• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cr3+和Ni2+復(fù)合摻雜的尖晶石氧化物用于提高鉆孔熱電池放電性能

    2019-05-07 07:28:16宋恒旭牛永強(qiáng)趙宇宏連冬曉任敬霞張妍妍
    關(guān)鍵詞:中北大學(xué)尖晶石材料科學(xué)

    宋恒旭 牛永強(qiáng) 趙宇宏 連冬曉 任敬霞 張妍妍 侯 華

    (中北大學(xué)材料科學(xué)與工程學(xué)院,太原 030051)

    0 Introduction

    Thermal batteries have been widely used in the military since they were invented during World War II[1].The thermal battery as a reserve battery can be stored for decades because its electrolyte is a poor ionic and electronic solid salt at ambient temperature.The battery function only when the solid salt electrolyte becomes molten,so it is suitable for working in high temperature environments.Recently,a considerable amount of work has been done to apply the principle of thermal batteries to geothermal exploration and oil/gas drilling.As we know,the typical electrolyte of thermal battery such as LiCl-KCl eutectic has a melting point as high as 352℃[2],while the environments of geothermal and oil/gas boreholes have a temperature usually below 300℃[3].It is necessary to modify the thermal battery system to adapt to lower temperature applications. In recent years, there has been increasing activity using the nitrate electrolyte system based on its lower melting point,for example,the composition with 33.21%(w/w)LiNO3-66.79%(w/w)KNO3nitrate salt melts at 124.5℃[4].

    Since the conventional sulfide cathode materials are not compatible with molten nitrates,a considerable amount of work has been done to screen suitable candidate cathode materials and oxides are considered suitable alternatives[5].Ag2CrO4as a cathode material has been reported with Li-Al anode and nitrate electrolyte between 160 to 215℃by Giwa[6].After that,Guidotti et al.examined Ag2CrO4[7],LiMn2O4[8],MnO2[3,8],CrO2,and LiCoO2with lithium alloy anode and KNO3-LiNO3eutectic electrolyte over a wider temperature range.More recently manganese oxides have been increasing attention because they exhibit not only large specific capacity but also environment-friendly.Niu et al.studied the electrochemical behavior of MnO2cathode material in various nitrate electrolyte systems over a temperature range of 150 to 300℃and current densities from 10 to 30 mA·cm-2[9-12].Meanwhile,Wang et al.examined the discharge performance of lithium manganese oxide and their derivatives by doped Ni[13]and Co[14]with lithium alloy anode and KNO3-LiNO3eutectic electrolyte.A more stable voltage plateau and a larger specific capacity can be obtained by doping in LiMn2O4,and we increased the specific capacity and improved its rate performance by doping chromium into LiMn2O4in previous work[15].

    In order to enhance specific capacity and voltage stability of cathode material,Cr and Ni ions were introduced into spinel lithium manganate simultaneously.This material was used as a cathode material for rechargeable lithium-ion batteries at room temperature[16-17],but has not been reported at higher temperatures as far as we know.Here,we reported the material characteristics of chromium-nickel substituted spinel oxide materials and analyzed their discharge performance in single batteries over a temperature range of 200 to 300℃.

    1 Experimental

    1.1 Materials preparation

    For the preparation of spinel LiCrxNiyMn2-x-yO4(0≤x≤0.3,0≤y≤0.3)material,stoichiometric amounts of LiOH·H2O (95.0%(w/w),Fengchuan,China),Cr2O3(99.0%(w/w),Sinopharm,China),NiO (99.0%(w/w),Aladdin,China)and MnO2(>97.5%(w/w),Sangon Biotech,China)powders were mixed and ground using a planetary ball-milling machine (Nanjing Nanda Instrument Plant,QM-3SP4,China).After this,the powders were precalcined at 470℃for 6 h,then heated to the temperature of 600℃for 6 h and 750℃ for 12 h in a resistance furnace in an air atmosphere.The precipitates were then natural cooling of the resistance furnace to room temperature and finally through grinding and sieving.

    The separator mix consisted of 65%(w/w)LiNO3-KNO3eutectic electrolyte and 35%(w/w)MgO powder(>98%(w/w),BBI Life Sciences,China),where the MgO powder was used as a binding agent to resist electrolyte flow when it melted.The preparation method of separator mix refered to Guidotti′s report[7].The catholyte consisted of 70%(w/w)of the active cathode material,20%(w/w)LiNO3-KNO3electrolyte and 10%(w/w)graphite powder (>99%(w/w),Sangon Biotech,China).Graphite powder was added to improve the conductivity of the cathode material because the conductivity of the lithium manganate material was poor.The anolyte consisted of Li-Mg-B alloy (58%,4%and 38%(w/w),respectively).

