• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Convergence Properties of Local Defect Correction Algorithm for the Boundary Element Method

    2019-05-10 06:02:06GodwinKakubaJohnMangoandMartijnAnthonissen

    Godwin Kakuba,John M.Mango and Martijn J.H.Anthonissen

    1 Makerere University,P.O.Box 7062,Kampala,Uganda.

    2 Eindhoven University of Technology,P.O.Box 513,5600 MB Eindhoven,The Netherlands.

    Abstract: Sometimes boundary value problems have isolated regions where the solution changes rapidly.Therefore,when solving numerically,one needs a fine grid to capture the high activity.The fine grid can be implemented as a composite coarse-fine grid or as a global fine grid.One cheaper way of obtaining the composite grid solution is the use of the local defect correction technique.The technique is an algorithm that combines a global coarse grid solution and a local fine grid solution in an iterative way to estimate the solution on the corresponding composite grid.The algorithm is relatively new and its convergence properties have not been studied for the boundary element method.In this paper the objective is to determine convergence properties of the algorithm for the boundary element method.First,we formulate the algorithm as a fixed point iterative scheme,which has also not been done before for the boundary element method,and then study the properties of the iteration matrix.Results show that we can always expect convergence.Therefore,the algorithm opens up a real alternative for application in the boundary element method for problems with localised regions of high activity.

    Keywords: Local defect,defect correction,composite grids,integral equation methods,boundary elements.

    1 Introduction

    Often boundary value problems have small localised regions of high activity where the solution varies rapidly compared to the rest of the domain.This behaviour may be due to boundary conditions or due to an irregular boundary.One therefore has to use relatively fine meshes to capture the high activity.Since the activity is localised,one may also choose to solve on a uniform structured grid.The size of each grid is chosen in agreement with the activity of the solution in that part of the domain.The solution is thus approximated on a composite grid,which is the union of the various uniform local grids.One way of approximating this composite grid solution that is simple and less complex than directly solving on the composite grid is byLocal Defect Correction(LDC).This approach is well developed and extensively studied in methods like the finite difference methods(FDM)[Anthonissen,Bennett and Smooke(2005);Ferket and Reusken(1996);Hackbusch(1984)].In Kakuba et al.[Kakuba and Anthonissen (2014)],a local defect correction algorithm for the boundary element method(BEM)is presented.It was shown therein that the algorithm is cheaper than solving directly on the composite grid.The BEM,being a method with full matrices,would benefit much from such an algorithm when solving problems with localised regions of high activity that occur at the boundary.

    The LDC technique employs a uniform global coarse grid that covers the whole boundary and then a uniform local fine grid in a small part of the boundary that contains the high activity.In Ferket et al.[Ferket and Reusken (1996);Hackbusch (1984)] LDC has been shown to be a useful way of approximating the composite grid solution in which a global coarse grid solution is improved by a local fine grid solution,through a process whereby the right hand side of the global coarse grid problem system of equations iscorrectedby thedefectof a local fine grid approximation.The properties for this method in FDM have been well studied,see for instance[Anthonissen(2001);Ferket and Reusken(1996);Hackbusch(1984);Minero,Anthonissen and Mattheij(2006)].Literature is still scanty on the LDC technique for BEM,but error studies,especially for direct multigrid applications,are increasing [Qu and Cui (2014)].A good overview is also given in Feischl et al.[Feischl,Führer,Heuer et al.(2015)].The LDC technique will be particularly useful in applications for problems that exhibit multiscales in behaviour.An example is the modelling of impressed current cathodic protection systems where the potential problem is characterised by small regions of high activity,cathodes and anodes.

    In this paper we study convergence properties of the LDC algorithm for BEM which,to the best of our knowledge,has not been done.In Kakuba et al.[Kakuba and Anthonissen(2014)],the algorithm is presented using integral formulations.In this paper we base on the integral formulation to derive the corresponding fixed point iterative scheme in matrix form.This formulation assumes the boundary and the discretisation are such that,on refinement,the nodes of the global grid in the refinement area also belong to the fine grid.For the sake of completeness,we first briefly outline the development of BEM in Section 2.To build the discussion for the convergence properties,the important steps of the LDC technique for BEM,as published in Kakuba et al.[Kakuba and Anthonissen(2014)]are presented in Section 3,with an example.In Section 4,the LDC algorithm is formulated as a fixed point iterative scheme on the basis of which convergence properties are tested using examples.We conclude the study with a summary of the findings,in Section 5.

    2 The boundary element method

    Consider a closed domain ??R2,with boundary Γ.Denote bynthe outward unit normal at Γ.We consider on ? the two dimensional potential problem

    for which Dirichlet,Neumann or mixed boundary conditions may be defined as illustrated in Fig.1.

