• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An IB Method for Non-Newtonian-Fluid Flexible-Structure Interactions in Three-Dimensions

    2019-05-10 06:01:44LuodingZhu

    Luoding Zhu

    1 Indiana University-Purdue University Indianapolis,USA.

    Abstract: Problems involving fluid flexible-structure interactions(FFSI)are ubiquitous in engineering and sciences.Peskin’s immersed boundary(IB)method is the first framework for modeling and simulation of such problems.This paper addresses a three-dimensional extension of the IB framework for non-Newtonian fluids which include power-law fluid,Oldroyd-B fluid,and FENE-P fluid.The motion of the non-Newtonian fluids are modelled by the lattice Boltzmann equations(D3Q19 model).The differential constitutive equations of Oldroyd-B and FENE-P fluids are solved by the D3Q7 model.Numerical results indicate that the new method is first-order accurate and conditionally stable.To show the capability of the new method,it is tested on three FFSI toy problems:a power-law fluid past a flexible sheet fixed at its midline,a flexible sheet being flapped periodically at its midline in an Oldroyd-B fluid,and a flexible sheet being rotated at one edge in a FENE-P fluid.

    Keywords: Fluid flexible-structure interaction,immersed boundary method,lattice Boltzmann,power-law,Oldroyd-B,FENE-P.

    1 Introduction

    Phenomena of fluid flexible-structure interactions (FFSI) are ubiquitous in various fields of engineering and sciences.For instances,clothes moving in a washing machine,booms floating in ocean preventing oil pollution,blood flowing in deformable blood vessels,to name just a few.Due to complexity of such problems,mathematical modeling and computer simulation of FFSI problems are challenging.The first methodology for modeling and simulation of FFSI problems is probably the immersed boundary (IB)method introduced by Peskin [Peskin (1972,1973)].Since the birth of the IB method,numerous methods for FFSI problems are developped.These include immersed boundary method[Iaccarino and Verzicco(2003);Mittal and Iaccarino(2005)],Arbitrary Lagrangian Eulerian (ALE) [Hughes,Liu and Zimmermann (1981);Donea,Giuliani and Halleux(1982);Yang,Sun,Wang et al.(2016)],the lattice Boltzmann[Lallemand and Luo(2003)],fictitious domain [Glowinski,Pan and Periaux (1994a,b)],front tracking [Glimm,Grove,Li et al.(1998)],immersed interface[Leveque and Li(1994);LeVeque and Li(1997);Li and Lai(2001)],blob-projection[Cortez(2000)],phase field[Sun,Xu and Zhang(2014);Wick(2016);Zheng and Karniadakis(2016);Mokbel,Abels and Aland(2018)],immersed finite element[Zhang,Gerstenberger,Wang et al.(2004);Liu,Tang et al.(2007)],material points[Sulsky,Chen and Schreyer(1994);Sulsky,Zhou and Schreyer(1995)],immersed continuum[Wang and Liu(2004);Wang(2006)],the level set[Hou,Li,Osher et al.(1997);Xu,Li,Lowengrub et al.(2006);Cottet and Maitre (2006)],the gas-kinetic [Jin and Xu(2008)],and monolithic approach[Hübner,Walhorn and Dinkler(2004);Hron and Turek(2006);Barker and Cai(2010)].

    Because of complexity and diversity of FFSI problems and limitations of mathematics and computer technology,the immersed boundary method has had many different variants designed specifically for FFSI problems with various peculiar features.Examples include the original versions[Peskin(1972,1977);Peskin and McQueen(1996)],the compressible fluid version [Wang,Currao,Han et al.(2017)],the fluid-solute version [Lee,Griffith and Peskin (2010)],the rigid body version [Kim and Peskin (2016)],the thick rod version [Lim,Ferent,Wang et al.(2008)],the volume-conservation version [Peskin and Printz(1993);Rosar and Peskin(2001)],the poroelastic version[Strychalski,Copos,Lewis et al.(2015)],the adaptive mesh-refinement [Roma,Peskin and Berger (1999);Griffith,Hornung,McQueen et al.(2007)],the porous media [Stockie (2009)],the formally 2ndorder[Lai and Peskin(2000);Griffith and Peskin(2005)],the multigrid [Zhu and Peskin(2002);Zhu and Chin (2008)],the penalty [Kim and Peskin (2007)],the finite element[Boffiand Gastaldi (2003);Boffi,Gastaldi,Heltai et al.(2008);Griffith and Luo (2012);Hua,Zhu and Lu(2014)],the stochastic [Atzberger,Kramer and Peskin(2007);Atzberger and Kramer(2008)],the lattice-Boltzmann [Feng and Michaelides(2004,2005);Zhu,He,Wang et al.(2011a);Tian,Luo,Zhu et al.(2011);Cheng and Zhang(2010);Wu and Shu(2009);Shu,Liu and Chew (2007);Niu,Shu,Chew et al.(2006);Wu,Shu and Zhang(2010);Cheng,Zhu and Zhang(2014);Liu,Peng,Liang et al.(2012);Zhang,Cheng,Zhu et al.(2016)],the variable viscosity version [Fai,Griffith,Mori et al.(2013,2014)],the vortex-method version [McCracken and Peskin (1980)],the implicit versions [Fauci and Fogelson(1993);Taira and Colonius(2007);Mori and Peskin(2008);Hou and Shi(2008);Newren,Fogelson,Guy et al.(2008);Hao and Zhu(2010,2011)],

    Newtonian fluids are assumed for most of the existing versions of the IB method.However,FFSI problems may involve non-Newtonian fluids.For instance,cytoplasm interacting with cytoskeleton in a living cell;blood interacting with red/white cells in a blood vessel;and poroelastic tissue interacting with a cancer cell during metastasis.Many special properties are displayed by non-Newtonian fluids including normal stress differences and shear thinning/thickening.In contrast to Newtonian fluids which may be described by a universal strain-stress equation;there exists no universal constitutive equation for all non-Newtonian fluids.Different non-Newtonian fluids have to be described by different constitutive equations (algebraic or differential) characterizing history effects and strainstress relationships.

