• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoinduced phase transitions in two-dimensional charge-density-wave1T-TaS2*

    2019-05-11 07:29:50WenWen文雯ChunheDang黨春鶴andLimingXie謝黎明
    Chinese Physics B 2019年5期
    關鍵詞:黎明

    WenWen(文雯),Chunhe Dang(黨春鶴),and Liming Xie(謝黎明),?

    1CASKey Laboratory ofStandardization and MeasurementforNanotechnology,CASCenterforExcellence in Nanoscience,NationalCenterforNanoscience and Technology,Beijing 100190,China 2University ofChinese Academy ofSciences,Beijing 100049,China

    (Received 23 February 2019;revisedmanuscript received 18March 2019;published online8 April2019)

    Keywords:charge density wave,phase transition,1T-TaS2,photodetection

    1.Introduction to structure and charge-density waves in 1T-TaS2

    Low-dimensional strongly correlated electron systems arise from the couplings between charge,spin,and lattice.They exhibit rich phase transitions,such as superconductivity,ferromagnetism,and charge-density wave(CDW)ordering.[1–4]CDW states comprise a periodic charge-density modulation and a periodic lattice distortion,which originate from the electron–phonon interactions and/or Ferm i surface nesting.[5–9]Due to the collectivemode of charge density,a f initeelectronic bandgap openswith the forming of the CDW phase.[10–12]

    The theory of the electron–phonon interaction of the CDW system was f irst suggested by Peierls in 1955.[6]For a one-dimensional(1D)metal chain at temperature T=0 K withoutconsidering the electron–electron orelectron–phonon interactions,the ground state is schematically presented in Fig.1(a).The atom ic chain possesses a lattice constant of a and the electronic states are f illed up to the Ferm i surface EF.A fter taking electron–phonon interaction into consideration,the lattice distortionwith a period ofλismore energetically favorable.The periodλis related to the Fermiwave vector kFbyλ=π/kF.The lattice distortion opens a f inite energy gap 2Δat the Ferm i level(Fig.1(b)),thus turning the metallic phase into insulating CDW phase.Compared to the metallic phasewith constantcharge density ofρ0,CDW states exhibitaperiodic collectivemodewithmodulated chargedensity,which can be expressed as[6]

    whereρ1andφare the amplitude and phase of periodically modulated electron density,respectively,and r is thedisplacement.

    1T-TaS2,with a plane of Ta atoms sandw iched between two layersof Satoms in an octahedral lattice,exhibits temperature-dependentCDW orderings.Ata temperature below 550 K,the incommensurate(IC)CDW phase formswith slightly distorted lattices.As the temperature is lower than 350K,nearly commensurate(NC)CDW formswith insulating commensuratedomainsand conductivedomainwalls.Further lowering the temperature down to 180 K,insulating commensurate CDW(CCDW)phaseoccurs(Fig.2(a)).In the CCDW phase,the lattice distortion is characterized by asuperlatticeof David-starscomprised of12 Taatomsaround a 13th Ta atom(Fig.2(b)).

    The resistance of 1T-TaS2changes in the differentCDW states.For bulk crystal,two abrupt changes of resistance can be observed at temperatures of 180–220 K and 350–360 K,corresponding to CCDW–NCCDW and NCCDW–

    The fertilephase transitionsin 1T-TaS2havebeen investigated by versatile tools.For instance,the distribution of electronic density in real space,the conf iguration and electronic structure of domain walls,and the manipulation of CDW phases have been extensively studied by scanning tunneling m icroscopy.[15–19]The ultrafast photoem ission spectroscopy has been introduced to monitor the dynamics of electronic structure in the phase transition process.[20–24]The ultrafast diffraction technique has been developed to reveal the lattice dynamicsof CDW phase transition process.[25–27]ICCDW phase transitions,respectively(Fig.2(c)).[13]As the thickness of 1T-TaS2decreases,the NC–C phase transition disappears(Fig.2(d))as the thickness is less than 9 nm and 3 nm,respectively.The thickness-dependent phase transition behaviorwasexplained asslow kineticsofphase transition.[14]Itwas further found that the NC-to-C phase transition process disappeared athigh cooling rate.[14]Zhang and hiscolleagues attributed the thicknessdependence to the periodicity for sustaining long-range order,dielectric environment,and surface impurities.[13]

    Fig.1.Schematic illustration of one-dimensionalperiodicmetallic latticeand Peierls distorted insulating lattice.(a)Withoutelectron–phonon interaction,the latticewith a period of a exhibits a constant charge density and f illed electron states up to Ferm i level.(b)Considering the electron–phonon interaction,the Peierls distortion results in the periodicallymodulated charge density and an energy gap at the Ferm i level.Reproduced from Ref.[6]with perm ission.Copyright1988,American PhysicalSociety.

    Fig.2.CDW phase in 1T-TaS2 at different temperatures.(a)The CCDW,NCCDW,and ICCDW phases at different temperatures.(b)Crystal structure of 1T-TaS2 with David-star clusters consisting of 13 Ta atoms.(c)Temperature-dependent resistance of bulk 1T-TaS2.(d)Temperature-dependent resistanceof 1T-TaS2 with thicknessof 6 nm.As the thicknessof 1T-TaS2 decreases,the phase transition from NC to IC phase isunresolvableow ing to the slow kinetics.(c)and(d)were reproduced from Ref.[13].Copyright2015,Springer Nature.

    Additionally,Raman spectroscopy is sensitive to the collective lattice vibration,which has been demonstrated as an effective approach for measuring the CDW phase transition.[28–32]Compared to the undistorted metallic lattice,the commensurate domains consisting ofsuperlattice exhibit fold-back acoustic and optical modes with Raman frequency of 50–100 cm-1and 230–400 cm-1,respectively.[28]With the transition from CCDW–NCCDW phase,an abrupt red-shift of Raman peakswas observed.[30]In striking contrast to theelectricalmeasurements,the Raman spectroscopy demonstrated that fold-back acoustic and optical modesare preserved inmonolayer1T-TaS2.This resultpossibly suggests thatCDW phaseordercan bestableatmonolayer 1T-TaS2.

