• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    有雙重固硫作用的PEDOT包覆MnO2納米管陰極用于高性能的鋰硫電池

    2019-05-07 07:27:58潘沛鋒劉瑞卿朱紅麗馮曉苗沈清明黃鎮(zhèn)東馬延文
    關(guān)鍵詞:朱紅郵電大學(xué)納米管

    葛 優(yōu) 潘沛鋒 彭 霞 劉瑞卿 朱紅麗 馮曉苗 沈清明 黃鎮(zhèn)東 馬延文

    (南京郵電大學(xué)有機(jī)電子與信息顯示重點(diǎn)實(shí)驗(yàn)室暨先進(jìn)材料研究所(IAM),南京 210023)

    0 Introduction

    At present,among the rechargeable batteries,lithium-sulfur batteries are expected to satisfy various energy storage and conversion demands because of high theoretical specific capacity of sulfur element(1 675 mAh·g-1)and specific energy density of Li-S batteries (2 600 Wh·kg-1),abundant resources in natural,low cost,and environmentally friendly[1-7].However,the practical application of lithium-sulphur batteries is still hindered by some drawbacks.For instance,(a)large volumetric change of sulfur cathode during charge and discharge process leading poor cycling performance[8];(b)the excessive dissolution of polysulfides and subsequent “shuttle effect” resulting in specific capacity decline rapidly[9-15];(c)insulative sulfur and lithium polysulfide with low electronic conductivity reducing the rate capacities of Li-S batteries[16-17].

    In order to solve the above problems,a number of strategies have been developed to optimize the composition and the structure of the sulfur cathode.Most host materials for sulfur are carbonous materials,such as micro-/mesoporous carbon[18],carbon spheres[19],carbon nanotubes/nanofibers[20],and graphene[21].These hostmaterials notonly improve the electronic conductivity ofsulfur-based electrodes,butalso capture the polysulfides to retard the shuttling of soluble polysulfides.On the other hand,conducting polymers,such as poly(3,4-ethylenedioxythiophene)(PEDOT)[22-23],polyaniline (PANI)[24]and poly(acrylic acid)(PAA)[25],have also been used as host materials forsulfurattributing to theirhigh conductivity,flexibility and thermal stability.However,the intermolecular interactions between lithium polysulfides(LiPSs) and carbonous materials or conducting polymers are weak because of physically confining LiPSs due to their non-polar characteristic,the LiPSs diffuse out of the cathode and eventually migrate to the anode easily.

    Recently,sulfur host materials exhibiting strong chemical interactions with LiPSs have been studied and appeared to be an effective approach to stabilizing the capacity,including modified carbonaceous materials[26],functional polymeric materials[27].Introduction of electronegative N atoms into the carbon lattice,such as mesoporous N-doped carbon,induces asymmetric charge distribution.This affects the net polarity,creating sites for binding LiPSs[28-29].Moreover,metal oxides such as MnO2[30],TiO2[31],TiO[32],V2O5[33]and Al2O3[34],and metal sulfides including TiS2[35],WS2[36]and CoS2[37]have been proposed as effective lithium polysulfides trappers by utilizing the strong chemical adsorption.As a polar oxide,MnO2has high binding energy between MnO2and LiPSs because of the presence of stronger polar chemical bond.Extensive efforts have been devoted to the development of nanostructures for trapping LiPSs,such as MnO2nanowires[38],MnO2nanosheets[39]and MnO2nanoparticles[40].However,these solid structures restrict the content of sulfur loading and cannot solve the large volumetric change ofsulfurcathode.Meantime,conductivities of metal oxides are low,leading to low sulfur utilization and poor rate performance.Therefore,the combination ofpolarhollow materials and conducting matrix with rationally designed structures is a desired strategy to enhance the electrochemical properties of sulfur cathode.So far,the research of hollow MnO2nanotubes for sulfur host is comparatively rare.Only the PPy-MnO2coaxial nanotubes have been synthesized to solve the above problems due to the high conductivity of PPy,the strong chemical adsorption and hollow structure of MnO2nanotubes[41].However,in the preparation procedure,the MnO2nanowires were used as template and the hollow MnO2nanotubes were prepared by acid etching.The complex preparation process significantly affected the manufacturability of the sulfur cathode.Therefore,there is still a challenge to design innovative method and nanostructures for efficaciously encapsulation of sulfur.