    Figure 1:Illustration of the domain ?,with boundary Γ = Γ1 ∪ Γ2, Γ1 ∩ Γ2 = ?,where on Γ1 we have Neumann boundary conditions,and on Γ2 we have Dirichlet conditions [Kakuba and Anthonissen (2014)]

    If Γ1≡Γ,we have aNeumann problem,and if Γ2≡Γ,we have aDirichlet problemotherwise we have aMixed problem.In the solution of problem(1)using BEM,the problem is formulated as an integral equation

    where the coefficientc(s)is given by,

    whereris the variable field point,sis a fixed point,χa coordinate along the boundary,?cis the complement of ? in R2andα(s) is the internal angle ats.The derivation of this boundary integral equation(BIE)is readily available [Katsikadelis(2002);Paris and Canas(1997);Pozrikidis(2002)].The functionvis the fundamental solution of the Laplace equation in R2given by:

    According to Eq.(2),the solutionucan be computed at any point in the domain if we knowuand its normal derivative everywhere at the boundary.The goal in BEM therefore is to look for the missing data at the boundary,which is the functionuat the Neumann boundary or the normal derivative?u/?nat the Dirichlet boundary.At the boundary,the discretised BIE leads to the linear system of equations

    where

    i,j=1,2,...,N,Γj,j=1,2,...,Nis a discretisation of Γ andNis the number of grid elements Γjused in the discretisation.We have also introduced the vectors

    whereqis defined as

    Using boundary conditions in Eq.(5)leads to the square system

    The vector x contains the unknown values of eitheruorqin the grid elements nodes at the boundary.The solution of the system(9)gives a BEM approximation of the unknowns in x in the grid nodes at the boundary.We denote by xLa BEM approximation on a grid of sizeL.Thus,uLj(orqLj)is a BEM approximation ofuj(orqj),using a grid of sizeL.Solving Eq.(9) gives the unknown boundary quantities ofuandq.Therefore,all the boundary quantities are available and the solutionuiat any pointri ∈? can then be computed using the identity

    3 local defect correction

    In this section we briefly present the local defect correction algorithm that was introduced in Kakuba et al.[Kakuba and Anthonissen (2014)].The presentation focusses on the important steps of the algorithm that are necessary in the development of the same,as a fixed point iterative scheme that is discussed in this paper.Consider the potential problem:

    where

    Figure 2:Solution in the domain,in 2(a),and solution at the boundary 0 ≤x ≤1,y =0,in 2(b),for problem(11)[Kakuba and Anthonissen(2014)]

    Figure 3:An example of a multiscaled solution with localised high activity,in 3(a) and,in 3(b),an illustration of a local problem domain.The boundary of ?local is Γlocal :=Γactive ∪Γinside[Kakuba and Anthonissen(2014)]

    The exact solution of this problem,shown in Fig.2,has a small area close to the boundary where it changes rapidly.As a result,the solutionu(r) at the boundary has a region of high activity in a small part of the boundary.The LDC algorithm distinguishes a small region of high activity in ? and defines a local problem on it.We denote this region by?local.Part of the boundary of ?localintersects with the global boundary Γ,Fig.3.We call this intersecting part of the boundaries of ? and ?local,thelocal active boundary,Γactive,because it captures the high activity of the problem at the boundary.In the application of BEM to solve this Neumann problem,a Dirichlet condition is prescribed in one node,for uniqueness of results,which also enables us to compare the numerical results with the exact solution.In the LDC algorithm,alocal problemon ?localis solved on a fine mesh whose size is chosen in agreement with the local activity.The solution on the local fine grid is combined with the solution on the global coarse grid,throughdefect correction,to obtain a composite grid solution on Γ.The global problem is solved on a uniformglobal coarse gridΓLofNelements each of sizeL,covering the whole of Γ,that is,

    where|ΓLj|=Lfor allj= 1,2,...,N.The number of elements of the local problem is denotedNlocal,and the individual elements of the local grid are denoted Γllocal.Thus,the local problem is solved on ?local,using a uniformlocal fine gridΓllocal,ofNlocalelements each of sizelcovering Γlocal.That is,

    where|Γllocal,i|=lfor alli=1,2,...,Nlocal.This discretisation is illustrated in Fig.(4).In

    Figure 4:Global coarse and local fine grids.The dots are the nodes rllocal of the local fine grid Γllocal and the big open circles are the nodes rL of the global coarse grid ΓL.Node 2 belongs to rL ∩ rlactive [Kakuba and Anthonissen (2014)]

    constant elements that we use here,the collocation nodes are the midpoints of the elements.Let

    denote the set of coarse grid nodes.Let

    be the set of the local fine grid nodes.Then we denote the nodes of the local problem that belong to the active part of the boundary asrlactive.We assume that all the grid nodes ofrL ∩rlactivebelong torlactive,Fig.4.The composite grid nodesrl,Lare the unionrL ∪rlactiveof the global coarse grid nodesrLand the active local fine grid nodesrlactive.First,we have the following discretised integral equation on ΓL

    which leads to the initial global coarse grid system of equations

    Note that on the right hand side of Eq.(17),the functionq(r) is given and,therefore,to make sure we are only measuring the errors due to the discretisation ofu,we minimise the interpolation error[Kita and Kamiya(2001)]by evaluating that integral without discretisingq,but by using an appropriate integration rule to evaluate that integral of the product ofqandv.Once Eq.(18)is solved,the solution is used to complete the formulation of the local problem by computinguon Γinsideto be used as the Dirichlet boundary condition.The local problem on ?localsatisfies the same operator as in the global problem.Since Γactive?Γ,the boundary conditions on Γactiveare the same as those in the global problem.The local problem is solved on a finer grid and the solution is used to estimate the defect as by the following explanation.