    Note that the existing non-Newtonian immersed boundary methods [Chrispell,Cortez,Khismatullin et al.(2011);Chrispell,Fauci and Shelley(2013);Tian(2016);Zhu,Yu,Liu et al.(2017)] are for power-law or Oldroyd-B fluids in two-dimensions except [Zhu,Yu,Liu et al.(2017)]which is three-dimensional for power-law fluids.Tian et al.[Ma,Wang,John et al.(2018)] are developping an immersed-boundary lattice-Boltzmann method for viscoelastic fluids including Oldroyd-B and FENE-CR fluids.In their work the motion equations of the solid are solved for by finite difference or finite element methods.In this paper we discuss our recent development of a 3D IB methods for three non-Newtonian fluids:power-law,Oldrod-B[Oldroyd(1950)],and FENE[Peterlin(1961)].These models can describe many non-Newtonian fluids encountered in real-world problems including blood and polymeric fluids.Some preliminary results was reported in a short letter [Zhu(2018)].Details and more tests of the new method,including the integration of the three non-Newtonian models are presented in the current paper.

    In our new method,the lattice Boltzmann equations,the D3Q19 model [Qian (1990);SY and GD (1998)],are used to model the fluid flow.The power-law,the Oldroyd-B model,and the FENE-P model are used to model constitutive equations for various non-Newtonian fluids.The formal one(power-law)is incorporated into the lattice Boltzmann D3Q19 model by an algebraic approach;the latter two are numerically solved by the lattice Boltzmann D3Q7 model[Malaspinas,Fiétier and Deville(2010)].The deformable structure is modelled by elastic fibers which can be stretched,compressed,and bent.The fluid-structure-interaction is modelled by the Dirac delta function,as in Peskin’s original immersed boundary method.Note that in our method,the three non-Newtonian models are integrated seamlessly via a model parameter.Selection of a specific model is done by setting a specific numerical value to the parameter.This is a unique feature of our hybrid method thanks to the advantages of using lattice Boltzmann approach for modeling both fluid motions and the corresponding constitutive equations.

    To examine the new method and demonstrate its capability,we consider three FFSI toy problems- a power-law fluid flow passes a deformable sheet tethered at the middleline,a flexible rectangular sheet is flapped sinusoidally at its midline in a stationary Oldroyd-B fluid,and a flexible rectangular sheet is rotated at one edge in a stationary FENE-P fluid.The remaining article is as follows.Section 2 gives the complete mathematical formulation of the IB method for non-Newtonian fluids.Section 3 discusses details of the numerical methods for the mathematical formulation.Section 4 addresses the verification and validation of the new method and its implementation.Section 5 reports some main simulation results for each of the three test problems.Section 6 concludes the paper with a summary.

    2 Mathematical formulation

    The immersed boundary formulation,a nonlinear system of differential-integral equations,describing the motion of a generic flexible structure in a non-Newtonian fluid(power-law,Oldroyd-B or FENE-P)may be written as follows.The equations are listed first and then followed by explanation.

    Eqs.(1)and(2)are the classic Navier-Stokes equations for a viscous incompressible fluid where u denotes the fluid velocity,ρdenotes the density,pthe pressure.The symbolfibdenotes the Eulerian force applied by the immersed structure to the fluid,bfdenotes other external forces exerted on the fluid,for example,the gravity.The letter D=(?u+?uT)/2 denotes the strain rate tensor,ηthe fluid dynamic viscosity,and Π the viscoelastic stress tensor.Note that the two equations are valid for both Newtonian and non-Newtonian fluids.For Newtonian fluids,ηis constant and Π is zero.For non-Newtonian fluids obeying power-law,ηis given by Eq.(3) whereis the shear rate,Dijis theijthcomponent of strain rate tensor,constantsη0andnare model parameters describing the properties of the non-Newtonian fluid.Note that whenn= 1 the fluid becomes Newtonian.For non-Newtonian fluids such as polymeric fluids,the viscoelastic stress Π may be computed from the conformation tensorC(Eq.(4)),whereκpandμpare the relaxation time and dynamical viscosity of the polymer,respectively.The polymer conformation tensorCis governed by Eq.(4),i.e.,the FENE-P model[Peterlin(1961)].The variablesaandbare given by Eq.(5) whererpis a model parameter related to the maximum length of polymer molecules which is permitted andtr(C)is the trace of the conformation tensorC.Note that variableais a nonlinear function of the conformation tensorCand the FENE-P model is a nonlinear system of hyperbolic partial differential equations.Whena=b= 1,FENE-P model reduces to the popular linear Oldroyd-B model [Oldroyd (1950)].Note that the Navier-Stokes equations are parabolic and elliptic in nature,but the FENE-P model (Eq.(4)) is hyperbolic.They are coupled through fluid velocity u and viscoelastic force Π.

    The immersed boundary Eulerian force densityfibin Eqs.(1)and(2)can be computed via Eq.(6),whereαis the Lagrangian coordinate of the immersed structure.The functionδis the classic Dirac delta function.The symbolXis Lagrangian position of the structure.The function F is the corresponding Lagrangian force density,which is computed from the elastic potential energies (Eq.(8)) of the structure.In Eq.(8),the first integral represents the contribution from stretching/compression(Es)and the second one represents the contribution from bending(Eb).The quantitiesKbandKsare bending and stretching coefficients of the elastic constitutive fibers of the deformable structure.Their numerical values are related to the Youngs’modulus and Poisson ratio of the structure[Strychalski,Copos,Lewis et al.(2015)].The velocity of the immersed structureU(α,t)is interpolated from the velocity of surrounding fluid by Eq.(10).Note that this equation by definition dictates that the immersed structure must follow the motion of fluid because of fluid viscosity.That is,the no-slip boundary condition is enforced on the fluid-solid interface.There are three major dimensionless ratios in the FFSI problems involving non-Newtonian fluids:Reynolds numberstructure flexure modulusa nd Weissenberg number for polymeric fluidWi=κp(or exponentnfor power-law fluid).In above definition,ρcis the characteristic fluid mass density,Ucis the characteristic flow speed,Lcis the characteristic length of the immersed structure,κpis the relaxation time of polymer,is the characteristic flow shear rate,νpis the polymer kinematic viscosity,andνfis the fluid kinematic viscosity.Note thatRemeasures the ratio of inertial force and viscous force,measures the ratio of the elastic force and inertial force,Wimeasures the ratio of viscoelastic force and viscous force.The index of power-lawn<1 corresponds to shear-thinning fluid,n >1 corresponds to shear-thickening fluid,andn= 1 corresponds to Newtonian fluid.