    Herein,the hollow α-MnO2-PEDOT nanotubes were prepared through a facile template-free hydrothermalself-assembly in situ polymerization to immobilize sulfur.In the composite structure,the MnO2hollow nanotubes not only enhance the sulfur loading and accommodate volumetric change of sulfur,but also provide combined role of chemical and physicaladsorption forlithium polysulfides.The chemical adsorption attribute to Mn-S bond which is conducive to limit lithium polysulfides.The physical adsorption is produced by hollow nanotube morphology.Besides,S@MnO2combiningwithPEDOT could enhance the conductive of S@α-MnO2-PEDOT and reduce the excessive dissolution of polysulfides.After combining with the conductive polymer PEDOT,the S@MnO2-PEDOT nanocomposites electrode revealed the excellent discharge specific capacity of 774.8 mAh·g-1at 1.0C after 200 cycles,which effectively perfects the electrochemical properties of Li-S batteries.

    1 Experimental

    1.1 Synthesis of urchin-like α-MnO2nanotubes

    All the reactants and solvents were analytical grade and used without further purification.Urchinlike α-MnO2nanotubes were produced by hydrothermal method.In a typical process,0.17 g of KMnO4was dispersed in 18 mL of deionized water(DI)to form a clear solution under magnetic stirring for 30 min.Subsequently,2 mL of HCl(2 mol·L-1)was added to the clear solution dropwise under magnetic stirring.It was then transferred into an autoclave and heated to 120℃for 12 h.The hydrothermal product was collected by centrifugation and rinsed several times with DI and ethanol.

    1.2 Synthesis of S@α-MnO2composites

    The mixtures of prepared urchin-like α-MnO2nanotubes and sulfur were sealed and heated to 155℃for 10 hours.Then,the mixtures were heated to 250℃under argon flow for 30 min in tube furnace to eliminate the sulfur on the outside surface of the α-MnO2nanotubes by evaporation.The resulting S@α-MnO2composites with the sulfur loading of 71.09%(w/w)were obtained,according to the thermogravimetric analysis(TGA).

    1.3 Synthesis of S@α-MnO2-PEDOT

    A simple in situ polymerization process was used to coat the PEDOTs on the surface of S@α-MnO2composite.Typically,50 mg S@α-MnO2composites were dispersed into the different quantity(4,2,1 mg)of 3,4-ethylenedioxythiophene(EDOT)solution at room temperature.Then different quantity(12.50,6.25,3.12 mg)of oxidant FeCl3solution was added dropwise sequencingly.After stirring for 6 hours,the final product was collected by centrifugation,washed by distilled water several times,and then dried at 60℃overnight.

    1.4 Characterization

    XRD measurements were carried out on a Philip XRD X′PERT PRO X-ray diffractometer operating at 40 kV and 40 mA,and using Cu Kα radiation(λ=0.154 18 nm).The diffraction patterns were performed in the 2θ range of 10°~80°.The structure and morphology were characterized by SEM (Hitachi S-4800 at 10 kV)and TEM (Hitachi 7700 at 100 kV).High-resolution TEM(HRTEM)images were recorded on FEITalosF200X field-emission transmission electron microscope operated at 200 kV.Raman spectroscopy was carried out using a Renishaw inVia Raman microscope with a 532 nm laser with exposure time of 10 s,the laser power was reduced to 1%to minimize the sublimation of sulfur due to the laser heating.Chemical bonding nature was analyzed by X-ray photoelectron spectroscopy(PHI 5000 Versa Probe).Thermogravimetric analysis was used to determine the sulfur content of the material on a TGA instrument(NETZSCH STA-449 C)employing a heating rate of 10℃·min-1from room temperature to 700℃ under a nitrogen flow.