    Further electricalmeasurements have been conducted to investigate the correlation between the CDW states and electron transport properties.The signif icant change of electrical conductivity during the phase-transition process promises the characterization of dynamics of CDW states through electricalsignals.Forexample,the low-frequency noiseofelectrical devices can be employed to understand the sliding of CDW domains.[33]Electricaloscillators,consisting ofa1T-TaS2device in serialwith a load resistor,can beharnessed to study the dynam icsofmultistate phase transitions.[34,35]

    Ow ing to the striking differences in electrical conductivity for various CDW states,themanipulation of CDW phases can be exploited to developmultifunctional devices.For example,Iwasaand his colleagues discovered amem ristive NCto-C phase sw itching behavior,arising from an extremely slow phase transition process with reduced thickness of 1TTaS2.[14,36]This work provided a proof-of-principle demonstration of nonvolatilememory devices based on the sluggish CDW phase transition of nano-thick 1T-TaS2.The NC-to-IC phase transition ismore attractive for the practical device implementations because itoccurs at room temperature and can be triggered by optical pulses or electrical current.By collecting a 1T-TaS2in serialwith a load resistor,electrical oscillation can be achieved by revisable sw itching between NC and IC phases.[34]Compared to the conventional ring oscillators,the CDW oscillators based on phase transition possess much simplif ied electrical circuits.Therefore,multiple CDW phase transition of1T-TaS2,togetherwith itselectrical/optical manipulability and low dimensionality,perm its 1T-TaS2as a platform for fabrication ofmultifunctionalphase-transition devices.

    In addition to thermodynam ic ground states at different temperatures,light pulses can drive the CDW phase transition and create fertile out-of-equilibrium intermediate states.For the phase transition triggered by light pulses,two effects w ill contribute to the collapse of highly ordered commensurate domains.First,the photo-injected electrons can f ill the Mott–Hubbard bands,yielding mobile carriers to screen the Coulomb interaction between Ta atoms.With the collapse of Ta clustersand strongly correlated electronic states,highly conductivemetalstates can nucleate and grow.Second,highf luence photon injection can give rise to Joule heating effect,which w ill increase the local temperature of the sample.Because the local temperature ishigher than the phase-transition temperature,melting of CDW domain occurs.Therefore,special light–matter interactions can be observed in the CDW phaseswith strongly correlated electron system.

    In this review,we have summarized the recent progress on the photoinduced CDW phase transitions in 1T-TaS2,as well as the potential applications.First,the dynam ics of optical pulse induced CDW phase transition in 1T-TaS2is introduced.Second,the out-of-equilibrium intermediate/hidden states,which can only beaccessibleby applying externalstimuli,such as ultrafast laser pulses and electric f ield,are introduced.Third,potential applications of 1T-TaS2as photodetectorsare introduced.Finally,wehave prospected challenges and potentialapplicationsbased on photoinduced CDW phase transitions.

    2.Ultrafast optical pulse induced CDW phase transitions in 1T-TaS2

    Phase-transition dynam ics in 1T-TaS2have been extensively studied by ultrafast optical stimulation.Fem tosecond electron diffraction was used as a powerful tool to investigate the dynamics of crystal lattice during optical pulse induced phase transition.In the experiments,fem tosecond laser pulseswere employed to initiate the phase transition of 1TTaS2from a highly ordered phase to a low ly ordered phase and an ultrafast electron beam was used to probe the lattice dynam ics.[25,27]The dynam icmelting,sw itching,and recovery processes have been extensively studied with this technique.In addition to electron diffraction,time-resolved xray photoelectron spectroscopy is another effective approach for investigating theevolution of CDW ordering underoptical excitation.These ultrafastmeasurements employed different probes,such as x-ray and electron beams,to collect signals characterizing the structural dynamics,while using fem tosecond lightas a pump source to trigger the CDW phase transition.

    Fig.3.Theultrafastopticalpulse induced NC-to-IC phase transition of 1T-TaS2 monitored by ultrafastelectron diffraction.Realand reciprocal space representation of(a)NCCDW phase,and(b)ICCDW phase.Compared to the ICCDW with slight lattice distortion,the NCCDW phase consists of commensurate supercells,which exhibits~12°-rotated high-order diffraction peaks.(c)The evolution of NC and IC intensities under differentexcitation densities.This f igurewas reproduced from Ref.[25]with perm ission.Copyright2016,American Physical Society.

    Fig.4.The ultrafast optical pulse induced CDW phase transition monitored by time-resolved x-ray photoem ission spectroscopy(TR-XPS).(a)Scheme of CCDW 1T-TaS2 consisting of David-star clusters with inequivalent a,b,and c Ta atoms.(b)Ta 4f XPS spectra at different delay times.The color represents the electron density,which increases towards the center Ta atom.The Ta 4f photoemission is split into two peaks,corresponding to sites b and c,separated by 2Δ(i.e.,ΔCDW).(c)Two-dimensional false colormap of Ta 4f photoem ission spectra at different delays.(d)Time-resolved photoem ission intensity at E-E F=-22.26 eV.(e)Dependenceof 2ΔCDW on the delay time.(f)Delay-time-dependent electron temperature T e.This f igurewas reproduced from Ref.[23]with perm ission.Copyright2010,American Physical Society.

    At room temperature,the ground state of 1T-TaS2is the NCCDW phase,which possesses commensurate CDW domains ref lected by~12°-rotated diffraction peaks in electron diffraction patterns(Fig.3(a)).Under the light excitation exceeding a threshold,themelting of CDW domains occurs,ref lected by the suppressed diffraction of NC superlattice and enhanced diffraction of IC phase(Fig.3(b)).By extracting the timeevolution of NC and IC intensities,a two-stage phase transition process has been discovered.In the f irst stage,the drop of NC diffraction intensity and the rise of IC intensity occurwithin 0.3 psand 1.5 ps,respectively,which is independent of the pump f luence.In the second stage,the drop/rise of NC/IC intensity keeps ranging from 50 ps to 230 ps depending on theexcitation power.The two-stepmelting of NC and buildup of IC phaseareattributed to thenucleation ofnew phase followed by the domain grow th.