    1.2 Material characterization

    The crystalline structures of the spinel LiCrxNiyMn2-x-yO4(0≤x≤0.3,0≤y≤0.3)materials were carried out on a X-ray diffractometer(XRD,Rigaku D/max-Rb,Japan)with Cu Kα1radiation(λ=0.154 08 nm)in a 2θ range of 15°~85°at the speed of 2°·min-1.The XRD instrument was operated at accelerating voltage of 40 kV and current of 100 mA.The morphologies of the samples were performed by a field emission scanning electron microscopy(FESEM;Zeiss merlin compact,Germany)operated at 10 kV.The thermal stabilities and compatibilities of the materials were analyzed by a simultaneous differential scanning calorimetry (DSC,Netzsch STA 449 C,Germany)and thermogravimetric analysis(TGA).The samples powder were sealed in Al2O3pans and were heated at a rate of 10 K·min-1from room temperature to 500℃in high-purity argon atmosphere.

    1.3 Single-cell testing

    The single cell was constructed with anolyte,separator mix,catholyte and current collectors.The anolyte pellet was punched into a diameter of 16 mm,thickness of 1 mm,and mass of 0.188 g wafer by a die.While the separator mix(0.2 g)and catholyte(0.2 g)powders were placed by layer in a die and pressing them to a pellet with a pressure of 14 MPa.Finally,304 stainless steel of current collectors and the two electrode pellets were combined into a single cell with sandwich structure.

    The discharge performance of the single cell was measured by an electrochemical test instrument(CT-4008,Neware Technology Co.Ltd.,China).Steadystate currents of 19 to 57 mA (10 to 30 mA·cm-2,respectively)were loaded on the single cell at a temperature of 200 to 300℃.The discharge of the single cell was terminated when the voltage dropped below 1.00 V.It should be noted that above preparations,processing,and handling operations with materials and cells were conducted in a glovebox with an atmosphere of high-purity argon (The volume fraction of water and oxygen is less than 1×10-6).

    2 Results and discussion

    2.1 XRD analysis

    Fig.1 shows the XRD patterns of the spinel LiCrxNiyMn2-x-yO4(0≤x≤0.3,0≤y≤0.3)samples.As can be seen from Fig.1 that the diffraction peaks of spinel samples with different doping amounts were wellconsistentwith the characteristic peaks of LiMn2O4(PDF No.70-3120)with an Fd3m space group.No additional diffraction peaks were observed except for lithium manganate,indicating a good purity of the spinel samples.It can be clearly observed that the diffraction peaks of the doped derivative were shifted to a large angle compared to LiMn2O4according to the partial enlargement of the (400)plane diffraction peak,which was caused by the decrease of lattice parameters due to doping.As we know,the average oxidation states of manganese ions in LiMn2O4is+3.5,that is,the amount of Mn3+and Mn4+ions exist in a ratio of 1∶1.X-ray photoelectron spectrometry(XPS)analysis show that the oxidation states of Cr and Ni in lithium manganate are+3 and+2,respectively[17],and the two ions have a radius of 0.061 5 and 0.070 nm,respectively.Both of Cr3+and Ni2+ions substitute the Mn3+ions in lithium manganate,thus the Mn3+ions(0.064 5 nm)shift to the smaller radius of the Mn4+ions(0.053 nm)with the addition of Ni2+ions in order to maintain electrical neutrality.The lattice parameters of the spinel sample calculated based on the XRD diffraction data are listed in Table 1,and this result is consistent with the above discussion.However,the sample with the most doped amount of Ni2+ions did not have the smallest interplanar spacing,which may be related to the loss of oxygen in the sample.

    Fig.1 XRD patterns of the spinel LiCrxNiyMn2-x-yO4(0≤x≤0.3,0≤y≤0.3)samples

    Table 1 Structure parameters of LiCrxNiyMn2-x-yO4(0≤x≤0.3,0≤y≤0.3)samples

    2.2 SEM images

    Fig.2 shows SEM images of the spinel LiCrxNiyMn2-x-yO4(0≤x≤0.3,0≤y≤0.3)with different dopants.As shown in Fig.2a,the undoped LiMn2O4powder had a relatively uniform particle size about 200 nm and an irregular granular shape of surface morphology.While the lithium manganate materials doped with chromium and nickel all exhibited as regular octahedralcrystalline particles,and the particle size became uneven compared to the undoped lithium manganate materials,that is,larger particles began to appear.It can be further observed that LiCr0.2Ni0.2Mn1.6O4sample showed the largest particle size non-uniformity from Fig.2c.According to report by Kang et al.[18],octahedral morphology with good crystallinity contributes to the improvement of the thermal stability of the materials,which is consistent well with the discharge performance of the single cell.

    Fig.2 SEM images of(a)LiMn2O4,(b)LiCr0.1Ni0.3Mn1.6O4,(c)LiCr0.2Ni0.2Mn1.6O4and(d)LiCr0.3Ni0.1Mn1.6O4 powders prepared by solid state method

    2.3 Thermal analyses

    In order to characterize the thermal stability of the spinel samples,the LiCr0.2Ni0.2Mn1.6O4was analyzed by DSC and TG,and the result was shown in Fig.3.No obvious endothermic or exothermic peak was observed from the DSC curve from room temperature to 500℃.From the TG curve,no weight loss was observed during the heating process,except for the weight loss caused by the atmospheric fluctuation at the beginning.The result indicates that the prepared active cathode material has a good thermal stability.