    3 Numerical methods

    As we can see,the immersed boundary formulation for the FFSI problems of non-Newtonian fluids is a nonlinear system of integral and partial differential equations(PDE).The PDEs are of mixed type (hyperbolic,parabolic,and elliptic).Numerical solution of this kind of hybrid system is challenging.Here we choose to use the lattice Boltzmann approach [Wolf-Gladrow (2000);Guo and Shu (2013);Huang,Sukop and Lu (2015);Succi (2018)] for this system.The lattice Boltzmann approach treats the incompressible flows as slightly compressible flows (which are governed by hyperbolic PDEs).This kind of artificial compressibility approach for the flow equations is consistent with the hyperbolic nature of the constitutive equations of the non-Newtonian fluids such as FENEP fluids.The details of the discretizations for the flow equations,constitutive equations,and immersed boundary equations are given as below.

    The lattice Boltzmann equations,the D3Q19 model[Qian(1990);SY and GD(1998)],are used to solve numerically the viscous incompressible flow equations (Eqs.(1) and (2))for non-Newtonian fluids.Carefully chosen 19 velocities (with three speeds) are used to discretize the particle velocity spaceξ,ξi(i=0,1,...,18):

    Usegi(x,t)to denote the single-particle velocity distribution function along the direction ofξi(i=0,1,...,18).The lattice Boltzmann equation(LBE)advancinggi(x,t)one-timestep forward along the directionξican be written as

    Here ft=fib+?·Π+fb.The relaxation timeτis related to the fluid kinematic viscosityThe weightwiis given as follows:

    The functionis the discretization of the equilibrium distribution function:

    The method introduced in Guo et al.[Guo,Zheng and Shi (2002)] is applied to treat the external force term.Note that the lattice Boltzmann equation (Eq.(11)) can be regarded as an explicit second-order accurate discretization in space and time of the flow equations for viscous non-Newtonian fluids by a Lagrangian approach [Wolf-Gladrow (2000)].It is equivalent to a second-order finite difference scheme for the viscous incompressible Navier-Stokes equations[Junk(2001)].

    For non-Newtonian fluids modelled by power law,the constitutive equation is incorporated into the lattice Boltzmann flow model (the D3Q19) algebraically by Eq.(3).The shear rate may be calculated as follows:is computed bywhereHeregkis the velocity distribution function alongkthdirection,g(eq)kis the equilibrium distribution function,andξki(k= 0,1,...,18;i= 1,2,3) is theithcomponent of thekthdiscrete direction.See[Zhu,Yu,Liu et al.(2017)]for details.

    For non-Newtonian fluids whose constitutive laws obeying the FENE-P model(including the Oldroyd-B model),the lattice Boltzmann D3Q7 model for advection-diffusion equations [Malaspinas,Fiétier and Deville (2010)] is applied for numerical solutions of their constitutive equations.It is coupled with the lattice Boltzmann model for flow equations through the flow velocity u and viscoelastic force Π.Lattice Boltzmann particles in the D3Q7 model are allowed to move along six discrete directionsζi,i=1,2,...,6 at a node,where

    Particles can also stay at the nodeζ0= (0,0,0).For a given component of the configuration tensorCαβ,at a given node x,along a given directionζi,i= 0,1,2,...,6,the single-particle velocity distribution functionqαβiis evolved according to

    Where the relaxation timeχis related to the diffusivity constantκpThe ratioκp/μpis set to be a very small number e.g.10?6,hereμpis polymer dynamical viscosity.The equilibrium distributionwhereζikis thekth(k= 1,2,3)component of velocityζi(i= 0,1,2,...,6).FunctionTheαβthcomponent of the conformation tensor is computedThe viscoelastic force in Eq.(1)is computed by?·Π =and the spatial derivative?xi,i= 1,2,3 is discretized by the central difference scheme.

    The macroscopic fluid mass densityρ(x,t)and momentum(hence velocity)ρu(x,t)can be computed fromgi(x,t)at each node by

    Let integer m denote time step:gm=g(x,ξ,m),Xm(α) = X(α,m),um= u(x,m),pm=p(x,m),ρm=ρ(x,m).Let the flexible structure be discretized by a set of elastic fibers with Lagrangian coordinateα2.Letα2=k2?α2,wherek2is an integer.Let a fiber be discretized by a set of points with Lagrangian coordinateα1.Letα1=k1?α1,wherek1is an integer.

    Then the elastic potential energy is discretized by:

    where the first term corresponds to the stretching/compression energy and the second term corresponds to the bending energy.The Lagrangian force density at node with indexl,(F)l,l=1,2,...,Nf,is given by

    Hereδklis the Kroneckerδ:δkl= 1 ifk=landδkl= 0 if.The integral equations in the immersed boundary formulation are computed by the trapezoidal rule:

    Here Γ denotes the immersed structure,? denotes the fluid domain.And ?x,?y,and ?zdenote the meshwidth inx,y,andzdirections.The Diracδfunction is discretized byδd:

    Hereφ(r) = 0.25(1+cos(0.5πr)) for|r| ≤2 and is 0 otherwise.For other choices ofφ(r)see Peskin et al.[Peskin and McQueen(1996)].The motion equation of the structure is discretized by

    For clarity the algorithm of the IB formulation for non-Newtonian fluids is summarized as follows.Suppose all variables are known at time step t (an integer),the procedure for updating all of the variables for next time step t+1 is as follows.