    Consider the coarse grid discretisation Eq.(17).If we knew the exact solutionuj:=u(rj)in the nodes,then using it in Eq.(17)would give:

    wheredLiis the local defect for thei-th equation.We also have the exact BIE obtained by using the undiscretised exact functionuon the elements,as

    Subtracting Eq.(20)from Eq.(19)gives

    wheredLiis the defect of thei?th equation.If we had this defect,we would add it to the system Eq.(18)and solve to obtain the exact solution at the nodes.The contribution to the defectdLi,from elementj,is given by:

    so that the defect for thei?th equation is given by:

    The contributions to this defect are significant in the active region,and are assumed negligible elsewhere.However,the exact functionuis not known and we cannot therefore use Eq.(21)to compute the defectdLi.What we can instead do is to formulate and solve a local problem using a fine grid in the active region.The solution to this problem is better than the coarse grid solution because of the fine grid used.At this point,the best solution available is

    and the best approximations to the integrals in Eq.(22)are

    In Eq.(25),we assume that in the local fine grid,a global coarse grid element ΓLjis divided intoKfine elements,k=1,2,...,K,such thatFig.(5)gives an illustration forK=3.

    Figure 5:A coarse element that is refined into three elements in the local fine grid,such that [Kakuba and Anthonissen(2014)]

    Therefore,using the initial fine grid solution,the initial best approximation of the defect per element is for elements in the active region of the boundary,whereas it is assumed zero for elements outside the active region.We can then compute the defect

    The formulation described above can be summarised in matrix form as follows.On the local domain ?localwe have the local fine grid problem

    where

    The solution ul0active,on the fine grid,which is expected to be more accurate than the coarse grid solution,is then used to approximate the defect for the global coarse grid problem

    So we solve the updated system

    Solving the system in Eq.(31)gives the updated coarse grid solution uL1.At this stage we use the fine grid solution onand the global coarse grid solution to form a composite grid solutionul,Las

    The composite grid solution in Eq.(32) can now be used to compute better boundary conditionson Γinside,and then form and solve the updated fine grid problem

    Then we obtain the updated composite grid solution given by:

    This step marks the end of one complete cycle of the LDC algorithm.The iteration process is summarised in Algorithm 1,whose more detailed presentation is discussed in Kakuba et al.[Kakuba and Anthonissen(2014)],and results on an example are shown in Fig.6 and Fig.7,where functions are plotted only for the side of the square boundary with the active region.The authors in Kita et al.[Kita and Kamiya (2001)] present a broader review of adaptive error refinement techniques.In this paper,we compare the numerical solution with the exact solution to make conclusions on the error,a kind of error measurement similar to the one attributed to Mullen et al.[Mullen and Rencis(1985)].

    Algorithm 3.1.

    (i)Initialisation

    (ii) Fori=1,2,...

    4 Properties of the LDC for BEM algorithm as a fixed point iterative scheme

    We consider the following Neumann problem

    To formulate the LDC algorithm as a fixed point iteration,we need a vector formulation for the steps in Algorithm 3.1.The first step of the algorithm is to solve a global coarse grid problem

    for an initial solution xL0.The solution xL0is a vector ofu’s except in one node,the last node,where a Diriclet boundary condition is prescribed to ensure uniqueness of the solution.Using uL0,the boundary conditions and the boundary integral relation Eq.(2)for interior points,we compute the potentialu(r)on Γinside.That is,

    Figure 6:Results of a typical LDC process for a Neumann problem in one iteration (The solid line is the exact solution [Kakuba and Anthonissen(2014)])

    Figure 7:Results of a typical LDC process for a Neumann problem in one iteration (The solid line is the exact solution [Kakuba and Anthonissen(2014)])

    Introducing a vector g and a matrixsuch that

    then we can write Eq.(37)as

    Using Eq.(40),we obtain Dirichlet boundary conditions on Γinside.The boundary conditions on Γactiveare the same as the given boundary conditions in the global problem since,Γactive?Γ.Using(5),we can then write the equations on Γllocalin vector form as

    where Hllocaland Gllocalare the BEM H and G matrices on the fine grid of the local problem boundary Γllocal,ulactiveand qlactiveare vectors on the active part Γlactiveof the local problem boundary,and ul0insideand ql0insideare vectors on Γlinside,the part of the local problem boundary that is inside the global domain.The vector ul0insideis known through Eq.(40)and the vector qactiveis known through the boundary conditions.So,we rearrange Eq.(41)as

    The matrix Hlactiveis a block of Hlfor which the column index corresponds to nodes in Γlactive.Similarly Hlinsideis a block of Hlfor which the column index corresponds to nodes in Γlinside.The blocks Glactiveand Glinsideare defined analogously.The quantities on the right hand side of Eq.(42)are all known.Let

    Then we have

    The solution of the system in Eq.(47) gives us another solution ul0activein Γactive,which should be a better approximation ofu(r)than uL0in Γactive,because of the fine grid used.We,then,use this solution to compute the defect and update the global coarse grid solution.The defect on an element ΓLjwhen the collocation node isiis given by:

    Since each node communicates with the local active region through integration,the defectd0iis computed for all the nodes.Let us introduce a matrix,defined as

    Let PL,lbe a restriction from the fine grid Γlactive,to the coarse grid ΓLactivein Γactive.Then we can write the defect d0as:

    At this stage we can assemble a composite grid solution on Γl,Lthat consists of the initial fine grid solution and the updated coarse grid solution.So,

    where uL1cis the updated coarse grid solution on Γcoutside the active region Γactive.To complete the updated composite grid solution,we need to solve a new local problem.To this end,we use the solution in Eq.(52) to compute another approximation ofu(r) on Γinside.Thus,we have

    andri ∈Γinside.Then we formulate an updated system for the local problem

    where

    Solving the system in Eq.(55)gives an updated solution ul1activeofu(r)on Γactive.At this stage we have a completely updated composite grid solution given by:

    This completes the first iteration that gives us the first updated composite grid solution.The process can be repeated until there is no more change in the solution.In what follows,we formulate the above process as a fixed point iterative process.

    Let Ilactivebe an identity of sizeNactive,the number of local elements in Γactive.Then,the part of the local solution in Γactiveis given by,

    for thei-th iteration.Consider the updated composite grid solution in Eq.(56)for iterationi+1.Using Eq.(55)and Eq.(57),we have

    From the second block row of Eq.(58)we have

    This is the global coarse grid solution outside the active region.For a Neumann problem,we prescribe Dirichlet boundary conditions in the last node,in order to obtain a unique solution.Thus,the last value of the solution vector will be aqvalue.So,in general,we write

    Using Eq.(51),we have

    where

    Let us consider again Eq.(58).If we introduce a matrix M,defined as

    then,from the first block row of Eq.(58),we have

    Note that the matrix M is rectangular in size.Let us break it into two blocks,a square block Mactivethat operates on Γlactiveand a block Minsidethat operates on Γlinside.Then we can write Eq.(61)as

    From Eq.(53),we see that

    Using Eq.(64)in Eq.(62),we have

    After introducing the following operators

    we can then write Eq.(65)as

    In Eq.(66) the updated solution on the active grid Γlactiveis expressed in terms of the previous solution and the updated solution outside the active grid.To have an expression for the iteration that takes place on the active region alone,we use Eq.(60) to replace uLi+1,c.Thus,

    where bcis the vector of boundary conditions outside the active region.Since the last entry of xLi+1cis aq-value and that of bcis au-value,then matrices D1and D2are the projections

    and we have

    Introducing the notation

    we can write Eq.(69)as

    Using Eq.(71)in Eq.(66),we obtain

    which can be written as

    With a vector v defined as

    Eq.(72)can be written as

    The vector v remains fixed throughout the iteration,since qlactive,g,bc,remain fixed,andremains the same throughout the iteration.Eq.(73) expresses the iteration that takes place on the fine grid Γlactiveas a fixed point iteration with iteration matrix Q defined as

    Thus,we have

    Table 1:Spectral radius of the iteration matrix Q for a Neumann problem for different combinations of fine and coarse grid sizes l and L respectively when local problem domain is the rectangle[0.2, 0.8]×[0, 0.4]and ?=[0, 1]×[0, 1]

    Table 2:Spectral radius of the iteration matrix Q for a Neumann problem for different combinations of grid sizes L and l,and a smaller local problem on[0.4, 0.6]×[0, 0.2]with still ?=[0, 1]×[0, 1]

    This iteration will converge if the spectral radius of the iteration matrix Q is less than unity.In Tab.1 and Tab.2,we have the spectral radii of Q for different combinations ofLandl.All the values are less than unity implying convergence of the fixed point algorithm.

    Consider the problem in Eq.(11).We identify ?localas ?local:= [0.2,0.8]×[0,0.4],as illustrated in Fig.2.The LDC is then used with various sizes of coarse grid sizeLand fine grid sizel.We expect the ratios

    to be less than unity as well.In Tab.3,we have computed these ratios for five iterations and different combinations of grid sizes.The results fit our expectations,to further illustrate guaranteed convergence of the algorithm.

    5 Conclusions

    The boundary element method is a relatively new method,whose development started in the late 1970’s although the underlying theory of integral equations could be traced to earlier decades.Its biggest computational disadvantage is that the resulting matrices are full matrices,making the method expensive.In the present study,we have successfully opened a new direction in the implementation of the method,by formulating a fixed point iterative scheme for the LDC technique and showing numerically that the algorithm converges.This approach will be very useful in the implementation of the method in problems withlocalised regions of high activity in the boundary that demand localised regions of high resolution grids.We have shown,by numerical experiments,that the resulting algorithm converges and thus provides a real alternative to composite grid solutions.There is still need to theoretically establish the convergence results,but given the complexity of the matrices involved,this paper presents a good opening to that line of research work.

    Table 3:The ratios γi defined in Eq.(76)when we use LDC to solve the problem in Eq.(11)

    Acknowledgement:We are grateful to the Swedish SIDA-Makerere bilateral project for the funds provided,which enabled time availability for writing this paper.