    CR2032-type coin cells were assembled in a glovebox filled with argon.The working electrodes were prepared by mixing 70%(w/w)active materials,20%(w/w)acetylene black and 10%(w/w)polyvinylidene fluoride (PVDF)binder in N-methyl pyrrolidinone(NMP).The slurries were homogeneously coated on to aluminum foil current collectors.The electrodes were dried at 60℃for 12 h under vacuum.Subsequently,the electrodes were cut into disks with a diameter of 13 mm.A piece of lithium foil was used for the combined counter and reference electrodes.1.0 mol·L-1lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)in 1,3-dioxolane and 1,2-dimethoxyethane(volume ratio,1∶1)with 1%(w/w)LiNO3as an additive was used as the electrolyte.The LiNO3was added to help passivate the surface of the lithium anode and reduce the “shuttle effect”.Celgard 2400 was used as a separatorfilm.The cycle performances,rate capability and galvanostatic charge/discharge tests were carried out on LAND CT2001A in a potential range of 1.5~2.8 V (vs Li/Li+).The specific capacity was calculated based on the weight of sulfur.Cyclic voltammetry (scan rate:0.2 mV·s-1,cut-off voltage:1.5~2.8 V)and electrochemical impedance spectra(frequency range from 100 kHz to 10 mHz)were measured with an electrochemical workstation VMP3.

    2 Results and discussion

    2.1 Structure characterization

    The formation mechanism of hollow urchin-like morphology of manganese dioxide can be explained by the process ofOstwald maturation.In general,permanganic acidradical is unstable on thermodynamics and it is easy to be reduced to manganese dioxide.Therefore,the reaction occurred rapidly in an acidic environment and at a high temperature under hydrothermal condition.Atthebeginningofthe reaction,a large number of MnO2crystal nuclei condensed into MnO2microspheres and MnO2nanorods grew outwards along the surface of the microsphere,the formation of the hollow urchin-like structure was attributed to the gradual disappearance of the core.The formation of MnO2nanotubes was mainly due to the etching of MnO2nanorods by hydrochloric acid.In the hydrothermal condition,hollow urchin-like morphology of MnO2can be reflected in the intensification of the etching.The redox reaction can be described by Equation(1)as follows.

    The scanning electron microscopy (SEM)images of α-MnO2(Fig.1(a~c),Fig.S1,Supporting Information)exhibit the 3D structure of urchin-like morphology at different magnifications.The urchin-like microspheres assembled by a large number of short-sized nanotubes of manganese dioxide dispersed from the center to the outside can be observed from Fig.1(a,b).From Fig.1c,the manganese dioxide nanotubes with hollow structure can be seen clearly as green ellipses shown.TEM images(Fig.1(d~e))also revealed that the obvious hollow structure ofα-MnO2nanotubes and the nanotubes had a diameter of approximately 120 nm.The lattice fringe with an interplanar spacing of about 0.31 nm that corresponded to the (310)plane of α-MnO2was further identified from the inset of Fig.1e.The high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM)image and elemental mappings of MnO2nanotubes exhibit the element distribution of Mn and O along the length of nanotube in Fig.2f.

    After the melt-diffusion stage,the S@α-MnO2nanotubes morphology (Fig.2a)was maintained well except for the rough surface compared with the pristine MnO2nanotubes (Fig.1c).To give further insight into the morphology and structure of the S@α-MnO2,TEM analysis has been carried out.Fig.2b reveals that the solid rods,indicating the sulfur was successfully encapsulated in hollow tubes of MnO2.After the solid rods of S@α-MnO2were coated by PEDOT,there was obviously cladding on the outer surface as shown in Fig.2c,and the enlarged image(Fig.S2)shows the wrapped nanotube of S@α-MnO2-PEDOT with a diameter of approximately 140 nm.Fig.2d further reveals the presence of PEDOT and the thickness was approximately 10 nm under the mass ratio of S@α-MnO2composites and EDOT with 50∶2.For comparison,other different mass ratios(50∶1,50∶4)were also carried out,their thicknesses were 5 and 20 nm,respectively (Fig.S3).Moreover,the HAADFSTEM and TEM elemental mappings confirmed the existence and homogeneous distribution of Mn,O,S and C elements in S@α-MnO2(Fig.2e)and S@α-MnO2-PEDOT (Fig.2f),respectively.The high voltage and volatilization of some sulfur during TEM testing resulted in the hollow structure to some extent.