    To characterize the thermal compatibility between the spinel samples with the LiNO3-KNO3eutectic electrolyte and the thermal stability of the catholyte material,the catholyte material containing 70%(w/w)LiCr0.2Ni0.2Mn1.6O4,10%(w/w)graphite,and 20%(w/w)electrolyte were analyzed by DSC and TG and the result was shown in Fig.4.As can be seen from the TG curve in Fig.4,only one major endotherm at 130.9℃,which can be assigned to the melting of the LiNO3-KNO3electrolyte.In Guidotti′s report,the melting point of LiNO3-KNO3eutectic electrolyte is 124.5℃[19].This difference is mainly due to the fact that the test samples in this work are not pure LiNO3-KNO3eutectic electrolyte.From the TG curve,no obvious weight loss was observed from room temperature to 400℃,however,the weight loss began to apparent at temperatures higher than 400℃,which is caused bythethermaldecomposition ofnitrates electrolyte accompanied by the generation of O2[12].

    Fig.3 DSC and TG curves of spinel LiCr0.2Ni0.2Mn1.6O4 sample

    Fig.4 DSC and TG curves of the catholyte material containing 70%(w/w)LiCr0.2Ni0.2Mn1.6O4,10%(w/w)graphite,and 20%(w/w)LiNO3-KNO3 electrolyte

    The thermal compatibility between the LiNO3-KNO3eutectic electrolyte and the Li-Mg-B anolyte has been reported by Niu et al[10].Here,three endothermic events on the DSC curve corresponded to the impure phase,the melting of LiNO3-KNO3electrolyte and the melting oflithium,respectively.In addition,no obvious exothermic event was observed from room temperature to 450℃.

    Based on the above results,the safe operating temperature of this battery system can reach 400℃,which has met our needs of the battery operating temperature from 200 to 300℃.

    2.4 Single-cell testing

    Fig.5 shows the galvanostatic discharge behavior of the LiCrxNiyMn2-x-yO4/Li-Mg-B single battery with a constant current of 10 mA·cm-2at a temperature of 200℃.It can be seen from Fig.5 that there were three distinct discharge plateaus(2.75~2.70 V,2.30~2.10 V,1.70~1.50 V,respectively.)during discharge.It was noteworthy that the voltage of the undoped lithium manganate was slight higher than that of the doped lithium manganate at the initial discharge,however,the voltage of the undoped lithium manganate was lower than that of the doped lithium manganate at the second and third voltage plateaus about 0.2 and 0.3 V,respectively.Samples doped with chromium and nickel have almost the same discharge plateaus,and LiCr0.3Ni0.1Mn1.6O4had the largest discharge capacity of 585.14 mAh·g-1when the discharge voltage dropped to 1.0 V.

    Fig.5 Galvanostatic discharge behavior of the LiCrxNiyMn2-x-yO4/Li-Mg-B single battery with a constant current of 10 mA·cm-2 at a temperature of 200℃

    Fig.6 Galvanostatic discharge behavior of the LiCrxNiyMn2-x-yO4/Li-Mg-B single battery with a constant current of 30 mA·cm-2 at a temperature of 200℃

    Fig.6 shows the galvanostatic discharge behavior of the LiCrxNiyMn2-x-yO4/Li-Mg-B single battery at a higher current density of 30 mA·cm-2at a temperature of 200℃.As shown in Fig.6,the galvanostatic discharge profiles were similar to the condition at 10 mA·cm-2,there were also three distinct discharge plateaus during discharge.The first and second voltage plateaus of the doped lithium manganate were at the ranges of 2.50~2.65 and 1.75~2.15 V respectively,while the third voltage plateau had a significant difference in doping levels.It is obvious that samples doped with chromium and nickel outperformed undoped lithium manganate in both voltage and capacity.The reasons for such excellent discharge performance of chromium and nickel co-doping materials are listed as follows:First,the binding energies of Cr-O and Ni-O in MO2are 1 142 and 1 029 kJ·mol-1,respectively,which is stronger than the binding energy of Mn-O of 946 kJ·mol-1[20-21].Therefore,the doping of Cr and Ni enhances the stability of lithium manganate spinel structure.Second,the partial substitution of Cr3+and Ni2+for Mn3+reduces the trivalent Mn3+ions in spinel,which alleviates the local distortion in MnO6octahedrons consisting of the spinel structure[22].Third,as we mentioned above in the SEM section,a good crystallinity octahedral structure obtained by doping Cr and Ni is more favorable for the thermal stability of the material.Compared with the condition at 10 mA·cm-2,the overall performance including voltage and capacity of the battery system decreased at 30 mA·cm-2,which could be attributed to the poor electrical conductivityofthespinelmaterial.Notably,the LiCr0.2Ni0.2Mn1.6O4had the largest discharge capacity of 549.57 mAh·g-1when the discharge voltage dropped to 1.0 V,which was higher than 37.6%of undoped original spinel oxide (399.5 mAh·g-1).This result indicates that partial substitution of chromium and nickel for manganese is more effective to improve the cell performance at higher currents.