    精品视频人人做人人爽| 免费在线观看日本一区| 十分钟在线观看高清视频www| 十八禁人妻一区二区| 天堂中文最新版在线下载| 欧美精品高潮呻吟av久久| 日韩免费高清中文字幕av| 天天躁日日躁夜夜躁夜夜| 99国产精品一区二区三区| 成人永久免费在线观看视频| 成人永久免费在线观看视频| 亚洲欧美精品综合一区二区三区| 老司机亚洲免费影院| 成人18禁高潮啪啪吃奶动态图| 99久久综合精品五月天人人| 欧美成人免费av一区二区三区 | 国产精品 欧美亚洲| 亚洲情色 制服丝袜| 一级毛片精品| 咕卡用的链子| www日本在线高清视频| 天堂俺去俺来也www色官网| 亚洲三区欧美一区| 999久久久国产精品视频| 99re在线观看精品视频| 精品乱码久久久久久99久播| 一个人免费在线观看的高清视频| 亚洲国产精品一区二区三区在线| 久久香蕉国产精品| 亚洲av电影在线进入| 青草久久国产| 男女之事视频高清在线观看| 大香蕉久久成人网| 国产麻豆69| 正在播放国产对白刺激| 热re99久久国产66热| 99国产精品一区二区三区| 国产一区二区三区视频了| 丝瓜视频免费看黄片| 精品人妻在线不人妻| 美女高潮到喷水免费观看| 69av精品久久久久久| 别揉我奶头~嗯~啊~动态视频| 亚洲精品国产一区二区精华液| 亚洲精品av麻豆狂野| av不卡在线播放| 身体一侧抽搐| 国产成人系列免费观看| 国产蜜桃级精品一区二区三区 | 色综合欧美亚洲国产小说| 国产精品久久电影中文字幕 | 老司机亚洲免费影院| 女同久久另类99精品国产91| 久久久久久免费高清国产稀缺| tube8黄色片| 黄色毛片三级朝国网站| 亚洲一区二区三区不卡视频| 国产精品一区二区精品视频观看| 午夜视频精品福利| 午夜福利欧美成人| 啦啦啦 在线观看视频| 亚洲av熟女| 女警被强在线播放| 国产单亲对白刺激| 久久草成人影院| 午夜成年电影在线免费观看| 成人18禁高潮啪啪吃奶动态图| 免费一级毛片在线播放高清视频 | 久久久久久久精品吃奶| 女性生殖器流出的白浆| 国产成人精品久久二区二区91| 国产色视频综合| 成年女人毛片免费观看观看9 | 亚洲一区中文字幕在线| av不卡在线播放| 精品少妇一区二区三区视频日本电影| 丰满饥渴人妻一区二区三| 亚洲av成人不卡在线观看播放网| 亚洲第一av免费看| 亚洲av日韩精品久久久久久密| 69av精品久久久久久| 无人区码免费观看不卡| 伦理电影免费视频| 久久精品国产综合久久久| 国产精品亚洲一级av第二区| videos熟女内射| 91精品三级在线观看| 国产成人精品无人区| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美软件| 久久天堂一区二区三区四区| 一级作爱视频免费观看| 欧美乱色亚洲激情| 国产精品国产av在线观看| 欧美日韩成人在线一区二区| 91大片在线观看| 欧美人与性动交α欧美软件| 在线观看免费视频日本深夜| 黄色 视频免费看| 身体一侧抽搐| 在线观看www视频免费| 国产精品国产高清国产av | 久久国产精品大桥未久av| 久久久久久久久久久久大奶| 后天国语完整版免费观看| 国产极品粉嫩免费观看在线| e午夜精品久久久久久久| 熟女少妇亚洲综合色aaa.| 午夜免费鲁丝| 免费日韩欧美在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产蜜桃级精品一区二区三区 | 精品一区二区三区av网在线观看| www.999成人在线观看| 日本精品一区二区三区蜜桃| 日韩熟女老妇一区二区性免费视频| 欧美黄色片欧美黄色片| 大陆偷拍与自拍| 免费观看a级毛片全部| 欧美另类亚洲清纯唯美| 搡老熟女国产l中国老女人| 成人特级黄色片久久久久久久| 国产亚洲精品第一综合不卡| 亚洲精品美女久久久久99蜜臀| 男女下面插进去视频免费观看| 国产成人一区二区三区免费视频网站| 国产高清国产精品国产三级| 亚洲自偷自拍图片 自拍| 国产精品影院久久| 日本黄色日本黄色录像| 夜夜爽天天搞| 黄色丝袜av网址大全| 国产精品久久久久久精品古装| 捣出白浆h1v1| 色婷婷av一区二区三区视频| 又紧又爽又黄一区二区| 午夜福利在线免费观看网站| 久久久久精品国产欧美久久久| 国产精品1区2区在线观看. | 一级a爱视频在线免费观看| 老司机亚洲免费影院| 久久久久久免费高清国产稀缺| 精品一区二区三卡| 啦啦啦 在线观看视频| 这个男人来自地球电影免费观看| 亚洲一区高清亚洲精品| 免费在线观看日本一区| 侵犯人妻中文字幕一二三四区| 欧美在线黄色| 免费高清在线观看日韩| 日本一区二区免费在线视频| 国产高清国产精品国产三级| 