    The pump-f luence-independentnucleation rate indicates the absence of a nucleation barrier at the f irst stage.The dynamics of phase transition was proposed by Haupt et al.by combining the experimental results and theoretical calculations.They found that the changes in ionic potential,arising from the fem tosecond laserexcitation,give rise to thecoherent atom ic motion in commensurate domains towards the undistortedmetallic domain walls.At the time scale of~1 ps,the energy dissipation to lattice results in the rise of lattice temperature beyond the critical temperature of NC-to-IC phase transition.Further grow th of IC phase requiresmuch atomic displacementwith the transformation of the previously commensurate domains.Overall,complete transformation of NC to IC phase occurswithin the time of~50 psand can be explained by thenucleation and grow thmechanism.

    In addition to the ultrafast electron diffraction,timeresolved x-ray photoem ission spectroscopy(TR-XPS)is another effective approach for investigating the dynam ics of CDW phase transition.[23]Thismethod employs three inequivalentTasites(labeled as a,b,and c in Fig.4(a))in CCDW 1TTaS2.In the 13-atom David-star clusters,about0.4 electrons are transferred from outer6Taatoms to innerones.Thecharge transfer in CCDW phase is ref lected by the split Ta 4f peaks in XPS spectra(Fig.4(b)),which can be assigned to b and c sites(peak related to a site isweak to be resolved).The b–c splitting 2Δcan beextracted to characterize theCCDW phase order.Beye etal.performed the TR-XPSwith a free-electron x-ray laser at~156 eV as probe in combination with a synchronized optical pump laserat1.55 eV aspump.Figure 4(b)shows the evolution of XPS spectra at different pump–probe delays.The Ta 4f splitting experiences an obvious reduction within a picosecond followed by partial recovery and formation of a quasi-equilibrium state with a lifetime longer than 10 ps.Figure4(c)shows the false-color TR-XPSspectra.The 2Δdecreases from the original value of 0.62 eV to 0.47 eV,and then recovers to aquasi-equilibrium valueof0.54 eV with a time constantof~900 fs.The lattice temperaturewas calculated and thequasi-equilibrium temperaturewas226K.The ultrafastTR-XPS can beexplained by two processes.The f irst process is the transient collapse of charge order by f illing of the Mott–Hubbard band and collapse of the Mott phase,ref lected by the transientheating of electrons.Then,cooling of electronsoccurs through transferring energy of crystal lattice,yielding aquasi-equilibrium state.

    3.Hidden CDW phases in 1T-TaS2

    A single ultrafast laser pulse can also trigger the formation of hidden stateswith well-organized CDW domains and undistorted metallic domain walls in 1T-TaS2.Stojchevska et al.reported the generation of a metallic hidden states at 1.5 K by applying a 35-fs laser pulse.[37]At temperaturesbelow 180 K,1T-TaS2exhibitsan insulating CCDW state.A fter applying a 35-fs laser pulse exceeding the power threshold,an abruptdrop of resistancewasobserved,suggesting a phase transition from CCDW to ahidden state(Fig.5(a)).[38]A constant resistance hasbeen observed up to temperatureof 60 K.Upon 100 K,the resistance is close to thatof the C state.The hidden statescan beerased by a train of10450-pspulses.

    A mechanism of the hidden-state formation is proposed by combining the experimental results and theoretical considerations.In CCDW states,the electronic states are contributed by the Ta d bands.The 12 electrons contributed by the 12 Ta atoms form occupied states,while the 13th electron is localized at the center Ta atom.The empty upper Hubbard bandsand f illed loweronesare generated by the 13th electron and open an energy gap to sustain the insulating CCDW state(Fig.5(b)).A fter an ultrafast laser pulse,the injected electrons and holes f ill the upper and lower Hubbard bands after ultrafast intraband thermalization,thus inducing themelting of C clusters.The organization of insulating CCDW domains and domain walls after the partial breakdown of the Davidstar clusters promote the formation of a long-range ordered hidden state.Note that thismodel is consistentwith experimental results and theoretical understandings.However,direct characterization of the C domain structure in this hidden state is required to provide deep understandings in its formationmechanism and physicalproperties.

    The electric f ield can also be harnessed to trigger phase transitions in 1T-TaS2.[39–42]Vaskivskyi et al.reported the buildup of the conductive hidden states by pulsed current injection.[39]The currentpulse passed through the sample can turn the insulating CCDW phase to ametallic hidden state with a high sw itching speed(30 ps),which provided a proofof-principle demonstration of CDW phase transition for nonvolatilememory.

    Fig.5.The buildup of a hidden state by applying a35-fs laser pulse.(a)An abruptdrop of electrical resistance can be observed after a single 35-fs laser pulse,which can be attributed to the formation of a hidden state.(b)Representation of energy diagram presents the buildup of the hidden states.(c)The phase diagram after a35-fs laser pulse.(a)was reproduced from Ref.[38]with perm ission.(b)and(c)were reproduced from Ref.[37]with permission.Copyright2014,AAAS.

    Fig.6.CDW phase transition driven by electricalpulse.(a)The phase transition can be driven by electricalpulse.Asan electricalpulse travels through thesample,themelting ofC phaseoccurs togeneratehighly conductivehidden states.(b)Temporalresponseof1T-TaS2 by applyingacurrentpulse.(c)The pulsed V–I characteristic atdifferent temperatures.(d)The temperature-dependent V0 and I T.V0 is the voltage at I=0mA and I T is the threshold current for the phase transition.This f igurewas reproduced from Ref.[39]with perm ission.Copyright2016,Springer Nature.

    During the currentpulse triggered phase transition,there are several characteristics.First,with the increase of current density of electrical pulse,an abrupt drop of electrical resistanceoccurs in 1T-TaS2,indicating the phase transition from a Mottinsulator to ahighly conductivemetallic state(Fig.6(b)).Second,the CDW phase sw itching is strongly dependent on the pulse duration time.For pulseswith duration time higher than 0.1 ps,phase sw itching is incomplete or cannot occur.Themeasurablephasesw itching speed can reach30 ps.Third,electrical-pulse-driven phase transition presents a signif icant dependenceon temperature(Figs.6(c)and 6(d)).Theobvious sw itching only occurswith temperature ranging from 10 K to 55K.In the rangeof55K to 165K,unstablevoltage response wasobserved above a threshold current.Based on these facts,Vaskivskyi etal.proposed amechanism based on the formation of a hidden state sim ilar to the fem tosecond laser pulse excitation.[39]The injected charges can cause the partial collapse of the David-star clusters and the establishment of organized David-star domains separated by conductive domain walls.