    In order to further investigate the discharge performance of the LiCrxNiyMn2-x-yO4/Li-Mg-B cell at a higher temperature,the single cell was designated to discharge at 300℃at a constant current density of 10 and 30 mA·cm-2,as shown in Fig.7 and 8,respectively.Compared with the condition at 200℃,the discharge curves also presented three voltage plateaus,the difference being that the second and third voltage platforms differ less,which was especially noticeable at lower current densities of 10 mA·cm-2(Fig.7).As shown in Fig.7,the initial discharge plateau was stable in the range of 2.60~2.75 V,while the subsequent voltage platform exhibited a large voltage difference with the doping amount.This result may be mainly cause by an increase in unexpected side reactions at high temperatures,resulting in a degradation of voltage stability.In terms of capacity,the battery system had an outstanding performance under this condition,and the LiCr0.1Ni0.3Mn1.6O4had the largest discharge capacity of713.29 mAh·g-1, even the undoped original spinel had a specific capacity of 629.07 mAh·g-1.This is due to the improvement of good electrolyte conductivity at high temperatures.The main reason for the increase of discharge capacity is attributed to the higher ionic conductivity ofthe electrolyte by enhanced kinetics at higher temperature.

    Fig.7 Galvanostatic discharge behavior of the LiCrxNiyMn2-x-yO4/Li-Mg-B single battery with a constant current of 10 mA·cm-2 at a temperature of 300℃

    Fig.8 Galvanostatic discharge behavior of the LiCrxNiyMn2-x-yO4/Li-Mg-B single battery with a constant current of 30 mA·cm-2 at a temperature of 300℃

    We found that the double ion doped spinel materials have better discharge performance than the single ion doped spinel materials under this condition.For example,the specific capacity of LiNi0.3Mn1.7O4[13]and LiCr0.1Mn1.9O4[15]spinel under the same conditions are 335.95 and 614.29 mAh·g-1respectively,which is much lower than that of LiCr0.1Ni0.3Mn1.6O4of 713.29 mAh·g-1in this work,and the main reason for this result may be the synergistic action of the two ions.

    From Fig.8,it can be seen that the original LiMn2O4sample exhibited poor discharge performance at a higher current density of 30 mA·cm-2at a temperature of 300℃.After partial substitution of Mn in lithium manganate with Cr and Ni,the discharge specific capacity of the battery has been dramatically improved from the original 132.00 mAh·g-1to the highest 495.43 mAh·g-1(LiCr0.1Ni0.3Mn1.6O4).

    3 Conclusions

    Cr and Ni doped spinel LiCrxNiyMn2-x-yO4(0≤x≤0.3,0≤y≤0.3)cathode materials have been successfully synthesized through solid-state method and maintained the Fd3m spatial structure of the spinel which has been confirmed by XRD results.Partial substitution of Cr3+and Ni2+for Mn in spinel improves battery voltage and capacity at current densities from 10 to 30 mA·cm-2over a temperature range of 200 to 300℃.The LiCrxNiyMn2-x-yO4/Li-Mg-B battery system had the most outstanding discharge performance at a constant current density of 10 mA·cm-2at 300℃,and the LiCr0.1Ni0.3Mn1.6O4had the maximal specific capacity of 713.29 mAh·g-1.The dramatic improvement in discharge performance of the battery system is mainly because that the doping of chromium and nickel enhanced the structural stability of spinel lithium manganate oxides.Based on the stable structure of the material,the battery has a more significant improvement in discharge performance at higher current densities,in other words,doping makes the battery have better rate discharge performance.In addition,it should be noted that the discharge performance of the battery in different environments depends on the amount of dopant.

    Based on the above results and discussion,the LiCrxNiyMn2-x-yO4/LiNO3-KNO3/Li-Mg-B battery system was evaluated suitable for using as a power supply for geothermal borehole applications.

    Acknowledgements:This work was supported by the National Natural Science Foundation of China (Grants No.51774254, 51774253, 51701187, U1610123, 51674226,51574207,51574206,51804279,51801189)and the Science and Technology Major Project of Shanxi Province (Grant No.MC2016-06).