亚洲色图av天堂| 天天影视国产精品| 日韩视频一区二区在线观看| 69精品国产乱码久久久| 亚洲情色 制服丝袜| 国产精品亚洲一级av第二区| 人人妻,人人澡人人爽秒播| 欧美激情 高清一区二区三区| 精品福利永久在线观看| 老司机午夜福利在线观看视频| 一级毛片高清免费大全| 999久久久精品免费观看国产| 亚洲片人在线观看| 一夜夜www| 亚洲九九香蕉| 亚洲精华国产精华精| 亚洲综合色网址| 亚洲在线自拍视频| 侵犯人妻中文字幕一二三四区| 99在线人妻在线中文字幕 | 黄色女人牲交| 夜夜夜夜夜久久久久| 美女国产高潮福利片在线看| 新久久久久国产一级毛片| 亚洲国产看品久久| 另类亚洲欧美激情| 满18在线观看网站| 看免费av毛片| av视频免费观看在线观看| 久9热在线精品视频| 欧美日韩国产mv在线观看视频| 一a级毛片在线观看| 久久性视频一级片| 曰老女人黄片| 一二三四社区在线视频社区8| 欧美丝袜亚洲另类 | 午夜日韩欧美国产| 国产主播在线观看一区二区| 色婷婷av一区二区三区视频| 不卡一级毛片| 久久中文字幕一级| 日日夜夜操网爽| 99re在线观看精品视频| 免费人成视频x8x8入口观看| 日本撒尿小便嘘嘘汇集6| 91精品国产国语对白视频| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 欧美日韩乱码在线| 国产单亲对白刺激| 91精品国产国语对白视频| 一边摸一边做爽爽视频免费| 国产av一区二区精品久久| 51午夜福利影视在线观看| aaaaa片日本免费| 91在线观看av| 亚洲精品在线观看二区| 亚洲中文av在线| 午夜精品久久久久久毛片777| 黑人欧美特级aaaaaa片| 国产亚洲av高清不卡| 午夜福利乱码中文字幕| 中国美女看黄片| 久久久久精品国产欧美久久久| 999久久久精品免费观看国产| 亚洲人成77777在线视频| 免费不卡黄色视频| 精品久久久精品久久久| 成人av一区二区三区在线看| 自线自在国产av| 日韩精品免费视频一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 在线看a的网站| 91麻豆av在线| a级毛片黄视频| 99re在线观看精品视频| 欧美精品人与动牲交sv欧美| 亚洲avbb在线观看| 精品福利观看| 久久精品aⅴ一区二区三区四区| av超薄肉色丝袜交足视频| 黄色丝袜av网址大全| 亚洲va日本ⅴa欧美va伊人久久| 国产精品综合久久久久久久免费 | 99riav亚洲国产免费| 9色porny在线观看| 欧美亚洲日本最大视频资源| www.999成人在线观看| 午夜精品久久久久久毛片777| 国产成人免费无遮挡视频| 成人国产一区最新在线观看| 国产亚洲欧美在线一区二区| x7x7x7水蜜桃| 不卡av一区二区三区| 久久狼人影院| 亚洲五月天丁香| 成人18禁高潮啪啪吃奶动态图| 欧美 日韩 精品 国产| 久久亚洲真实| 国产精品久久久久成人av| 亚洲精品美女久久av网站| 美女扒开内裤让男人捅视频| 亚洲成人免费av在线播放| 欧美色视频一区免费| a级毛片黄视频| 午夜福利在线免费观看网站| 一级毛片精品| 1024香蕉在线观看| 国产激情久久老熟女| 嫩草影视91久久| 久久精品91无色码中文字幕| 免费日韩欧美在线观看| 丝袜美腿诱惑在线| 热re99久久国产66热| 亚洲男人天堂网一区| 精品欧美一区二区三区在线| 国产亚洲精品第一综合不卡| 精品无人区乱码1区二区| 国产精品亚洲一级av第二区| 亚洲国产欧美一区二区综合| 久久久久国产精品人妻aⅴ院 | 久久久久国产精品人妻aⅴ院 | 水蜜桃什么品种好| 18禁美女被吸乳视频| 黄色毛片三级朝国网站| 99在线人妻在线中文字幕 | 久久久久久久午夜电影 | 久久久久久免费高清国产稀缺| 久久久久久久精品吃奶| 国产精品乱码一区二三区的特点 | 1024香蕉在线观看| 高清在线国产一区| av欧美777| 免费不卡黄色视频| av天堂在线播放| 成年人黄色毛片网站| 777久久人妻少妇嫩草av网站| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 亚洲av成人av| 精品少妇久久久久久888优播| 在线永久观看黄色视频| 成人18禁在线播放| 久久久精品免费免费高清| 亚洲欧美激情综合另类| 韩国精品一区二区三区| 美女 人体艺术 gogo| 亚洲精品国产区一区二| 亚洲五月婷婷丁香| 亚洲精华国产精华精| av不卡在线播放| 天天添夜夜摸| 欧美日韩国产mv在线观看视频| 精品人妻熟女毛片av久久网站| svipshipincom国产片| 日韩欧美国产一区二区入口| 午夜老司机福利片| 