    Optical pulses and electric f ield can drive CDW phase transitions in 1T-TaS2.However,themechanism for the phase transition triggered by electric f ield and optical pulses is still under debate.Recently,Shao etal.studied the electron and hole doping of 1T-TaS2by using density-functional-theory(DFT)calculations.[43]They found that the stability of CDW domainscan besuppressed by holedopingwhichweakens the electron density at the center of star-of-David,while the stability of CDW phase isnotsensitive to electron doping.

    Compared to the out-of-plane electric f ield,the phasetransition mechanisms driven by optical pulses and in-plane electric f ield aremore complex and still under debate.Two mechanisms are proposed.First,optical excitation and inplane electric f ield can injectmobile holes in 1T-TaS2,which triggers themelting of star-of-David.Second,light irradiation and electrical currentcan generate Joule heat,giving rise to the increase of local temperature over the phase-transition point.Bymeasuring the Stokes and anti-Stokes Raman spectra of 1T-TaS2during the phase-transition process driven by in-planeelectric f ield,[44]we found that the local temperatures range from 295 K to 320 K,which excludes the Joule heating mechanism in thiscase.

    4.Bolometers based on CDW phase transitions in 1T-TaS2

    The CDW phase sw itching can be driven by light irradiation in 1T-TaS2,thus leading to their practical application as photodetectors.In contrast from semiconductorswith a f inite bandgap and thus the photodetectorswith a narrow spectral response,the photodetection based on phase transition possess a broadband response.Due to itsmetallic nature,1T-TaS2exhibitsbroadband lightabsorptionwith wavelength ranging from severalhundreds of nanometers to 100m icrometers(Fig.7(a)).

    Before discussing the photodetection applications,we brief ly summarize the synthesismethods for high-quality 1TTaS2two-dimensional(2D)nanof lakes,which isimportant for scalable construction of high-performance devices.Mechanical exfoliated nanof lakes exhibit high crystallinity,but their practical device applications are limited by the low fabrication eff iciency.The chem icalvapor deposition(CVD)method has been employed to fabricate 1T-TaS2.Liu and his colleaguesdemonstrated that few-layer1T-TaS2can begrown by CVD.[45]Huang etal.synthesized vertically oriented 1T-TaS2with abundant edge sites on nanoporous gold substrates.[46]Xie etal.also demonstrated theCVD grow th of1T-TaS2on h-BN substrate.[30]These resultsprovide thepossibility forscalable fabrication of high-performance devices based on CDW phase transition.

    Fig.7.Photodetectors based on the CDW phase transition in 1T-TaS2.(a)Absorption spectrum of 1T-TaS2.(b)The I–V curves of 1T-TaS2 at the dark state and the light illum ination of 0.7W·cm-2.(c)Voltage threshold of NC-to-IC phase transition under different light irradiance.(d)The time response of photodetectors under the light pulse of 5 Hz and 0.7mW·cm-2.(e)The current of device under different light intensities.(f)Spectral responseof photodetector.This f igurewas reproduced from Ref.[47]with perm ission.Copyright2018,AAAS.

    At room temperature,the phase transition from NC-to-IC states can be triggered by an ultrafast fem tosecond laser pulsewith a threshold of light intensity.In contrast,Wu etal.demonstrated that the sliding of C domain under the applied electric f ield can bemanipulated by applying lightwithmuch lower power,ref lected by the striking decrease of threshold voltage for the NC-to-IC phase transition(Fig.7(b)).[47]The decreaseof threshold voltage is linearly dependenton the light intensity and the good linearity enables the high-performance light sensing(Fig.7(c)).The abrupt rise and decay of electrical currentwere observed in 1T-TaS2by applying a 5-Hz pulsed light(Fig.7(d)),suggesting the fast temporal response of this photodetector.Wu etal.also studied the evolution of device currentwith the lightintensity atdifferentapplied voltages and the wavelength-dependent responsivity(Figs.7(e)and 7(f)).The highest responsivity can achieve~4 A·W-1for this photodetector.Even under lightwith wavelength of 10μm,the photoresponsivity exceeds 1 A·W-1.Therefore,due to the lack of bandgap for 1T-TaS2at room temperature,it is an ultra-broadband photodetectorwith relatively high response.Since the sliding of CDW domains requiressome lattice distortion,the photodetector exhibits ultrahigh response speed.The rise and decay timeswere recorded as~1.5 ns and 30 ns,respectively.

    The ultrathin nature of suspended 2D 1T-TaS2f ilm can haveultralow thermalcapacitanceand then hasextremely high bolometric response.Xie and his colleagues demonstrated highly responsive bolometers based on suspended 1T-TaS2.

    The as-grown 1T-TaS2f ilm(around 100 nm thick)exhibits broadband opticalabsorptionwith relatively low transmittance ranging from 20%to 40%(Fig.8(a)).Devices were fabricated by suspending of1T-TaS2and apairofmetalelectrodes(Fig.8(b)).Interestingly,the bolometric effect can contribute to the NC-to-IC phase transition process.At voltages ranging from 0.5 V to 1.4 V,prominentdecreaseof resistancewas observed under applied infrared light(Fig.8(c)).For applied voltageexceeding 1.3V,the resistanceof1T-TaS2experienced a signif icant reduction.When the applied voltage increased to 1.5 V,the change was hard to be observed,caused by the buildup of IC phase under the applied voltage.Therefore,incident photons can heatup the 1T-TaS2and contribute to the NC to IC phase transition through thebolometric effect.

    Fig.8.Bolometric performanceof a 1T-TaS2 f ilm.(a)Transm ittance spectrum of 1T-TaS2.(b)Currentand resistance of 1T-TaS2 atdifferent applied voltages.(c)Bolometric resistance response of 1T-TaS2 under IR lightwith irradiance of 10μW·mm-2 atdifferentapplied voltages.(d)Scheme of circuit and the AC electricalwaveform used in the voltage responsivity measurements.(e)Voltage response at different IR irradiance.(f)Derived voltageand responsivity under different illum ination powers.This f igure is reproduced from Ref.[30]with perm ission.Copyright2018,W iley-VCH.