    猜你喜歡
    中北大學(xué)尖晶石材料科學(xué)
    《中北大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》征稿啟事
    中海油化工與新材料科學(xué)研究院
    HISMELT SRV環(huán)境下剛玉尖晶石材料抗侵蝕性能研究
    山東冶金(2022年4期)2022-09-14 08:58:10
    鎂鋁尖晶石種類對(duì)尖晶石-方鎂石復(fù)相材料燒結(jié)性能的影響
    耐火材料(2022年4期)2022-08-28 03:01:10
    尖晶石的資源與商貿(mào)現(xiàn)狀
    材料科學(xué)與工程學(xué)科
    中北大學(xué)信創(chuàng)產(chǎn)業(yè)學(xué)院入選首批現(xiàn)代產(chǎn)業(yè)學(xué)院
    《中北大學(xué)學(xué)報(bào)(自然科學(xué)版)》征稿簡(jiǎn)則
    有機(jī)相化學(xué)鍍鋁法制備Al/石墨烯復(fù)合材料粉末
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    两个人视频免费观看高清| 久久精品aⅴ一区二区三区四区| 十八禁网站免费在线| 亚洲七黄色美女视频| 欧美日韩福利视频一区二区| 真人做人爱边吃奶动态| 日韩精品青青久久久久久| 岛国视频午夜一区免费看| 午夜福利在线观看吧| 亚洲免费av在线视频| 成人精品一区二区免费| 婷婷精品国产亚洲av在线| 亚洲国产欧洲综合997久久,| 99精品久久久久人妻精品| 日韩欧美在线二视频| 日本熟妇午夜| 久久亚洲精品不卡| av视频在线观看入口| 国产麻豆成人av免费视频| 精品国产乱子伦一区二区三区| 国产精品亚洲一级av第二区| 国产av一区二区精品久久| 亚洲av熟女| 少妇的丰满在线观看| 国产熟女xx| 又粗又爽又猛毛片免费看| 久久精品影院6| 国产精品 国内视频| 久久久久性生活片| 丁香六月欧美| 男女午夜视频在线观看| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 真人做人爱边吃奶动态| 午夜福利18| 淫秽高清视频在线观看| 成人国语在线视频| 成人高潮视频无遮挡免费网站| 最好的美女福利视频网| 舔av片在线| 热99re8久久精品国产| 成人18禁高潮啪啪吃奶动态图| 国产精品98久久久久久宅男小说| 在线永久观看黄色视频| 成年人黄色毛片网站| 久久热在线av| 亚洲中文字幕一区二区三区有码在线看 | 亚洲中文字幕日韩| 欧美黄色片欧美黄色片| 禁无遮挡网站| 精品久久久久久久久久免费视频| 欧美一区二区精品小视频在线| 波多野结衣高清作品| 毛片女人毛片| 天堂av国产一区二区熟女人妻 | 老司机深夜福利视频在线观看| 国产视频一区二区在线看| 欧美黑人精品巨大| a级毛片在线看网站| 亚洲国产精品久久男人天堂| 亚洲中文字幕一区二区三区有码在线看 | 久久精品综合一区二区三区| 日韩有码中文字幕| 女人爽到高潮嗷嗷叫在线视频| 日本五十路高清| 黄色视频,在线免费观看| xxxwww97欧美| 制服人妻中文乱码| 欧美乱码精品一区二区三区| 我的老师免费观看完整版| www.自偷自拍.com| 国产成年人精品一区二区| 两个人视频免费观看高清| 亚洲精华国产精华精| 欧美日韩一级在线毛片| 免费在线观看日本一区| 日韩欧美 国产精品| 久久精品影院6| 可以在线观看的亚洲视频| 久久 成人 亚洲| 又粗又爽又猛毛片免费看| 久久久精品欧美日韩精品| 欧美色欧美亚洲另类二区| 精品久久久久久久人妻蜜臀av| 黑人巨大精品欧美一区二区mp4| 97人妻精品一区二区三区麻豆| 久久久久久国产a免费观看| 桃红色精品国产亚洲av| 久久精品国产99精品国产亚洲性色| 国产探花在线观看一区二区| 婷婷亚洲欧美| 午夜免费成人在线视频| 欧美日本亚洲视频在线播放| 国产精品一区二区免费欧美| 国产av在哪里看| 精品国产乱码久久久久久男人| 久久这里只有精品19| 午夜日韩欧美国产| 亚洲自拍偷在线| 香蕉丝袜av| 特大巨黑吊av在线直播| 一级黄色大片毛片| 九色成人免费人妻av| 99久久国产精品久久久| 国内精品一区二区在线观看| 亚洲av美国av| xxxwww97欧美| 在线观看66精品国产| 美女高潮喷水抽搐中文字幕| 国产精品美女特级片免费视频播放器 | 9191精品国产免费久久| 丁香欧美五月| 亚洲av第一区精品v没综合| 色综合欧美亚洲国产小说| 曰老女人黄片| 国产欧美日韩精品亚洲av| av福利片在线| 日韩国内少妇激情av| 国产不卡一卡二| 精品久久久久久久末码| 欧美最黄视频在线播放免费| 日韩成人在线观看一区二区三区| 色播亚洲综合网| 久久久久精品国产欧美久久久| 