    0)Initialization of all variables;

    1)Advance the LBE(Eq.(11))for flow(D3Q19 model)from t to t+1 using fiband Π from time step t;compute the new fluid velocity u,velocity gradient?u,and mass densityρ;

    2)Advance the LBE(Eq.(13))for the constitutive equations(the D3Q7 model)from t to t+1 using u andCfrom time step t;compute the viscoelastic force?·Π from the newly updated conformation tensorC,

    3)Compute the structure velocity U from the fluid velocity u by Eq.(19);

    4)Update the structure position by its velocity via Eq.(21);

    5)Compute the immersed boundary force exerted by the structure to the fluid using its new configuration via Eq.(17);

    6)Convert the Lagrangian force to Eulerian force by Eq.(18);

    7)Compute the new equilibrium distribution functions of theandg(eq)using the newly obtained fluid velocity u,conformation tensorC,and mass densityρ;

    8)Go to 1).

    Note that the algorithm for non-Newtonian fluids can be easily combined with algorithm for Newtonian fluids using the D3Q19 model.Therefore,the new method may be implemented in one computer program with a single model parametermp(an integer)to switch between Newtonian and non-Newtonian fluids.The optionmp= 0 selects Newtonian fluid.The code will bypass the D3Q7 model and set Π = 0,n= 1.The optionmp= 1 selects the power-law fluid.The code will bypass the D3Q7 model and set Π=0.The optionmp=2 selects the Oldroyd-B fluid.The code will execute the D3Q7 model witha=b= 1 and setn= 1.The optionmp= 3 selects the FENE-P fluid.The code will execute the D3Q7 model and setn= 1.Thus the Newtonian,power-law,Oldroyd-B,and FENE-P fluids are seamlessly integrated together in the new IB method via the lattice Boltzmann approach and they can be implemented in a single computer code.

    4 Verification and validation

    The numerical methods involved and their implementations used in the work have been verified and validated in different settings.The lattice Boltzmann method (D3Q19) and its implementation have been verified and validated in Zhu et al.[Zhu,Tretheway,Petzold et al.(2005)].The lattice-Boltzmann immersed-boundary method (LB-IB) with its implementation for Newtonian fluid flows have been verified and validated in Zhu et al.[Zhu,He,Wang et al.(2011b)].The LB-IB for power-law fluid is verified and validated in Zhu et al.[Zhu,Yu,Liu et al.(2017)].The preliminary verification and validation of the LB-IB method for Oldroyd-B/FENE-P have been reported in a short letter [Zhu (2018)].In this paper,the newly developped LB-IB method for polymeric flows are further tested on two new FFSI toy problems:a flexible sheet being flapped periodically at the middle and being rotated constantly at one edge in stationary Oldroy-B and FENE-P fluids in three dimensions.Many simulations with various dimensionless parameters indicate that the method is conditionally stable.Mesh refinement studies indicate the method is first-order accurate,which is consistent with the IB framework in general.

    5 Test problems

    In this section we consider three FFSI model problems.I)a power-law fluid flows around a flexible rectangular sheet fixed at the midline in a three-dimensional rectangular domain;II)a flexible rectangular sheet is flapped sideways(left and right)at the midline sinusoidally in a 3D rectangular box full of an Oldroyd-B;III) a flexible rectangular sheet is rotated constantly at one edge with a constant speed in a 3D rectangular box full of a FENE-P fluid.

    In case I,the structure is initially stationary.The flow passes around it and causes it to bend and get aligned with the flow.No-slip boundary condition is applied on the top,bottom,front,and rear rigid walls.Constant velocity is specified at the inlet and outlet boundaries(inx-axis).In cases II and III,the fluid is initially stationary and the structure is forced to move.The active motions of the structures drive the fluid flow.Periodic boundary condition is applied along all directions of the computational domain.In all cases,thex?axis points from left to right;they?axis points from front to rear;thez?axis points from bottom to top.The sheets are composed of two groups of elastic fibers which can be compressed,stretched,and bent.The two groups of fibers are cross-linked and are orthogonal to each other initially.This type of FFSI problem possesses three significant dimensionless parameters:flow Reynolds numberRe,structure bending modulusand fluid Weissenberg numberWi(or exponentnfor power-law fluid).Numerous simulations on the three model problems using various combinations of these parameters are performed to test the capability of the new method.Some representative simulation results are reported below for each case.

    Case I)An elastic sheet with aspect ratio 1:2(width versus length)is placed initially on they?zplane(i.e.,vertical)in the middle of the box(inx,y,andzdirections).Its midline is fixed in a power-law fluid flow and the sheet is free to move otherwise.This problem was intensively studied by Zhu et al.[Zhu,Yu,Liu et al.(2017)].More simulations are performed and some typical results from different combination of values ofRe,nare shown here.The left panel in Fig.1 shows the position and shape of the sheet at several equally distributed time instants from a simulation withRe= 80,b= 0.0001,n= 0.5.The left most is the initial position(vertical and flat).The right most is the final position(curved).Starting from the initial configuration,the sheet moves and deforms with the flow,and finally sets down to a quasi-steady state.Note that the position/shape of the sheet partially overlap for some instants.The right panel in Fig.1 shows streamlines of the flow field from a simulation withRe= 120,b= 0.05,n= 0.6.The gray surface is the position and shape of the sheet.The streamlines start from the lower half plane of the inlet(using tens of uniformly spaced seeds).Notice the twisted curves behind the sheet.These streamlines come from the lower half plane at inlet and move to the upper half plane after past the sheet.This reveals the complicated flow patterns right behind the sheet.