    The f igures of merit of 1T-TaS2bolometers were evaluated by constructing a circuit,in which 1T-TaS2was connected in serialwith a load resistor.An alternating current(AC)biaswassupplied to tune the phase transition of1T-TaS2(Fig.8(d)).Under light irradiation,a striking voltage drop of 1T-TaS2was observed due to the decrease of resistance.The responsivity RVis calculated by RV=Vresp/Plight,where Vrespis the voltage difference before and after light irradiation and Plightis the light power.A highest responsivity of 2600 V·W-1·mm2was observed,which ishigher than thatof other bolometers thatare based on strongly correlated phase transition,such as VOXand sem iconducting yttrium barium copperoxide(YBCO).

    5.Conclusion and perspectives

    Extensive research has been made in CDW phase transitions and their dynamics:from ultrafast melting of CDW domains to the buildup of out-of-equilibrium hidden/intermediate states.The phase transition processes,including themelting of David-star domains and the buildup of new phase,are accompanied with the striking change of electricalconductivity.FertileCDW phasesand theirstriking contrast of electrical conductivity offer an interesting avenue to createmultifunctionaldevices,including photodetectors.Photodetection based on strongly correlated electronic system is strikingly different from conventional semiconductors.Without a bandgap,the CDW-based photodetectors can exhibit broadband photodetection with wavelength ranging from severalhundredsofnanometers to hundredsofmicrometers.The ultrafastmelting,nucleation,and grow th ofCDW ordering offer a core opportunity for the fabrication of ultrafast devices.Although the potentialphotodetection application of 1T-TaS2hasbeen outlined in this review,research on CDW-based photodetectors isstillprelim inary.

    First,the mechanism of the photoresponse is still unclear. The photodetectors operated at room temperatures should originate from the NC to IC phase transition.The lattice dynam ics research is carried outby employing fem tosecond optical excitation,in which high f luence of photons are injected into 1T-TaS2within ultra-short time.However,photodetection experimentsare usually performed under continuouswave lightexcitationwith relatively lower f luence,which cannotachieve theultrafastmelting of CDW orderingwithout thehelp of theapplied electric f ield.Therefore,theunderlying mechanisms for theCDW phase transition driven by fem tosecond laser pulse and continuouswave lightare possibly different.In thisrespect,furtherstudiesinto the latticedynamicsunder electric f ield and continuouswave lightexcitation should be carried out to reveal the underlyingmechanism.

    Second,the signal-to-noise ratio of the CDW-based photodetectors need to be further improved.Currently,1T-TaS2is stillhighly conductive even at the dark condition,which is due to the conductive domain walls in the NCCDW phase as well as the small CDW gaps.So further research is needed to f ind CDW materialswith amuch lower conductivity in the ground CDW state and amuch higher conductivity in the excited state.We believe that the concept of photodetection based on the CDW phase transition offers new opportunities for creating high-performance photodetectorswith broadband spectralsensitivity,ultrafast response,and an ultrahigh signalto-noise ratio.