欧美日韩黄片免| 亚洲精品粉嫩美女一区| 成人亚洲精品av一区二区| 一二三四在线观看免费中文在| 精品乱码久久久久久99久播| 最近在线观看免费完整版| 国产探花在线观看一区二区| 亚洲欧美日韩无卡精品| 十八禁人妻一区二区| 国产99久久九九免费精品| 97碰自拍视频| 两个人视频免费观看高清| 亚洲第一电影网av| 97碰自拍视频| 国模一区二区三区四区视频 | 亚洲成人久久性| 国产精品爽爽va在线观看网站| 首页视频小说图片口味搜索| 午夜两性在线视频| 嫩草影院精品99| 色av中文字幕| 91字幕亚洲| 日本a在线网址| 级片在线观看| 女人高潮潮喷娇喘18禁视频| a在线观看视频网站| 亚洲在线自拍视频| 最好的美女福利视频网| 给我免费播放毛片高清在线观看| 亚洲国产日韩欧美精品在线观看 | 欧美一区二区精品小视频在线| 听说在线观看完整版免费高清| 熟女少妇亚洲综合色aaa.| 国产视频一区二区在线看| 日韩三级视频一区二区三区| 色综合欧美亚洲国产小说| 一区二区三区激情视频| 女生性感内裤真人,穿戴方法视频| aaaaa片日本免费| 国产免费男女视频| 亚洲精品美女久久久久99蜜臀| 午夜老司机福利片| 女同久久另类99精品国产91| 国产黄a三级三级三级人| 欧美3d第一页| 欧美日韩精品网址| 欧美一区二区国产精品久久精品 | 亚洲精品中文字幕在线视频| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 亚洲成人精品中文字幕电影| tocl精华| 欧美不卡视频在线免费观看 | 不卡av一区二区三区| 国产欧美日韩一区二区三| 女警被强在线播放| 黑人巨大精品欧美一区二区mp4| 国产精品日韩av在线免费观看| www国产在线视频色| 一级黄色大片毛片| 性色av乱码一区二区三区2| 级片在线观看| 婷婷精品国产亚洲av在线| 老鸭窝网址在线观看| 精品国产乱子伦一区二区三区| 亚洲成人精品中文字幕电影| 成人av在线播放网站| 欧美乱色亚洲激情| 九色成人免费人妻av| 99久久综合精品五月天人人| 大型黄色视频在线免费观看| 日本一二三区视频观看| 亚洲国产精品合色在线| 亚洲av成人av| √禁漫天堂资源中文www| 久久久久久人人人人人| 久久天躁狠狠躁夜夜2o2o| 窝窝影院91人妻| 亚洲成人中文字幕在线播放| 免费在线观看黄色视频的| 日本熟妇午夜| 哪里可以看免费的av片| 精品午夜福利视频在线观看一区| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 欧美日本视频| 欧美黑人欧美精品刺激| 国产69精品久久久久777片 | 淫秽高清视频在线观看| 一本精品99久久精品77| 色噜噜av男人的天堂激情| 亚洲欧美日韩高清专用| 精品不卡国产一区二区三区| 亚洲av第一区精品v没综合| 高潮久久久久久久久久久不卡| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲成av人片免费观看| 一二三四在线观看免费中文在| 国产精品爽爽va在线观看网站| 又爽又黄无遮挡网站| 国产午夜精品论理片| 久久人人精品亚洲av| 国产一区二区三区在线臀色熟女| 1024手机看黄色片| 亚洲人成网站高清观看| 身体一侧抽搐| 天天躁夜夜躁狠狠躁躁| 老司机在亚洲福利影院| 久久亚洲精品不卡| 久久香蕉激情| 两性午夜刺激爽爽歪歪视频在线观看 | 免费搜索国产男女视频| 欧美日韩一级在线毛片| 人人妻人人看人人澡| 国产高清视频在线播放一区| 每晚都被弄得嗷嗷叫到高潮| 他把我摸到了高潮在线观看| 一个人免费在线观看电影 | 国产aⅴ精品一区二区三区波| 成人高潮视频无遮挡免费网站| 五月伊人婷婷丁香| 久久亚洲真实| 免费在线观看亚洲国产| 午夜日韩欧美国产| 欧美+亚洲+日韩+国产| 久久香蕉国产精品| 一级作爱视频免费观看| 一级毛片女人18水好多| 在线观看一区二区三区| 久久久久久亚洲精品国产蜜桃av| 国产一级毛片七仙女欲春2| 亚洲一码二码三码区别大吗| 一级毛片高清免费大全| 免费高清视频大片| 亚洲第一欧美日韩一区二区三区| 国产精品影院久久| 午夜福利视频1000在线观看| 变态另类成人亚洲欧美熟女| 免费观看人在逋| 日韩大尺度精品在线看网址| 国产免费av片在线观看野外av| 欧美黄色淫秽网站| 成人特级黄色片久久久久久久| 国产三级黄色录像| 性欧美人与动物交配| 久热爱精品视频在线9| www.999成人在线观看| xxxwww97欧美| 国产精品乱码一区二三区的特点| 无遮挡黄片免费观看| 一夜夜www| 国产片内射在线| 亚洲国产高清在线一区二区三| 色综合站精品国产| 桃色一区二区三区在线观看| 欧美乱码精品一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 欧美zozozo另类| 