    The X-ray diffraction (XRD)pattern indicates tetragonal crystal system of hollow urchin-like α-MnO2.The α-MnO2had tunnel structures which was one of five known mineral polymorphs of manganese oxide.The crystal structure of α-MnO2was tunnel structures of[1×1]and [2×2]which being composed by singleordouble chain according to[MnO6]octahedral along public edges[42].As shown in the Fig.3a,the main diffraction peaks of α-MnO2at around 12.9°,17.9°,28.6°,37.5°,42.0°,49.8°,56.3°,60.1°,65.4°,69.4°and 73.2°,which was consistent with the diffraction peaks of the tetragonal crystal system of α-MnO2(PDF No.44-0141)reported in the literature[43].The product had good crystallization because all diffraction peaks were sharp in Fig.3a.Also,the XRD patterns of S@α-MnO2and S@α-MnO2-PEDOT were almost the same to that of elemental sulfur with preponderant peaks at 23.02°,26.26°,27.65°,and 28.61°,indicating sublimed sulfur was successfully infiltrated into α-MnO2nanotubes and α-MnO2-PEDOT composites,and the diffraction peaks were in good agreement with the standard cards of sulfur(PDF No.08-0247)and manganese dioxide.Because of the existence of PEDOT,the diffraction peak intensity was weak compared with pure MnO2.The sulfur contents of S@α-MnO2-PEDOT composites with different mass ratio of S@α-MnO2composites and EDOT were demonstrated by thermogravimetric analysis(TGA)in Fig.S4.In the TGA,the sulfur volatilized when temperature reached~160℃ showing steep weight loss and the slight weight loss around 500℃could be attributed to the pyrolysis of PEDOT.In the control sample,the residualmoisture content was about 3%(w/w).The TGA reveals that the sulfur contents(mass percentage)of S@α-MnO2-PEDOT nanocomposites are 69.75%(50∶1),70.40%(50∶2)and 71.91%(50∶4).The Raman spectrum of S@α-MnO2-PEDOT composites was as provided to investigate the structural information(Fig.3b).The intensive peak at 1 443 cm-1was chiefly due to the C-C stretching vibration of the thiophene ring,rooting in the neutral parts existing between the localized elementary excitationssuch aspositive polarons or bipolarons generated upon doping[44-46].The peaks consisted in 1 502 and 1 565 cm-1were put down to the C=C asymmetric stretching vibrations of the thiophene rings in the middle and at the end of the chains,respectively[47].The peak at 635 cm-1was attributed to MnO2.Moreover,There were obvious Raman spectra of pure sulfur at 152.9,218.4 and 471.6 cm-1,which corresponded to the vibration of S-S bond in S@α-MnO2-PEDOT composites[48].To prove the interaction of polysulfides with α-MnO2nanotubes,the XPS analysis of pristine α-MnO2,the polysulfide and α-MnO2nanotubes were carried out.The XPS spectra of the whole spectrum of S@α-MnO2-PEDOT and Li2S6@α-MnO2-PEDOT are shown in Fig.S5.In Fig.3c,the Mn2p3/2spectrum showed two deconvoluted peaks at 641 and 642.3 eV,corresponding to Mn3+and Mn4+of pristine α-MnO2,respectively[49].As evident from Fig.3d,the oxidation of Li2S6resulted in the partial reduction of Mn4+to Mn3+and Mn2+.The peak intensity of Mn3+significantly enhanced,and the new peak located at 640~641 eV,which could be assigned to the Mn2+oxidation states.The results can be clearly seen further confirming the strong interaction of polysulfides with MnO2nanotubes,which can load more sulfur species around the Mn ion and trap more soluble polysulfides[50].