    猜你喜歡
    黎明
    風云三號E星——黎明星
    黎明之光
    黎明之子
    趣味(語文)(2020年5期)2020-11-16 01:34:56
    美若黎明
    青年歌聲(2019年9期)2019-09-17 09:02:54
    黎明被一群鳥兒啄出
    誰家的可可④ 這里的黎明靜悄悄
    幽默大師(2018年4期)2018-11-02 05:38:54
    黎明
    讀者(2017年8期)2017-03-29 20:11:49
    黎明的軍號
    灶神星上的“黎明”
    太空探索(2015年4期)2015-07-12 14:16:21
    谷神星迎來新“黎明”
    太空探索(2015年4期)2015-07-12 14:16:08
    啦啦啦观看免费观看视频高清| 国产高清不卡午夜福利| 黄色日韩在线| 最好的美女福利视频网| 国产亚洲91精品色在线| 插阴视频在线观看视频| 久久精品国产鲁丝片午夜精品| 中文资源天堂在线| 一进一出抽搐gif免费好疼| 免费电影在线观看免费观看| 丝袜美腿在线中文| 欧美极品一区二区三区四区| 国产精品不卡视频一区二区| 老熟妇仑乱视频hdxx| 免费不卡的大黄色大毛片视频在线观看 | 神马国产精品三级电影在线观看| 少妇的逼好多水| 久久久久九九精品影院| 亚洲人成网站高清观看| 欧美日韩综合久久久久久| 3wmmmm亚洲av在线观看| 最近中文字幕高清免费大全6| 久久精品国产亚洲网站| 欧美+日韩+精品| 久久久午夜欧美精品| 亚洲精品粉嫩美女一区| 最近2019中文字幕mv第一页| 天堂av国产一区二区熟女人妻| 国产极品精品免费视频能看的| 一进一出好大好爽视频| 日本欧美国产在线视频| 成人一区二区视频在线观看| 又粗又爽又猛毛片免费看| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说 | 日本成人三级电影网站| 91麻豆精品激情在线观看国产| 免费大片18禁| 亚洲av不卡在线观看| 国产亚洲精品av在线| 日本黄色视频三级网站网址| 在线观看av片永久免费下载| 深爱激情五月婷婷| 亚洲av不卡在线观看| 亚洲国产精品合色在线| 99久久精品热视频| 给我免费播放毛片高清在线观看| 免费人成在线观看视频色| 亚洲一区二区三区色噜噜| www.色视频.com| 嫩草影院新地址| 成年女人永久免费观看视频| 欧美成人a在线观看| 亚洲av不卡在线观看| 国产精品乱码一区二三区的特点| 少妇被粗大猛烈的视频| 99riav亚洲国产免费| 欧美高清性xxxxhd video| 久久久久国产精品人妻aⅴ院| 91av网一区二区| 俄罗斯特黄特色一大片| 欧美另类亚洲清纯唯美| 欧美三级亚洲精品| 精品久久国产蜜桃| 在线免费观看不下载黄p国产| 赤兔流量卡办理| 日本-黄色视频高清免费观看| 国产私拍福利视频在线观看| 六月丁香七月| 亚洲av成人精品一区久久| 亚洲电影在线观看av| 国产伦精品一区二区三区视频9| 欧美一区二区国产精品久久精品| 最新在线观看一区二区三区| 亚洲经典国产精华液单| 99热只有精品国产| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添小说| 欧美一区二区精品小视频在线| 床上黄色一级片| 最近在线观看免费完整版| 人妻丰满熟妇av一区二区三区| 国内精品美女久久久久久| 日韩三级伦理在线观看| 51国产日韩欧美| 中文字幕av在线有码专区| 精品人妻偷拍中文字幕| 久久久精品欧美日韩精品| 在线看三级毛片| 国产伦一二天堂av在线观看| 国产精品av视频在线免费观看| 亚洲五月天丁香| 99久久成人亚洲精品观看| 欧美区成人在线视频| 国产精品,欧美在线| 国内精品宾馆在线| 亚洲丝袜综合中文字幕| 色在线成人网| 国模一区二区三区四区视频| 国产精品野战在线观看| 人人妻,人人澡人人爽秒播| 在线观看美女被高潮喷水网站| 免费看日本二区| 亚洲最大成人中文| 97超视频在线观看视频| 亚洲欧美日韩高清专用| 赤兔流量卡办理| 久久人人精品亚洲av| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 97超碰精品成人国产| 欧美最新免费一区二区三区| 国产精品免费一区二区三区在线| 乱系列少妇在线播放| 精品久久久噜噜| a级一级毛片免费在线观看| 成人av一区二区三区在线看| 精品一区二区免费观看| 性色avwww在线观看| 又黄又爽又刺激的免费视频.| 国产精品一区二区性色av| 亚洲精品粉嫩美女一区| 夜夜夜夜夜久久久久| 亚洲欧美成人精品一区二区| 欧美日本亚洲视频在线播放| 亚洲五月天丁香| 99热这里只有是精品50| 免费看a级黄色片| 男女之事视频高清在线观看| 精品久久久久久久久久免费视频| 亚洲av中文av极速乱| 一级毛片久久久久久久久女| 丝袜喷水一区| 人人妻人人澡欧美一区二区| 日本a在线网址| 麻豆乱淫一区二区| 欧美高清成人免费视频www| 午夜影院日韩av| 久久6这里有精品| 午夜精品国产一区二区电影 | 91久久精品电影网| 日本爱情动作片www.在线观看 | АⅤ资源中文在线天堂| 夜夜夜夜夜久久久久| 久久久久国产网址| 99久久中文字幕三级久久日本| 久久午夜亚洲精品久久| 国产精品人妻久久久久久| 国产 一区精品| 亚洲婷婷狠狠爱综合网| 人妻久久中文字幕网| 十八禁国产超污无遮挡网站| 69人妻影院| 精品久久久久久久久av| 国产成人福利小说| 亚洲国产精品成人久久小说 | 桃色一区二区三区在线观看| 成人欧美大片| 不卡一级毛片| 国产私拍福利视频在线观看| 最后的刺客免费高清国语| 久久精品国产亚洲av天美| 国产精品一区二区三区四区免费观看 | 精品午夜福利在线看| 亚洲精品影视一区二区三区av| 美女高潮的动态| 国产大屁股一区二区在线视频| 看十八女毛片水多多多| 国产视频一区二区在线看| 亚洲成人精品中文字幕电影| 国产一区二区亚洲精品在线观看| 国内精品宾馆在线| 亚洲人成网站高清观看| 在线天堂最新版资源| 免费av毛片视频| 六月丁香七月| 乱码一卡2卡4卡精品| av.在线天堂| 国产成年人精品一区二区| 毛片女人毛片| 国产精品1区2区在线观看.