    Figure 1:Position and shape of the sheet at several instants(left)and streamlines(right)

    Case II) A deformable sheet of the same aspect ratio is initially placed the same way as in case I.Its midline is now forced to flap sinusoidally (on thex?yplane alongx-direction) in an Oldroyd-B fluid.Thex-coordinate of the leading edge is given byHerex(t) is thex-coordinate of the sheet middle-line,A denotes prescribed amplitude of flapping,P denotes flapping period,and t denotes time.Some typical results from different combination of values ofRe,,Wiare given below.In Fig.2 the left panel plots the shape of the sheet at several equally separated instants from a simulation withRe= 40,b= 0.005,Wi= 0.1.The left most is the initial position(vertical and flat).The rest is the shape(not physical position)of the sheet at several time instants within a period.Note that the sheet physical position (x-coordinate) is shifted horizontally by a constant for the purpose of displaying the shapes at multiple instants on the same panel.Starting from the initial position,the sheet moves and deforms with the flapping midline.Spontaneous motion of the sheet alongyandzdirections are not seen.The right panel in Fig.2 shows streamlines of the flow field from a simulation withRe= 60,b= 0.004,Wi= 0.1.The gray surface(partially buried in the curves)at the center is the position and shape of the sheet.All streamlines start from a vertical plane(parallel to the initial position of the sheet) near the left boundary of the computational domain (using 25 uniformly spaced seeds).Notice the colors of the curves denote the velocity magnitude.The twisted curves around the sheet indicates the complexity of flow patterns in the vicinity of the structure.

    Figure 2:Shape of the sheet at several instants(left)and streamlines(right)

    Case III)An elastic sheet with aspect ratio of 1:4(width versus length)is initially put on a horizontal plane of thexandyaxes in the middle of the box in all three directions (x,y,andz).Its right edge is rotated constantly and periodically with a periodP(on they?zplane anticlockwise) in a still FENE-P fluid.Again,the structure is not restricted elsewhere and is allowed to move freely in other directions.Some typical results from different combination of values ofRe,,Wiare displayed here.In Fig.3 the left panel shows the shape/position of the sheet at a few equally distributed instants from a simulation withRe=10,b=0.005,Wi=1.0.The top most is the initial position(horizontal and flat).The remaining is the shape(not physical position)of the sheet at several time instants within a period.Note that the sheet vertical position is shifted down by a constant for the same purpose as in case II.We see that as the right edge is being rotated,the rest of the sheet follows the rotation motion.Due to flexibility (instead of being rigid),the leading edge (initially straight) deforms into a curve and the entire sheet deforms into a helical structure.As time goes by,more helical structures appear and they appear to move downstream(from righ to left)in an animation.Interestingly the entire sheet moves forward towards right boundary slowly.The right panel in Fig.3 shows streamlines of the flow field from a simulation withRe= 10,b= 0.005,Wi= 1.0.The gray surface (partially blocked by the curves)is the position and shape of the twisted sheet.All streamlines start from a horizontal plane parallel and close to the initial position of the sheet(20 uniformly spaced seeds).The colors of the curves denote the velocity magnitude.The tightly wound curves around the sheet indicate a rotating flow near the sheet.

    Figure 3:Shape of the sheet at several instants(left)and streamlines(right)

    6 Summary

    The existing immersed boundary (IB) framework has been extended in three dimensions to FFSI problems involving non-Newtonian fluids.The fluids may be power-law,Oldroyd-B,or FENE-P.The viscous incompressible Navier-Stokes equations for the flow and the constitutive equations for the fluid (Oldroyd-B and FENE-P) are simultaneously solved with the lattice Boltzmann approaches by the D3Q19 and the D3Q7 models,respectively.The power-law is incorporated algebraically into the lattice Boltzmann flow model.The new method is tested on three FFSI toy problems:deformable sheets interacting with power-law,Oldroyd-B,and FENE-P fluids in three dimensions.Our results show that the new IB method is first-order accurate and conditionally stable.

    Acknowledgment:The work is supported by the US National Science Foundation(NSF)through the research grant DMS-1522554.We thank the unknown Reviewers for their helpful suggestions and comments which have helped us.