    Fig.3 (a)X-ray diffraction patterns of pristine sulfur,α-MnO2,S@α-MnO2andS@α-MnO2-PEDOT;(b)Raman spectra of S@α-MnO2-PEDOT;XPS spectra of(c)S@α-MnO2-PEDOT and(d)Li2S6@α-MnO2-PEDOT for Mn2p3/2

    2.2 Electrochemical performance

    Fig.4 CV curves of(a)S@α-MnO2electrode and(b)S@α-MnO2-PEDOT electrode for the first four cycles at a scan rate of 0.2 mV·s-1;(c)Nyquist plots of S@α-MnO2electrode and S@α-MnO2-PEDOT electrode before cycling;(d)Nyquist plots of S@α-MnO2-PEDOT electrode after cycling;(e)Initial discharge/charge voltage profiles of S@α-MnO2and S@α-MnO2-PEDOT electrodes(50∶2)at 1.0C;(f)Initial discharge/charge voltage profiles of S@α-MnO2-PEDOT electrodes with different PEDOT contents at 1.0C

    The electrochemical performances of the S@α-MnO2and S@α-MnO2-PEDOT composites were illustrated in the following research.The first four cycles of the CV curves of S@α-MnO2and S@α-MnO2-PEDOT nanocomposites are presented in Fig.4(a,b)in the potential range of 1.5~2.8 V at a scan rate of 0.2 mV·s-1.Unlike the CV curves of S@α-MnO2,the CV curves of S@α-MnO2-PEDOT had higher current,suggesting the betterconductivity ofS@α-MnO2-PEDOT by introduction of PEDOT.However,both of CV curves showed representative reduction and oxidation characteristic peaks for the lithium-sulfur batteries,and the peaks were at almost the same positions.Two typical reduction peaks at around 2.0 and 2.24 V could be attributed to the multistep reduction reaction of sublimed sulfur[51].The former was attributed to the reduction of S8to S82-,and the latter was related to further transformation of soluble long-chain polysulfide (Li2Sn,n=4~6)to produce insoluble short-chain polysulfides (Li2S or Li2S2)[52].In the oxidation process,the main peak at around 2.45 V corresponded to the reverse reactions of polysulfides back to S8.There was a significant reduction peak of CV in the first circle between 1.5 and 1.8 V in Fig.4b,which may be attributed to the formation of SEI film.Obviously,as the cycle proceeds,the cathodic peaks were shifted to higher potentials and the anodic peaks were shifted to lower potentials,indicating an improvement of reversibility of S@α-MnO2.To further investigate the dynamics of S@α-MnO2and S@α-MnO2-PEDOT nanocomposite.As shown in the Fig.4c,the electrochemical impedance spectroscopy(EIS)measurement was emerged.It can be seen that the EIS spectra included a depressed semicircle in the high frequency region and a sloping line(Warburg impedance)in the low frequency region.The semicircle is attributed to the charge-transfer process,which corresponds to the resistance over Li+diffusion through the contacting interface between the electrolyte and active material electrode.The sloping line reflects a semi-infinite Warburg diffusion process[53].The semicircle in the high frequency region is due to the interfacial charge transfer resistance(Rct).It is obviously shown that S@α-MnO2-PEDOT exhibited a lower Rct(ca.160 Ω)than that of S@α-MnO2(ca.220 Ω),revealing thatthe S@α-MnO2-PEDOT composites electrode has excellent electrical conductivity during the charge and discharge process and the presence of PEDOT in favor of electrochemical reaction kinetics.Fig.4d shows the EIS spectra of S@α-MnO2-PEDOT electrode after cycling.After the 50th cycle,the resistance of S@α-MnO2-PEDOT electrode was more than 300 Ω,which was larger than that after the 1st cycle,indicating a lowerelectronic conductivity because of the generation of LiPSs during cycling process.

    Fig.4e showsinitialdischarge/charge voltage profiles of S@α-MnO2and S@α-MnO2-PEDOT electrodes(50∶2).It is observed that there were two plateaus at typical discharge process.The lower voltage plateau at ca.2.0 V reflected the further reduction of highorder polysulfides to low-order polysulfides(Li2Sn,n<4)and finally to insoluble lithium sulfides(Li2S2/Li2S).In addition,the upper voltage plateau conformed with the conversion from S8to long chain polysulfides(Li2S8,Li2S6,or Li2S4).However,the charge plateau is related to the transformation from Li2S2/Li2S to Li2S8/S8,which agreed well with the CV analysis.The S@α-MnO2-PEDOT composites electrode(50∶2)showed the higher initial specific discharge capacity(1 672.2 mAh·g-1)than that of S@α-MnO2electrode(868.1 mAh·g-1).Importantly,the smaller voltage platform difference(0.445 V)of S@α-MnO2-PEDOT electrode compared with the voltage platform difference(0.473 V)of S@α-MnO2electrode suggests that the electrochemical reaction reversibility of the S@α-MnO2-PEDOT is higher relative to S@α-MnO2because of the presence of PEDOT.Fig.4f shows initial discharge/charge voltage profiles of S@α-MnO2-PEDOT electrodes with different PEDOT contents.These S@α-MnO2-PEDOT composites electrodes with different PEDOT contents show the initial specific discharge capacity values of 1 487.7(50∶1),1 672.2(50∶2)and 1 465.7 mAh·g-1(50∶4).