| 久久精品人妻少妇| 亚洲国产欧美人成| 美女cb高潮喷水在线观看| 亚洲第一电影网av| 国产精品亚洲一级av第二区| 十八禁网站免费在线| 一边摸一边抽搐一进一小说| 女人被狂操c到高潮| 日日摸夜夜添夜夜添小说| 成人av一区二区三区在线看| 波多野结衣高清作品| 91在线精品国自产拍蜜月| 桃色一区二区三区在线观看| 亚洲人成网站在线观看播放| 国产精品综合久久久久久久免费| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 99热精品在线国产| 国产亚洲精品久久久久久毛片| av免费在线看不卡| 欧美成人a在线观看| 91精品国产九色| 成人综合一区亚洲| 内射极品少妇av片p| 日本免费一区二区三区高清不卡| 日韩欧美一区二区三区在线观看| 综合色丁香网| 少妇人妻精品综合一区二区 | 亚洲性夜色夜夜综合| 国产一区二区三区在线臀色熟女| 一本一本综合久久| 国产乱人偷精品视频| 99久久九九国产精品国产免费| 久久精品久久久久久噜噜老黄 | h日本视频在线播放| 亚洲美女黄片视频| 国产男人的电影天堂91| 一级毛片久久久久久久久女| 日本撒尿小便嘘嘘汇集6| 大香蕉久久网| 伦精品一区二区三区| 人人妻人人澡欧美一区二区| 俄罗斯特黄特色一大片| 国产v大片淫在线免费观看| 久久鲁丝午夜福利片| 久久99热这里只有精品18| 国产精品嫩草影院av在线观看| 尾随美女入室| 亚洲综合色惰| 亚洲国产精品成人久久小说 | 美女内射精品一级片tv| 国产亚洲精品av在线| 日本免费一区二区三区高清不卡| 久久久久久国产a免费观看| 好男人在线观看高清免费视频| 亚洲欧美日韩高清在线视频| 22中文网久久字幕| 免费看美女性在线毛片视频| 麻豆精品久久久久久蜜桃| 日日摸夜夜添夜夜添小说| 麻豆国产av国片精品| 日本免费a在线| 欧美成人a在线观看| 九九热线精品视视频播放| 日韩精品青青久久久久久| 变态另类丝袜制服| 免费观看的影片在线观看| 国产av一区在线观看免费| 人妻制服诱惑在线中文字幕| 悠悠久久av| 久久精品影院6| 97热精品久久久久久| 欧美国产日韩亚洲一区| 最近最新中文字幕大全电影3| 国产精品乱码一区二三区的特点| 午夜影院日韩av| 嫩草影院精品99| 欧美xxxx黑人xx丫x性爽| 亚洲精品日韩在线中文字幕 | 亚洲精品亚洲一区二区| 婷婷六月久久综合丁香| 在线观看美女被高潮喷水网站| 中国美女看黄片| 久久精品国产亚洲网站| 一级毛片aaaaaa免费看小| 久久久久国产精品人妻aⅴ院| 97碰自拍视频| 天堂动漫精品| 日本免费a在线| 少妇熟女欧美另类| 天堂影院成人在线观看| 91在线观看av| 成人av一区二区三区在线看| 国产精品国产三级国产av玫瑰| 淫秽高清视频在线观看| 毛片女人毛片| 在线播放国产精品三级| 精品福利观看| 五月伊人婷婷丁香| 一个人免费在线观看电影| 成年免费大片在线观看| 黄色欧美视频在线观看| 精品欧美国产一区二区三| 九九爱精品视频在线观看| 欧美人与善性xxx| 国产精品久久久久久亚洲av鲁大| 久久精品影院6| 99久久无色码亚洲精品果冻| 一卡2卡三卡四卡精品乱码亚洲| 国产成人一区二区在线| 熟女电影av网| 在线免费观看的www视频| АⅤ资源中文在线天堂| 日韩欧美精品免费久久| 国产69精品久久久久777片| 亚洲中文日韩欧美视频| 午夜福利高清视频| 亚洲一级一片aⅴ在线观看| 一个人观看的视频www高清免费观看| 久久久国产成人精品二区| 日韩一区二区视频免费看| 中文亚洲av片在线观看爽| 男女下面进入的视频免费午夜| 免费大片18禁| 最新在线观看一区二区三区| 真实男女啪啪啪动态图| 熟女电影av网| 美女黄网站色视频| 中国美女看黄片| 中文在线观看免费www的网站| 欧美激情国产日韩精品一区| 欧美又色又爽又黄视频| 狂野欧美激情性xxxx在线观看| 人妻少妇偷人精品九色| 免费观看精品视频网站| 九九在线视频观看精品| 婷婷六月久久综合丁香| 观看美女的网站| 成人鲁丝片一二三区免费| 国产伦在线观看视频一区| 欧美+亚洲+日韩+国产| 麻豆国产97在线/欧美| 一本一本综合久久| 欧美潮喷喷水| 亚洲成人久久性| 国产精品三级大全| 亚洲欧美日韩高清专用| 精品久久久久久久久久免费视频| 欧美不卡视频在线免费观看| 精品久久久久久久久亚洲| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 欧美激情久久久久久爽电影| 亚洲欧美日韩无卡精品| 校园人妻丝袜中文字幕| 女的被弄到高潮叫床怎么办| 又黄又爽又免费观看的视频| 一a级毛片在线观看| 天美传媒精品一区二区| 99热这里只有精品一区| 少妇熟女aⅴ在线视频| 午夜福利18| 国产精品女同一区二区软件| 亚洲国产精品久久男人天堂| 女同久久另类99精品国产91| 国内揄拍国产精品人妻在线| av视频在线观看入口| 亚洲人成网站在线播| 91狼人影院| 亚洲自拍偷在线| 精品免费久久久久久久清纯| 91精品国产九色| 老熟妇乱子伦视频在线观看| 午夜a级毛片| 一边摸一边抽搐一进一小说| av在线老鸭窝| 91久久精品电影网| 九色成人免费人妻av| 日韩 亚洲 欧美在线| 在线国产一区二区在线| 亚洲精品在线观看二区| 狂野欧美激情性xxxx在线观看| 一级黄片播放器| 亚洲无线观看免费| 少妇被粗大猛烈的视频| 我的女老师完整版在线观看| 嫩草影院新地址| 中出人妻视频一区二区| 看免费成人av毛片| 热99在线观看视频| 一边摸一边抽搐一进一小说| 国内精品宾馆在线| 婷婷亚洲欧美| 日本五十路高清| a级毛片a级免费在线| 国产亚洲欧美98| 国语自产精品视频在线第100页| 男女做爰动态图高潮gif福利片| 国产精品久久久久久av不卡| 在线播放国产精品三级| 全区人妻精品视频| 波多野结衣高清作品| 精品人妻熟女av久视频| 91在线观看av| av国产免费在线观看| 夜夜爽天天搞| 人妻丰满熟妇av一区二区三区| 成人av一区二区三区在线看| 五月玫瑰六月丁香| 亚洲国产精品成人久久小说 | 午夜激情福利司机影院| 赤兔流量卡办理| 此物有八面人人有两片| 国内揄拍国产精品人妻在线| 久久天躁狠狠躁夜夜2o2o| 色尼玛亚洲综合影院| 