻豆人妻色哟哟久久| 久久久久精品久久久久真实原创| 啦啦啦啦在线视频资源| 日韩一本色道免费dvd| 亚洲欧美一区二区三区久久| 在线精品无人区一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 久久久久久久大尺度免费视频| 最近最新中文字幕大全免费视频 | 色视频在线一区二区三区| 在线观看人妻少妇| 亚洲成人av在线免费| 日韩av免费高清视频| 亚洲欧美激情在线| 久久天堂一区二区三区四区| 亚洲欧美成人综合另类久久久| 最近的中文字幕免费完整| 久久女婷五月综合色啪小说| 夫妻午夜视频| 国产在线一区二区三区精| 亚洲精品自拍成人| av电影中文网址| 啦啦啦 在线观看视频| av一本久久久久| 波多野结衣av一区二区av| 看非洲黑人一级黄片| 在线免费观看不下载黄p国产| 国产有黄有色有爽视频| 在线观看国产h片| 波多野结衣av一区二区av| 亚洲色图 男人天堂 中文字幕| 成年人午夜在线观看视频| 男女免费视频国产| 97精品久久久久久久久久精品| 最新的欧美精品一区二区| 国产亚洲av高清不卡| 青草久久国产| 成年av动漫网址| 久久久精品国产亚洲av高清涩受| 一个人免费看片子| www.精华液| 久久天堂一区二区三区四区| 久久久久久久精品精品| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 黄频高清免费视频| 最近的中文字幕免费完整| av在线观看视频网站免费| 国产亚洲一区二区精品| 亚洲一卡2卡3卡4卡5卡精品中文| 97在线人人人人妻| 亚洲综合色网址| 考比视频在线观看| 日韩成人av中文字幕在线观看| 国产在线免费精品| 无限看片的www在线观看| 男女之事视频高清在线观看 | 国产无遮挡羞羞视频在线观看| 99香蕉大伊视频| 亚洲av成人不卡在线观看播放网 | 看非洲黑人一级黄片| 亚洲图色成人| 色综合欧美亚洲国产小说| 考比视频在线观看| 久久青草综合色| 国产成人精品在线电影| 老司机影院成人| 国产精品 国内视频| 建设人人有责人人尽责人人享有的| 成人黄色视频免费在线看| 韩国精品一区二区三区| 亚洲av福利一区| 考比视频在线观看| 啦啦啦中文免费视频观看日本| 午夜福利免费观看在线| 日本wwww免费看| 999久久久国产精品视频| 日日撸夜夜添| 国产亚洲av片在线观看秒播厂| 少妇的丰满在线观看| 国产一区有黄有色的免费视频| 亚洲国产av影院在线观看| 超碰97精品在线观看| 国产精品久久久久久人妻精品电影 | 亚洲在久久综合| 精品少妇内射三级| 亚洲精品aⅴ在线观看| 日韩一区二区三区影片| 久久久久精品久久久久真实原创| 天天影视国产精品| 亚洲欧洲精品一区二区精品久久久 | 大香蕉久久成人网| 亚洲av成人不卡在线观看播放网 | 久久这里只有精品19| 午夜影院在线不卡| 亚洲国产精品一区三区| 亚洲av日韩精品久久久久久密 | 国产日韩欧美视频二区| 国产国语露脸激情在线看| 精品亚洲成国产av| 国产视频首页在线观看| 伦理电影大哥的女人| 亚洲自偷自拍图片 自拍| 一级,二级,三级黄色视频| 美女视频免费永久观看网站| 性少妇av在线| 精品人妻在线不人妻| 天美传媒精品一区二区| 一级毛片黄色毛片免费观看视频| 侵犯人妻中文字幕一二三四区| av免费观看日本| 国产野战对白在线观看| 欧美国产精品一级二级三级| 黄色视频不卡| 五月天丁香电影| 一区二区三区精品91| 嫩草影视91久久| 成人三级做爰电影| 久久精品国产亚洲av涩爱| 大片免费播放器 马上看| 成人毛片60女人毛片免费| 