亚洲 国产 在线| 桃红色精品国产亚洲av| 精品少妇一区二区三区视频日本电影| 中亚洲国语对白在线视频| 久久精品亚洲熟妇少妇任你| 久久中文字幕一级| 午夜91福利影院| 欧美激情极品国产一区二区三区| 伦理电影免费视频| 91麻豆精品激情在线观看国产 | 91九色精品人成在线观看| 捣出白浆h1v1| 国精品久久久久久国模美| a级片在线免费高清观看视频| 国产精品免费大片| 午夜影院日韩av| 三级毛片av免费| 国产高清视频在线播放一区| 欧美人与性动交α欧美精品济南到| 国产亚洲精品久久久久久毛片 | 18禁观看日本| 一级作爱视频免费观看| 午夜视频精品福利| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品综合久久久久久久免费 | 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 丰满的人妻完整版| 最近最新中文字幕大全电影3 | 少妇的丰满在线观看| 极品少妇高潮喷水抽搐| 99久久精品国产亚洲精品| 国产欧美日韩一区二区三区在线| 操出白浆在线播放| 老熟妇仑乱视频hdxx| 久久午夜亚洲精品久久| 亚洲精品国产区一区二| 日韩大码丰满熟妇| 韩国av一区二区三区四区| 久久狼人影院| 欧美乱妇无乱码| 高清欧美精品videossex| 黑丝袜美女国产一区| 国产成人精品久久二区二区免费| 日韩视频一区二区在线观看| 日韩免费高清中文字幕av| 99国产综合亚洲精品| 中文字幕高清在线视频| 日韩视频一区二区在线观看| 国产成+人综合+亚洲专区| 大陆偷拍与自拍| 欧美乱码精品一区二区三区| 欧美日韩亚洲综合一区二区三区_| 久久精品国产综合久久久| 露出奶头的视频| 色综合婷婷激情| 国产成人精品在线电影| 91在线观看av| 性色av乱码一区二区三区2| 日韩免费高清中文字幕av| 久久久久久久午夜电影 | 我的亚洲天堂| 无遮挡黄片免费观看| 欧美日韩视频精品一区| 香蕉久久夜色| 久久人妻福利社区极品人妻图片| 欧美人与性动交α欧美软件| 亚洲aⅴ乱码一区二区在线播放 | 精品一品国产午夜福利视频| 黄色丝袜av网址大全| 他把我摸到了高潮在线观看| 久久ye,这里只有精品| 18禁国产床啪视频网站| 精品少妇久久久久久888优播| 日本黄色日本黄色录像| 丝袜美足系列| 久久中文字幕人妻熟女| 老司机深夜福利视频在线观看| 亚洲av第一区精品v没综合| 欧美精品啪啪一区二区三区| 国产精品 国内视频| 一二三四在线观看免费中文在| 一级片免费观看大全| 在线观看66精品国产| 国产黄色免费在线视频| 国产精品久久久久久精品古装| 波多野结衣一区麻豆| 亚洲国产欧美日韩在线播放| 国产成人一区二区三区免费视频网站| 午夜福利视频在线观看免费| 欧美成人免费av一区二区三区 | av片东京热男人的天堂| 日韩成人在线观看一区二区三区| 亚洲avbb在线观看| a级片在线免费高清观看视频| 黄片播放在线免费| 岛国毛片在线播放| 9191精品国产免费久久| 最近最新中文字幕大全免费视频| 少妇 在线观看| 亚洲五月婷婷丁香| 午夜精品国产一区二区电影| 亚洲成a人片在线一区二区| 女人高潮潮喷娇喘18禁视频| 久久久国产一区二区| 精品人妻在线不人妻| av天堂久久9| 亚洲成av片中文字幕在线观看| 脱女人内裤的视频| 国产精品自产拍在线观看55亚洲 | 这个男人来自地球电影免费观看| 久久婷婷成人综合色麻豆| 亚洲成国产人片在线观看| 久久国产乱子伦精品免费另类| 婷婷丁香在线五月| 久久精品国产清高在天天线| 高潮久久久久久久久久久不卡| 国产午夜精品久久久久久| 看片在线看免费视频| 国产男女超爽视频在线观看| 免费日韩欧美在线观看| 久久精品成人免费网站| 成人av一区二区三区在线看| 操美女的视频在线观看| 国产成人系列免费观看| 亚洲精品国产色婷婷电影| 久久中文看片网| 精品国产乱子伦一区二区三区| 国产欧美亚洲国产| 一区二区三区国产精品乱码| 成人亚洲精品一区在线观看| www日本在线高清视频| 午夜福利在线观看吧| 亚洲熟女毛片儿| 99香蕉大伊视频| 99国产极品粉嫩在线观看| 亚洲第一欧美日韩一区二区三区| 午夜免费观看网址| 国产成人免费无遮挡视频| 亚洲九九香蕉| 一二三四在线观看免费中文在| 91国产中文字幕| 999久久久国产精品视频| 国产97色在线日韩免费| 久久精品国产亚洲av香蕉五月 | 黄色视频,在线免费观看| 在线十欧美十亚洲十日本专区| 亚洲精品自拍成人| 亚洲国产欧美日韩在线播放| 欧美丝袜亚洲另类 | 12—13女人毛片做爰片一| aaaaa片日本免费| 日韩 欧美 亚洲 中文字幕| 高清在线国产一区| 