永久网站在线| 亚洲激情五月婷婷啪啪| 九色成人免费人妻av| 毛片一级片免费看久久久久| 麻豆精品久久久久久蜜桃| 欧美日韩国产亚洲二区| 少妇被粗大猛烈的视频| 在现免费观看毛片| 欧美人与善性xxx| 久久久成人免费电影| 能在线免费观看的黄片| 精品少妇黑人巨大在线播放 | 晚上一个人看的免费电影| 亚洲中文字幕一区二区三区有码在线看| 久久久精品欧美日韩精品| 一本精品99久久精品77| 国产精品福利在线免费观看| 午夜免费激情av| 日韩欧美在线乱码| 菩萨蛮人人尽说江南好唐韦庄 | 夜夜看夜夜爽夜夜摸| 日韩强制内射视频| 特大巨黑吊av在线直播| 亚洲一区二区三区色噜噜| 我要看日韩黄色一级片| 老女人水多毛片| 成人三级黄色视频| 国内精品宾馆在线| 大香蕉久久网| 久久精品综合一区二区三区| 成年女人毛片免费观看观看9| 亚洲中文字幕日韩| 美女xxoo啪啪120秒动态图| 国产在线精品亚洲第一网站| 精品人妻视频免费看| 国产人妻一区二区三区在| 欧美区成人在线视频| av在线天堂中文字幕| 久久久久久久亚洲中文字幕| 色噜噜av男人的天堂激情| 午夜爱爱视频在线播放| 三级男女做爰猛烈吃奶摸视频| 搡老妇女老女人老熟妇| 国产精品电影一区二区三区| av免费在线看不卡| 午夜福利成人在线免费观看| 亚洲美女黄片视频| 精品一区二区三区视频在线| 又黄又爽又免费观看的视频| 久久精品综合一区二区三区| 淫妇啪啪啪对白视频| 精品国产三级普通话版| 国产视频内射| av在线蜜桃| 亚洲精品久久国产高清桃花| 欧美激情国产日韩精品一区| 少妇的逼好多水| 久久人妻av系列| 久久亚洲精品不卡| 99热全是精品| 老熟妇仑乱视频hdxx| 99热精品在线国产| 18+在线观看网站| АⅤ资源中文在线天堂| 精品人妻一区二区三区麻豆 | 超碰av人人做人人爽久久| 啦啦啦观看免费观看视频高清| 日韩制服骚丝袜av| 晚上一个人看的免费电影| 久久国产乱子免费精品| 非洲黑人性xxxx精品又粗又长| 成人特级黄色片久久久久久久| 色播亚洲综合网| 少妇熟女aⅴ在线视频| 午夜亚洲福利在线播放| 久久久久免费精品人妻一区二区| 床上黄色一级片| 久久人妻av系列| 久久婷婷人人爽人人干人人爱| 精品午夜福利视频在线观看一区| 国产精品综合久久久久久久免费| 久久久色成人| 精品熟女少妇av免费看| 国产精华一区二区三区| 欧美不卡视频在线免费观看| 亚洲av一区综合| 亚洲,欧美,日韩| 亚洲av.av天堂| 久久精品国产亚洲av天美| 欧美日韩精品成人综合77777| 一级黄片播放器| 日本免费一区二区三区高清不卡| 给我免费播放毛片高清在线观看| 99视频精品全部免费 在线| 在线观看午夜福利视频| 国产精品乱码一区二三区的特点| 在线观看美女被高潮喷水网站| 色5月婷婷丁香| av在线天堂中文字幕| 赤兔流量卡办理| 国产精品日韩av在线免费观看| 成人美女网站在线观看视频| 日日撸夜夜添| 又爽又黄a免费视频| 日韩精品有码人妻一区| 欧美中文日本在线观看视频| 波多野结衣高清无吗| 成人av在线播放网站| 老熟妇乱子伦视频在线观看| 狠狠狠狠99中文字幕| 少妇的逼水好多| a级毛片免费高清观看在线播放| 啦啦啦观看免费观看视频高清| 亚洲av.av天堂| 久久久久久久久久久丰满| 精品久久久久久久久亚洲| 久久久国产成人精品二区| 欧美日本亚洲视频在线播放| 久久人人爽人人片av| 波多野结衣高清无吗| 免费在线观看成人毛片| 日日啪夜夜撸| 精品无人区乱码1区二区| 精品一区二区三区人妻视频| 精品久久久久久久末码| 大香蕉久久网| 91久久精品国产一区二区成人| 国产精品99久久久久久久久| 一级毛片电影观看 | 成人三级黄色视频| 成人鲁丝片一二三区免费| 又粗又爽又猛毛片免费看| 国产成人a∨麻豆精品| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区久久| 亚洲国产精品国产精品| 黄片wwwwww| 人妻久久中文字幕网| avwww免费| 中文字幕免费在线视频6| 国产不卡一卡二| 亚洲av电影不卡..在线观看| 黄片wwwwww| 人妻久久中文字幕网| 欧美日韩精品成人综合77777| 性欧美人与动物交配| av国产免费在线观看| 91精品国产九色| 在线观看一区二区三区| 午夜福利成人在线免费观看| 国产不卡一卡二| 直男gayav资源| 91麻豆精品激情在线观看国产| 国产麻豆成人av免费视频| 老熟妇仑乱视频hdxx| 三级毛片av免费| 欧美又色又爽又黄视频| 美女高潮的动态| 亚洲成人精品中文字幕电影| 国产日本99.免费观看| 午夜影院日韩av| 蜜桃亚洲精品一区二区三区| 深夜a级毛片| 亚洲av电影不卡..在线观看| 久久精品夜夜夜夜夜久久蜜豆| 精品日产1卡2卡| 国内揄拍国产精品人妻在线| 国产久久久一区二区三区| 亚洲美女视频黄频| 乱码一卡2卡4卡精品| 国产成年人精品一区二区| 国产精品一区二区免费欧美| 亚洲自偷自拍三级| 亚洲丝袜综合中文字幕| 变态另类丝袜制服| 小蜜桃在线观看免费完整版高清| 97在线视频观看| 久久亚洲国产成人精品v| 搡老妇女老女人老熟妇| 精品福利观看| 亚洲婷婷狠狠爱综合网| 免费观看在线日韩| 欧美色视频一区免费| 亚洲国产高清在线一区二区三| 亚洲av免费高清在线观看| 欧美三级亚洲精品| 国产人妻一区二区三区在| 大型黄色视频在线免费观看| 中文字幕精品亚洲无线码一区| 亚洲精品一区av在线观看| 成熟少妇高潮喷水视频| 搡女人真爽免费视频火全软件 | 99久久九九国产精品国产免费| 免费搜索国产男女视频| 在线天堂最新版资源| 成人av在线播放网站| 日日啪夜夜撸| 欧美成人精品欧美一级黄| 99久久精品热视频| 日本一本二区三区精品| 色综合站精品国产| 国产精品亚洲美女久久久| 欧美成人a在线观看| 国产极品精品免费视频能看的| 最近的中文字幕免费完整| 最好的美女福利视频网| 亚洲欧美精品综合久久99| 日本 av在线| 国产成人a区在线观看| 综合色av麻豆| 搞女人的毛片| 欧美成人a在线观看| 1000部很黄的大片| 国产日本99.免费观看| 男人舔女人下体高潮全视频| 99久久成人亚洲精品观看| 日本精品一区二区三区蜜桃| 亚洲精华国产精华液的使用体验 |