午夜久久久久精精品| 色哟哟哟哟哟哟| 欧美性猛交黑人性爽| 最近视频中文字幕2019在线8| 丝袜美腿诱惑在线| 级片在线观看| 人人妻人人澡欧美一区二区| 桃红色精品国产亚洲av| 女人爽到高潮嗷嗷叫在线视频| 国产又色又爽无遮挡免费看| 麻豆av在线久日| 成人欧美大片| 丁香欧美五月| 久久久久国内视频| 亚洲av片天天在线观看| 他把我摸到了高潮在线观看| 亚洲成a人片在线一区二区| 成人国产综合亚洲| 免费电影在线观看免费观看| 久久香蕉激情| 中文资源天堂在线| 亚洲自拍偷在线| a级毛片在线看网站| 中文字幕久久专区| 午夜免费成人在线视频| 可以在线观看的亚洲视频| 国产成年人精品一区二区| 欧美另类亚洲清纯唯美| www日本黄色视频网| 国产97色在线日韩免费| 亚洲国产欧美人成| 国产麻豆成人av免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产欧美日韩av| 老鸭窝网址在线观看| 久久热在线av| 男人舔奶头视频| 欧美zozozo另类| 高潮久久久久久久久久久不卡| 人人妻人人澡欧美一区二区| 欧美黑人巨大hd| 天堂av国产一区二区熟女人妻 | 国产麻豆成人av免费视频| 不卡一级毛片| 久9热在线精品视频| 在线观看免费视频日本深夜| 丝袜人妻中文字幕| 亚洲中文字幕日韩| 青草久久国产| 人妻夜夜爽99麻豆av| 禁无遮挡网站| 色哟哟哟哟哟哟| 成人手机av| 中文亚洲av片在线观看爽| 国产精品 国内视频| 天天一区二区日本电影三级| 国产成人精品无人区| 一本大道久久a久久精品| 舔av片在线| 中文字幕高清在线视频| videosex国产| 色综合婷婷激情| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕av在线有码专区| 变态另类丝袜制服| 一级毛片高清免费大全| 精品久久久久久久毛片微露脸| 成人精品一区二区免费| 国产精品自产拍在线观看55亚洲| 亚洲成av人片在线播放无| 欧美性猛交黑人性爽| 精品久久久久久久人妻蜜臀av| 19禁男女啪啪无遮挡网站| 啦啦啦观看免费观看视频高清| 美女高潮喷水抽搐中文字幕| 啦啦啦观看免费观看视频高清| 波多野结衣高清作品| 50天的宝宝边吃奶边哭怎么回事| 国产高清视频在线观看网站| 窝窝影院91人妻| 国产黄a三级三级三级人| 脱女人内裤的视频| 久久久国产精品麻豆| 一级毛片精品| 九九热线精品视视频播放| 真人做人爱边吃奶动态| 听说在线观看完整版免费高清| 亚洲av成人一区二区三| 极品教师在线免费播放| 日本熟妇午夜| 亚洲国产欧美一区二区综合| 日本成人三级电影网站| 欧美成人一区二区免费高清观看 | 免费在线观看完整版高清| 欧美久久黑人一区二区| 亚洲熟妇熟女久久| 人人妻人人看人人澡| 亚洲无线在线观看| 国产伦在线观看视频一区| 嫩草影院精品99| 中文资源天堂在线| 亚洲欧美一区二区三区黑人| 国产精品一区二区精品视频观看| 午夜免费激情av| 亚洲国产高清在线一区二区三| 毛片女人毛片| 69av精品久久久久久| 亚洲色图av天堂| 一级片免费观看大全| 国产乱人伦免费视频| 午夜福利在线观看吧| 一边摸一边做爽爽视频免费| 亚洲成av人片免费观看| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 国产亚洲精品第一综合不卡| 色av中文字幕| 男人舔女人下体高潮全视频| 午夜久久久久精精品| 美女高潮喷水抽搐中文字幕| 级片在线观看| 长腿黑丝高跟| 黑人操中国人逼视频| 制服丝袜大香蕉在线| 岛国在线观看网站| 日本 欧美在线| 悠悠久久av| 久久精品91蜜桃| 毛片女人毛片| 久久精品人妻少妇| 国产亚洲欧美98| 久久久国产欧美日韩av| 国产成人欧美在线观看| av在线播放免费不卡| 成人18禁在线播放| 亚洲国产欧洲综合997久久,| 精品高清国产在线一区| 精品免费久久久久久久清纯| 三级男女做爰猛烈吃奶摸视频| 男插女下体视频免费在线播放| 身体一侧抽搐| 欧美色欧美亚洲另类二区| 无遮挡黄片免费观看| 人妻久久中文字幕网| 国产免费av片在线观看野外av| 观看免费一级毛片| 久久精品综合一区二区三区| 亚洲自偷自拍图片 自拍| 亚洲黑人精品在线| 久久久久久免费高清国产稀缺| 99精品久久久久人妻精品| 国产精品影院久久| 亚洲av电影不卡..在线观看| 亚洲,欧美精品.