大香蕉久久网| 亚洲专区字幕在线| 最近最新免费中文字幕在线| 老汉色∧v一级毛片| 三级毛片av免费| 国产又爽黄色视频| 国产精品一区二区免费欧美| 黄色视频,在线免费观看| 在线观看www视频免费| 国产极品粉嫩免费观看在线| 国产在线观看jvid| 最新美女视频免费是黄的| 久久香蕉国产精品| 亚洲va日本ⅴa欧美va伊人久久| 最近最新免费中文字幕在线| 亚洲国产欧美日韩在线播放| 亚洲一区高清亚洲精品| 热99久久久久精品小说推荐| 啦啦啦视频在线资源免费观看| 久久人妻福利社区极品人妻图片| 少妇 在线观看| 欧美人与性动交α欧美精品济南到| av天堂在线播放| 熟女少妇亚洲综合色aaa.| 中文字幕人妻丝袜一区二区| 午夜福利影视在线免费观看| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 日本wwww免费看| 日韩 欧美 亚洲 中文字幕| 亚洲情色 制服丝袜| 国产精品九九99| 欧美国产精品va在线观看不卡| 日韩大码丰满熟妇| 婷婷精品国产亚洲av在线 | 亚洲av成人av| 超碰成人久久| 香蕉国产在线看| 国产精品影院久久| www.熟女人妻精品国产| 国产一区二区激情短视频| 在线十欧美十亚洲十日本专区| 国产精华一区二区三区| 国产亚洲精品第一综合不卡| av天堂久久9| 90打野战视频偷拍视频| 国产精品1区2区在线观看. | 亚洲精品在线美女| 女人被狂操c到高潮| 亚洲第一青青草原| 搡老熟女国产l中国老女人| 亚洲一区二区三区欧美精品| 亚洲av成人不卡在线观看播放网| 国产精品 欧美亚洲| 五月开心婷婷网| 岛国在线观看网站| 99香蕉大伊视频| 99re在线观看精品视频| 欧美最黄视频在线播放免费 | 高清毛片免费观看视频网站 | 精品国产美女av久久久久小说| 一级毛片高清免费大全| 最近最新免费中文字幕在线| 日韩欧美国产一区二区入口| 久久久久精品国产欧美久久久| 午夜福利免费观看在线| 国产乱人伦免费视频| 一级作爱视频免费观看| 日韩精品免费视频一区二区三区| 亚洲精品av麻豆狂野| 69av精品久久久久久| 亚洲国产欧美日韩在线播放| 大片电影免费在线观看免费| 久久香蕉国产精品| 欧美精品亚洲一区二区| 国产极品粉嫩免费观看在线| 久久久精品免费免费高清| 中文字幕高清在线视频| 视频在线观看一区二区三区| 十八禁高潮呻吟视频| 国内久久婷婷六月综合欲色啪| 人人妻人人澡人人爽人人夜夜| 在线观看66精品国产| x7x7x7水蜜桃| 黄片小视频在线播放| 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 啦啦啦免费观看视频1| 欧美最黄视频在线播放免费 | 免费观看a级毛片全部| 啦啦啦免费观看视频1| 亚洲 欧美一区二区三区| 亚洲av日韩在线播放| 女人被躁到高潮嗷嗷叫费观| 人妻久久中文字幕网| 天堂√8在线中文| 欧美不卡视频在线免费观看 | 亚洲av成人一区二区三| 国产成人影院久久av| 亚洲少妇的诱惑av| 成人18禁高潮啪啪吃奶动态图| 精品国产乱码久久久久久男人| 国产99白浆流出| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟妇熟女久久| av免费在线观看网站| 美女 人体艺术 gogo| 国产91精品成人一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 成年人黄色毛片网站| 国产又色又爽无遮挡免费看| 热re99久久国产66热| 超色免费av| 丁香欧美五月| 亚洲色图综合在线观看| 一级,二级,三级黄色视频| 婷婷精品国产亚洲av在线 | 国产av精品麻豆| 黄网站色视频无遮挡免费观看| 成年女人毛片免费观看观看9 | 两个人看的免费小视频| 亚洲av日韩在线播放| 久久人人97超碰香蕉20202| 国产精品 欧美亚洲| 国产精品av久久久久免费| 999精品在线视频| 日韩欧美在线二视频 | 久热爱精品视频在线9| 国产亚洲欧美98| 深夜精品福利| 下体分泌物呈黄色| 三级毛片av免费| 免费在线观看完整版高清| 欧美激情久久久久久爽电影 | 国产色视频综合| 精品视频人人做人人爽| 精品国产国语对白av| 两性夫妻黄色片| 精品一品国产午夜福利视频| 在线观看舔阴道视频| 久久九九热精品免费| 午夜福利乱码中文字幕| 美国免费a级毛片| 成人黄色视频免费在线看| 久久精品国产亚洲av香蕉五月 | 黄片大片在线免费观看| 亚洲欧美色中文字幕在线| 看片在线看免费视频| 国产精品偷伦视频观看了| 一a级毛片在线观看| 久久精品国产综合久久久| 国产熟女午夜一区二区三区|