    美女内射精品一级片tv| 九九久久精品国产亚洲av麻豆| 国产精品日韩av在线免费观看| 国产高清有码在线观看视频| 91精品国产九色| 久久久欧美国产精品| 天堂中文最新版在线下载 | 亚洲七黄色美女视频| 99在线视频只有这里精品首页| 桃色一区二区三区在线观看| 欧美人与善性xxx| 男女啪啪激烈高潮av片| 国产精品三级大全| 人妻少妇偷人精品九色| 国产欧美日韩精品一区二区| 三级国产精品欧美在线观看| 97超视频在线观看视频| 免费观看的影片在线观看| 日本三级黄在线观看| 国产探花极品一区二区| 久久国产乱子免费精品| 国产精品爽爽va在线观看网站| 一本久久精品| 级片在线观看| 亚洲中文字幕日韩| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 干丝袜人妻中文字幕| 人人妻人人看人人澡| 国产精品综合久久久久久久免费| 欧美精品国产亚洲| 麻豆成人午夜福利视频| 国产又黄又爽又无遮挡在线| 免费观看在线日韩| 99在线人妻在线中文字幕| 亚洲欧美清纯卡通| 欧美高清性xxxxhd video| 久久鲁丝午夜福利片| 欧美日本亚洲视频在线播放| 最近中文字幕高清免费大全6| 日韩 亚洲 欧美在线| 99热精品在线国产| 天天躁夜夜躁狠狠久久av| 亚洲内射少妇av| 亚洲四区av| 日韩欧美国产在线观看| 小说图片视频综合网站| 日韩欧美三级三区| 国产片特级美女逼逼视频| 日本一本二区三区精品| 国产精品综合久久久久久久免费| 天堂√8在线中文| 亚洲欧美清纯卡通| 成人一区二区视频在线观看| 两个人的视频大全免费| 淫秽高清视频在线观看| 男人狂女人下面高潮的视频| 少妇高潮的动态图| 最新中文字幕久久久久| 国产成人影院久久av| 亚洲天堂国产精品一区在线| 边亲边吃奶的免费视频| 有码 亚洲区| 国产成人aa在线观看| 成人一区二区视频在线观看| 久久人人精品亚洲av| 免费大片18禁| 欧美极品一区二区三区四区| 高清午夜精品一区二区三区 | 国产色爽女视频免费观看| 中文亚洲av片在线观看爽| 国产精品久久久久久精品电影| 日日摸夜夜添夜夜爱| 亚洲人成网站在线播| 三级经典国产精品| 日韩三级伦理在线观看| 美女cb高潮喷水在线观看| 丝袜喷水一区| 国产爱豆传媒在线观看| av在线天堂中文字幕| 国产黄色视频一区二区在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 亚洲内射少妇av| 能在线免费观看的黄片| 中文字幕av在线有码专区| 日日啪夜夜撸| 日本免费a在线| 性欧美人与动物交配| 不卡视频在线观看欧美| 看非洲黑人一级黄片| 色播亚洲综合网| 国产久久久一区二区三区| av福利片在线观看| 精品久久久久久久久av| 国产人妻一区二区三区在| 国产精品电影一区二区三区| 亚洲欧美日韩无卡精品| videossex国产| 最近最新中文字幕大全电影3| 夫妻性生交免费视频一级片| 变态另类丝袜制服| 夜夜夜夜夜久久久久| 国产成人一区二区在线| 日日撸夜夜添| 在线免费观看不下载黄p国产| 国产av麻豆久久久久久久| 成人毛片60女人毛片免费| 精品久久国产蜜桃| 久久精品夜色国产| 国内精品一区二区在线观看| 亚洲欧洲国产日韩| 日本一二三区视频观看| 国产亚洲精品av在线| 2021天堂中文幕一二区在线观| 狂野欧美激情性xxxx在线观看| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 在线免费观看的www视频| 日韩亚洲欧美综合| 欧美日韩国产亚洲二区| 国产私拍福利视频在线观看| 国产片特级美女逼逼视频| 少妇的逼水好多| 中文欧美无线码| 欧美在线一区亚洲| 日韩欧美国产在线观看| 国产高潮美女av| 乱人视频在线观看| 级片在线观看| 成人毛片a级毛片在线播放| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 少妇高潮的动态图| 精品久久国产蜜桃| 精品久久久久久成人av| 亚洲成人久久性| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 国产精品乱码一区二三区的特点| 免费观看a级毛片全部| 一区二区三区免费毛片| 中文字幕av在线有码专区| 成人三级黄色视频| 午夜精品在线福利| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄 | 简卡轻食公司| kizo精华| av免费在线看不卡| 免费看av在线观看网站| 亚洲国产高清在线一区二区三| 国产男人的电影天堂91| 久久久国产成人精品二区| 久久久久久久久久久免费av| 国产av不卡久久| a级毛色黄片| 少妇高潮的动态图| 有码 亚洲区| 婷婷色av中文字幕| 日韩国内少妇激情av| 菩萨蛮人人尽说江南好唐韦庄 | 久99久视频精品免费| 亚洲国产日韩欧美精品在线观看| 久久这里只有精品中国| 一级黄片播放器| 人妻制服诱惑在线中文字幕| 国产一区亚洲一区在线观看| 桃色一区二区三区在线观看| 插逼视频在线观看| 国产精品女同一区二区软件| 国内久久婷婷六月综合欲色啪| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美人成| 国产av一区在线观看免费| 国产高潮美女av| 亚洲av一区综合| 精品久久久久久久久久久久久| 国产老妇女一区| 亚洲国产欧美人成| 久久精品国产鲁丝片午夜精品| 欧美日韩综合久久久久久| 国产精品三级大全| 校园春色视频在线观看| 久久热精品热| 美女内射精品一级片tv| 91狼人影院| 搡女人真爽免费视频火全软件| 春色校园在线视频观看| 久久久久国产网址| 国产高清视频在线观看网站| 成年av动漫网址| 国产一级毛片七仙女欲春2| 乱人视频在线观看| 亚洲人成网站高清观看| 美女大奶头视频| 男人的好看免费观看在线视频| 免费观看精品视频网站| 久久精品久久久久久噜噜老黄 | 99久久成人亚洲精品观看| 91久久精品电影网| 一区二区三区免费毛片| 