一边摸一边做爽爽视频免费| 精品国产一区二区久久| h视频一区二区三区| xxxhd国产人妻xxx| 狠狠婷婷综合久久久久久88av| 少妇 在线观看| 观看av在线不卡| 日本91视频免费播放| av一本久久久久| 五月开心婷婷网| 在现免费观看毛片| 国产精品一国产av| 国产精品麻豆人妻色哟哟久久| 国产高清国产精品国产三级| 女性生殖器流出的白浆| 9热在线视频观看99| 一区在线观看完整版| 新久久久久国产一级毛片| 久久久精品94久久精品| 久久精品人人爽人人爽视色| 丝袜脚勾引网站| 美女主播在线视频| 精品国产一区二区三区四区第35| 久久久久久久精品精品| 国产成人精品久久久久久| 丰满饥渴人妻一区二区三| 99久久精品国产亚洲精品| 少妇被粗大的猛进出69影院| 精品少妇内射三级| 久久天躁狠狠躁夜夜2o2o | 久久久久久久久久久免费av| 黄色视频在线播放观看不卡| 婷婷色综合大香蕉| 青春草视频在线免费观看| 校园人妻丝袜中文字幕| 久久人妻熟女aⅴ| 精品国产超薄肉色丝袜足j| e午夜精品久久久久久久| 久久久欧美国产精品| av卡一久久| 欧美精品一区二区大全| 久久久久久久国产电影| 熟女少妇亚洲综合色aaa.| 国产欧美亚洲国产| 9热在线视频观看99| 日韩伦理黄色片| 久久精品熟女亚洲av麻豆精品| 日本爱情动作片www.在线观看| 亚洲七黄色美女视频| 国产一级毛片在线| 中文精品一卡2卡3卡4更新| 国产成人一区二区在线| 欧美 亚洲 国产 日韩一| 免费人妻精品一区二区三区视频| 亚洲精品成人av观看孕妇| 国产麻豆69| avwww免费| 国产亚洲最大av| 欧美黑人欧美精品刺激| 午夜福利影视在线免费观看| 两性夫妻黄色片| 午夜影院在线不卡| 一区二区三区四区激情视频| 亚洲av欧美aⅴ国产| 熟妇人妻不卡中文字幕| 国产片内射在线| 色网站视频免费| 日韩中文字幕欧美一区二区 | 99久国产av精品国产电影| 欧美日韩视频精品一区| 欧美97在线视频| 日日爽夜夜爽网站| 日韩一本色道免费dvd| 亚洲av在线观看美女高潮| 中文字幕最新亚洲高清| 免费观看人在逋| 久久精品久久久久久久性| 大码成人一级视频| 黄色一级大片看看| 97精品久久久久久久久久精品| 亚洲伊人久久精品综合| 午夜福利,免费看| 不卡av一区二区三区| 一区在线观看完整版| 久久婷婷青草| 国产免费视频播放在线视频| 伊人亚洲综合成人网| 久久精品国产a三级三级三级| 日本猛色少妇xxxxx猛交久久| videosex国产| 亚洲五月色婷婷综合| 日韩大片免费观看网站| 日本黄色日本黄色录像| 国产 精品1| 国产精品秋霞免费鲁丝片| 久久亚洲国产成人精品v| 一本久久精品| 日本午夜av视频| 午夜福利一区二区在线看| 一区二区三区乱码不卡18| 国产一区二区三区av在线| 美女午夜性视频免费| 美女福利国产在线| 国产极品天堂在线| 精品亚洲成国产av| 久久精品久久精品一区二区三区| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 9色porny在线观看| 永久免费av网站大全| 国产在线一区二区三区精| 久久综合国产亚洲精品| 天天操日日干夜夜撸| 97在线人人人人妻| 精品少妇久久久久久888优播| 电影成人av| 亚洲成人免费av在线播放| 日韩成人av中文字幕在线观看| 母亲3免费完整高清在线观看| 久久精品国产a三级三级三级| 久久综合国产亚洲精品| 中文天堂在线官网| 国产日韩欧美亚洲二区| 观看美女的网站| 交换朋友夫妻互换小说| 精品亚洲成a人片在线观看| 色视频在线一区二区三区|