| 日日爽夜夜爽网站| 欧美日韩乱码在线| 国产乱人伦免费视频| 亚洲五月婷婷丁香| 亚洲 国产 在线| 欧美中文日本在线观看视频| 久久精品aⅴ一区二区三区四区| 久久人妻av系列| 亚洲精品粉嫩美女一区| 亚洲专区字幕在线| 麻豆av在线久日| 麻豆久久精品国产亚洲av| 三级毛片av免费| 国产成人系列免费观看| 精品久久久久久久久久久久久| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 亚洲熟妇中文字幕五十中出| 国产熟女xx| 亚洲国产精品成人综合色| 亚洲中文字幕日韩| 无人区码免费观看不卡| 日韩 欧美 亚洲 中文字幕| 中文字幕最新亚洲高清| 国产三级黄色录像| 亚洲va日本ⅴa欧美va伊人久久| av超薄肉色丝袜交足视频| 亚洲电影在线观看av| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 成人三级做爰电影| 五月玫瑰六月丁香| 亚洲国产日韩欧美精品在线观看 | 国产精品爽爽va在线观看网站| 不卡av一区二区三区| 99riav亚洲国产免费| 成人av一区二区三区在线看| 久久久国产成人精品二区| 黄色女人牲交| 黄色毛片三级朝国网站| 两个人视频免费观看高清| 午夜两性在线视频| x7x7x7水蜜桃| 婷婷六月久久综合丁香| 精品国产乱子伦一区二区三区| 最近视频中文字幕2019在线8| 老熟妇乱子伦视频在线观看| 久9热在线精品视频| 亚洲自拍偷在线| 黄色丝袜av网址大全| 国产一区二区在线av高清观看| 好看av亚洲va欧美ⅴa在| 最近最新免费中文字幕在线| 一进一出抽搐gif免费好疼| 国产69精品久久久久777片 | 91国产中文字幕| 欧美又色又爽又黄视频| 久久伊人香网站| 免费高清视频大片| 99国产精品一区二区三区| 高清毛片免费观看视频网站| 婷婷精品国产亚洲av在线| √禁漫天堂资源中文www| 99在线人妻在线中文字幕| 99久久99久久久精品蜜桃| cao死你这个sao货| 国产精品综合久久久久久久免费| 精品日产1卡2卡| 亚洲激情在线av| 免费一级毛片在线播放高清视频| av视频在线观看入口| 国产一级毛片七仙女欲春2| 久久久久久亚洲精品国产蜜桃av| 国产私拍福利视频在线观看| 亚洲午夜理论影院| 免费看十八禁软件| 午夜福利在线在线| 天堂影院成人在线观看| 国产精品自产拍在线观看55亚洲| 精品不卡国产一区二区三区| aaaaa片日本免费| 色综合亚洲欧美另类图片| 中文字幕高清在线视频| 中亚洲国语对白在线视频| 亚洲专区中文字幕在线| 日韩欧美在线二视频| 久久香蕉国产精品| 国产乱人伦免费视频| av福利片在线| 日本 av在线| 久久 成人 亚洲| 免费搜索国产男女视频| 亚洲 国产 在线| 午夜成年电影在线免费观看| 亚洲无线在线观看| 亚洲专区国产一区二区| 免费在线观看亚洲国产| 18禁国产床啪视频网站| 国产伦在线观看视频一区| 黄片大片在线免费观看| 男女午夜视频在线观看| 两个人看的免费小视频| 国产精品自产拍在线观看55亚洲| 一边摸一边做爽爽视频免费| 亚洲免费av在线视频| 在线免费观看的www视频| 欧美日本视频| 禁无遮挡网站| 18禁黄网站禁片免费观看直播| 久久久久久久久免费视频了| 18禁美女被吸乳视频| 免费在线观看影片大全网站| 色av中文字幕| 欧美一区二区国产精品久久精品 | 亚洲七黄色美女视频| 亚洲成人久久性| 成人亚洲精品av一区二区| 国产一区二区在线av高清观看| 成年版毛片免费区| 久久久精品国产亚洲av高清涩受| 欧美午夜高清在线| 国产亚洲精品av在线| 亚洲五月婷婷丁香| 亚洲成人中文字幕在线播放| 一级毛片精品| 18美女黄网站色大片免费观看| 午夜免费成人在线视频| 久久热在线av| а√天堂www在线а√下载| 成人av一区二区三区在线看| 欧洲精品卡2卡3卡4卡5卡区| 天天添夜夜摸| 999久久久精品免费观看国产| 性欧美人与动物交配| 亚洲av成人av| 国语自产精品视频在线第100页| 中文字幕精品亚洲无线码一区| 少妇被粗大的猛进出69影院| 欧美日韩国产亚洲二区| 麻豆国产av国片精品| 日韩 欧美 亚洲 中文字幕| 波多野结衣巨乳人妻| 欧美成人一区二区免费高清观看 | 欧美最黄视频在线播放免费| 欧美黑人巨大hd| 日本五十路高清| 亚洲在线自拍视频| 亚洲黑人精品在线| av中文乱码字幕在线| xxx96com| 欧美在线一区亚洲| 午夜免费成人在线视频| 亚洲在线自拍视频| 狠狠狠狠99中文字幕| 国产精品亚洲一级av第二区| 欧美zozozo另类| 小说图片视频综合网站| av福利片在线| 99久久久亚洲精品蜜臀av| 岛国在线免费视频观看| 女同久久另类99精品国产91| 欧美人与性动交α欧美精品济南到| 波多野结衣高清无吗| 又爽又黄无遮挡网站| 日韩欧美精品v在线| 国内久久婷婷六月综合欲色啪| 深夜精品福利| 操出白浆在线播放| 国产在线精品亚洲第一网站| 亚洲熟妇熟女久久| 国产午夜精品论理片| 久久精品国产亚洲av高清一级| 国产亚洲av高清不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产三级中文精品| 精品日产1卡2卡| 国产欧美日韩精品亚洲av| 天堂av国产一区二区熟女人妻 | 久99久视频精品免费|