少妇的逼水好多| 亚洲欧洲国产日韩| 最近2019中文字幕mv第一页| 国产精品国产高清国产av| 亚洲熟妇中文字幕五十中出| 亚洲人成网站在线播| 亚洲中文字幕一区二区三区有码在线看| 成人特级av手机在线观看| 亚洲久久久久久中文字幕| 一区二区三区高清视频在线| 亚洲五月天丁香| 欧美变态另类bdsm刘玥| 搡女人真爽免费视频火全软件| 久久午夜亚洲精品久久| 国产免费男女视频| 国产成年人精品一区二区| 国产精品一二三区在线看| 熟女电影av网| av视频在线观看入口| 亚洲三级黄色毛片| 少妇丰满av| 国产精品久久久久久精品电影小说 | 亚洲无线观看免费| 丰满人妻一区二区三区视频av| 可以在线观看的亚洲视频| 国产成人freesex在线| 国产精品一区二区三区四区久久| 日本黄色片子视频| 两个人的视频大全免费| 亚洲aⅴ乱码一区二区在线播放| 国产精品麻豆人妻色哟哟久久 | 亚洲中文字幕日韩| 欧美在线一区亚洲| 日韩在线高清观看一区二区三区| 久久久久久伊人网av| 久久99热6这里只有精品| 全区人妻精品视频| 日日摸夜夜添夜夜爱| 久久这里有精品视频免费| 国产高清激情床上av| 热99re8久久精品国产| 精品不卡国产一区二区三区| 偷拍熟女少妇极品色| 99热这里只有是精品50| 久久精品国产亚洲av香蕉五月| 国产人妻一区二区三区在| h日本视频在线播放| 日韩强制内射视频| 国产av麻豆久久久久久久| 99久久精品热视频| 麻豆精品久久久久久蜜桃| 免费观看在线日韩| 97热精品久久久久久| 亚洲性久久影院| 亚洲国产欧美在线一区| 成年av动漫网址| 三级男女做爰猛烈吃奶摸视频| 午夜a级毛片| 国产精品.久久久| 精品熟女少妇av免费看| 深夜精品福利| 免费观看人在逋| 久久精品国产99精品国产亚洲性色| 中文字幕熟女人妻在线| 亚洲av成人av| 久久人人爽人人爽人人片va| 一边摸一边抽搐一进一小说| 成人二区视频| 国产色婷婷99| 白带黄色成豆腐渣| 久久人人精品亚洲av| 亚洲18禁久久av| 久久国内精品自在自线图片| 亚洲国产精品久久男人天堂| 久久亚洲国产成人精品v| 欧美又色又爽又黄视频| 精品久久久久久久久av| 久久久久网色| 国内久久婷婷六月综合欲色啪| 亚洲国产精品国产精品| 国产免费男女视频| 男女啪啪激烈高潮av片| 久久久精品94久久精品| 哪个播放器可以免费观看大片| 免费观看在线日韩| 最近的中文字幕免费完整| 亚洲av电影不卡..在线观看| 国产黄片美女视频| 黑人高潮一二区| 久久久久性生活片| 日韩一区二区视频免费看| 亚洲人成网站在线播放欧美日韩| 精品不卡国产一区二区三区| 97超视频在线观看视频| 给我免费播放毛片高清在线观看| 国产色爽女视频免费观看| 国产毛片a区久久久久| 亚洲欧洲国产日韩| 日韩高清综合在线| a级一级毛片免费在线观看| 欧美日韩在线观看h| 免费搜索国产男女视频| 精品久久久噜噜| av天堂在线播放| 观看美女的网站| 嘟嘟电影网在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产亚洲av片在线观看秒播厂 | 26uuu在线亚洲综合色| 日韩成人av中文字幕在线观看| 日本免费a在线| 黄色视频,在线免费观看| 成人性生交大片免费视频hd| 又粗又硬又长又爽又黄的视频 | 久久午夜福利片| 日本一本二区三区精品| 久久久久久九九精品二区国产| 久久久成人免费电影| 99在线视频只有这里精品首页| 欧美一级a爱片免费观看看| 悠悠久久av| 久久综合国产亚洲精品| 99久久成人亚洲精品观看| 成人毛片60女人毛片免费| 一级二级三级毛片免费看| 午夜精品国产一区二区电影 | 乱码一卡2卡4卡精品| 成年女人看的毛片在线观看| 日韩三级伦理在线观看| 国产人妻一区二区三区在| 少妇的逼水好多| 波多野结衣高清无吗| 99在线人妻在线中文字幕| 熟女人妻精品中文字幕| 99久久精品一区二区三区| 人人妻人人澡欧美一区二区| 久久久精品欧美日韩精品| 少妇熟女欧美另类| 国产精品不卡视频一区二区| av免费观看日本| 岛国在线免费视频观看| 中文字幕免费在线视频6| 亚洲中文字幕日韩| 国产一区二区激情短视频| 最近2019中文字幕mv第一页| 日韩成人伦理影院| 国产 一区精品| 69av精品久久久久久| 久久久久久久久久久丰满| 99久久九九国产精品国产免费| 国产午夜福利久久久久久| 日韩三级伦理在线观看| 亚洲成人久久爱视频| 97超碰精品成人国产| 91久久精品电影网| 爱豆传媒免费全集在线观看| 美女cb高潮喷水在线观看| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| 18禁黄网站禁片免费观看直播| 日韩欧美一区二区三区在线观看| 欧美激情在线99| 久久精品国产亚洲av天美| 欧美三级亚洲精品| 丰满乱子伦码专区| 国产黄色视频一区二区在线观看 | 如何舔出高潮| 亚洲国产高清在线一区二区三| 国产精品久久久久久精品电影| 高清毛片免费观看视频网站| 中文在线观看免费www的网站| 看十八女毛片水多多多| 久久精品国产自在天天线| 给我免费播放毛片高清在线观看| 黄色欧美视频在线观看| 日日啪夜夜撸| 国产成人影院久久av| 少妇的逼水好多| 国产亚洲91精品色在线| 久久精品国产99精品国产亚洲性色| 成人永久免费在线观看视频| 亚洲av.av天堂| 美女高潮的动态| 国产爱豆传媒在线观看| 亚洲婷婷狠狠爱综合网| 国产成人一区二区在线| av又黄又爽大尺度在线免费看 | 成年女人永久免费观看视频| 一级av片app| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| 99热这里只有精品一区| 国产极品精品免费视频能看的| 国产av不卡久久| 国产一级毛片在线| 成人特级黄色片久久久久久久| 国产高清视频在线观看网站| 欧美色欧美亚洲另类二区| 在线观看免费视频日本深夜| 久久精品综合一区二区三区| 老司机福利观看| 国产极品精品免费视频能看的| 乱人视频在线观看| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| 高清毛片免费观看视频网站| 欧美日本视频| 日韩欧美三级三区| 欧美高清性xxxxhd video| 日日啪夜夜撸| 亚洲精品国产av成人精品| 在线播放无遮挡| 黑人高潮一二区| 中文字幕免费在线视频6| 国产精品综合久久久久久久免费| 舔av片在线| 国产大屁股一区二区在线视频| 亚洲中文字幕一区二区三区有码在线看| 舔av片在线| 国产高清三级在线| eeuss影院久久| 老司机影院成人| 99久久九九国产精品国产免费| av又黄又爽大尺度在线免费看 | 最近中文字幕高清免费大全6| 亚洲欧美日韩高清在线视频| 2021天堂中文幕一二区在线观| 高清毛片免费观看视频网站| 日韩,欧美,国产一区二区三区 | 久久精品综合一区二区三区| 国产高清三级在线| 免费av毛片视频| 国产91av在线免费观看| 国产午夜精品久久久久久一区二区三区| 日韩亚洲欧美综合| 亚洲人成网站在线播放欧美日韩| av在线播放精品| 成人永久免费在线观看视频| 97在线视频观看| 久久久久久久久中文| 丰满乱子伦码专区| 小蜜桃在线观看免费完整版高清| 国产男人的电影天堂91| 真实男女啪啪啪动态图| 国产私拍福利视频在线观看| 久久精品国产亚洲av天美| 最新中文字幕久久久久| 亚洲av不卡在线观看| 精华霜和精华液先用哪个| 夜夜夜夜夜久久久久| 神马国产精品三级电影在线观看| 久久午夜福利片| 亚洲综合色惰| 亚洲欧美日韩高清专用| 在线观看免费视频日本深夜| 亚洲婷婷狠狠爱综合网| 大香蕉久久网| 亚洲欧美日韩卡通动漫| 国产伦在线观看视频一区| 青春草亚洲视频在线观看| 国产探花在线观看一区二区| 自拍偷自拍亚洲精品老妇| 秋霞在线观看毛片| 边亲边吃奶的免费视频| 男插女下体视频免费在线播放| 赤兔流量卡办理| 亚洲av成人av| 国产亚洲av片在线观看秒播厂 | 99国产精品一区二区蜜桃av| 在线播放无遮挡| 国产精品日韩av在线免费观看| 99久久人妻综合| 亚洲精品成人久久久久久| 麻豆乱淫一区二区| 1000部很黄的大片| 亚洲高清免费不卡视频| 免费看光身美女| 日本免费a在线| 少妇的逼水好多| 97在线视频观看| 精品久久久噜噜| 亚洲av男天堂| 十八禁国产超污无遮挡网站| www.色视频.com| 99久久人妻综合| 91麻豆精品激情在线观看国产| 国产视频内射| 欧美日本亚洲视频在线播放| 青春草国产在线视频 | 久久久久久久久久黄片| 中文字幕免费在线视频6| 蜜臀久久99精品久久宅男| 热99re8久久精品国产| 国产精品综合久久久久久久免费| 国产黄色小视频在线观看| 尾随美女入室| 青春草亚洲视频在线观看| 亚洲人成网站在线观看播放| 国产精品日韩av在线免费观看| av在线老鸭窝| 高清日韩中文字幕在线| 国产在线精品亚洲第一网站| 97超视频在线观看视频| 十八禁国产超污无遮挡网站| 免费电影在线观看免费观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲美女视频黄频| 国产在视频线在精品| 99热只有精品国产| 久久久精品大字幕| 97超视频在线观看视频| 真实男女啪啪啪动态图| 黑人高潮一二区| 啦啦啦韩国在线观看视频| a级毛片a级免费在线| 尾随美女入室| 日本爱情动作片www.在线观看| 亚洲成av人片在线播放无| 亚洲最大成人av| 特级一级黄色大片| 亚洲av熟女| 看十八女毛片水多多多| 一级毛片我不卡| 国产一级毛片七仙女欲春2| 插阴视频在线观看视频| 在线天堂最新版资源| 免费观看的影片在线观看| 1000部很黄的大片| 人妻少妇偷人精品九色| 国产三级中文精品| 一级av片app| 成人国产麻豆网| 真实男女啪啪啪动态图| 国产一区二区激情短视频| 亚洲国产日韩欧美精品在线观看| 91久久精品国产一区二区三区| 精品久久久久久久人妻蜜臀av| 天堂√8在线中文| 国产av麻豆久久久久久久| 成人漫画全彩无遮挡| 国产精品国产高清国产av| 毛片一级片免费看久久久久| 全区人妻精品视频| 亚洲国产精品成人久久小说 | 卡戴珊不雅视频在线播放| 看十八女毛片水多多多| 一区二区三区免费毛片| 欧美区成人在线视频| 日本一二三区视频观看| 亚洲电影在线观看av| 欧美色视频一区免费| 久久热精品热| 久久精品国产99精品国产亚洲性色| 午夜福利在线观看免费完整高清在 | 日本黄色片子视频| 国产精品无大码| 久久草成人影院| 国内揄拍国产精品人妻在线| 久久精品国产鲁丝片午夜精品| 久久亚洲精品不卡| 亚洲av成人精品一区久久| 一边亲一边摸免费视频| 美女被艹到高潮喷水动态| 色哟哟·www| 久久久久久久久中文| 午夜亚洲福利在线播放| 久久久久久久久久久免费av| 国产成人影院久久av| 99久久久亚洲精品蜜臀av| 午夜老司机福利剧场| av在线蜜桃| 美女 人体艺术 gogo| 亚洲成人精品中文字幕电影| 精品久久久久久成人av| 亚洲综合色惰| 中文字幕久久专区| 最近视频中文字幕2019在线8| 亚洲成av人片在线播放无| 精品免费久久久久久久清纯| 三级经典国产精品| 午夜福利在线观看吧| 成年女人看的毛片在线观看| 精品一区二区三区视频在线| 国产亚洲5aaaaa淫片| 午夜精品国产一区二区电影 | 在线观看66精品国产| 日韩欧美精品免费久久| 精品一区二区三区人妻视频| 少妇熟女欧美另类| 黄片wwwwww| 最近最新中文字幕大全电影3| 国产av不卡久久| 国产精品人妻久久久久久| 最近中文字幕高清免费大全6| 久久久久久久久久久免费av| 亚洲欧美日韩高清专用| 神马国产精品三级电影在线观看| 国产精品美女特级片免费视频播放器| 国产高潮美女av| 久久精品久久久久久久性| 国产一区二区三区av在线 | av在线观看视频网站免费| 免费看av在线观看网站| 亚洲美女视频黄频| 免费观看精品视频网站| 黄色视频,在线免费观看| av福利片在线观看| av女优亚洲男人天堂| 久久99蜜桃精品久久| 校园春色视频在线观看| 深夜精品福利| 国产伦一二天堂av在线观看| 在线观看午夜福利视频| 边亲边吃奶的免费视频|