    Fig.5 (a)Rate capabilities of S@α-MnO2-PEDOT electrodes with different PEDOT contents;(b)Cycling performances of S@α-MnO2electrode at different current densities;(c)Cycling performances of S@α-MnO2-PEDOT electrodes with different PEDOT contents at the current density of 1.0C

    As shown in Fig.5a,the rate capabilities of S@α-MnO2-PEDOT composite electrodeswith different PEDOT contents under different current densities.It was tested by varying current densities from 335(0.2C)to 3 350 mA·g-1(2.0C).The rate capabilities of S@α-MnO2-PEDOT composites electrodes are much higher than that of S@α-MnO2electrode.It was clearly visible that the composite with mass ratio of 50∶2 obtained the best rate performance.The discharge capacities were 1 582.8,1 209.4,1 000.1 and 854.1 mAh·g-1at the current densities of 0.2C,0.5C,1.0C and 2.0C,respectively.When the current density was reduced back to 0.2C,the capacity was recovered to 1 108.6 mAh·g-1,indicating that relatively good stability at different current densities.The cycling performance and coulombic efficiency of S@α-MnO2electrode at the different current densities(0.5C,1C,2C;1C=1 675 mA·g-1)are shown in Fig.5b.The initial discharge capacities were 1 248.7(0.5C),868.1(1.0C)and 529.2(2.0C)mAh·g-1,respectively.And after 150 cycles,the capacities decayed to 549.2,496.8 and 332.9 mAh·g-1at 0.5C,1.0C and 2.0C,respectively.The capacity retentions respectively are 44.0%,57.2%and 62.9%.The coulombic efficiencies were basically above 97%.Apparently,it was important that α-MnO2nanotubes structure could effectively physically restrain the produced polysulfides and also had valid chemicalbond ofMn-S to adsorb polysulfides efficiently,which promoting the utilization of the active material and the reaction kinetics.Fig.5c presents the cycle performances and coulombic efficiencies of S@α-MnO2-PEDOT composite electrodes with different contents of PEDOT at the current densities of 1.0C.Among them,the initial specific discharge capacity values were 1 465.7(50∶4),1 672.2(50∶2),1 487.7(50∶1)and 868.1(50∶0)mAh·g-1,respectively.Obviously,the S@α-MnO2-PEDOT composite(50∶2)has the most remarkable cycle performance.After testing 200 cycles,the specific capacity could still achieve 774.4 mAh·g-1,and the coulombic effciency curve was relatively stable.The excellent electrochemical properties of S@α-MnO2-PEDOT composites were attributed to dual function of MnO2nanotubes and conductive PEDOT buffer layer.In the hybrid composites,MnO2nanotubes and PEDOT layer not only could physically restrict the sulfur/polysulfides inside the inner hollow structure to prevent polysulfides from dissolving into the electrolyte and succedent shuttle effect,but also relieve the volume expansion of S during discharge/charge process and provided a convenient transport channel for ions[54].Moreover,the bonding interaction between polysulfides and MnO2inhibited the chronic seeping of polysulfides and maintained the relative integrity of the electrode.In addition,highly conducting PEDOT layer provided efficient pathways for electron transport.The thicker PEDOT coating,the stronger the conductivity of the composite and more effective at binding sulfur,which resulted in the better electrochemical performance.However,the cycle performances of the S@α-MnO2-PEDOT composite(50∶4)and(50∶1)were similar after 100 cycles.This may be ascribed to the fact that the thicker PEDOT coating has a slight effect on the migration of ions.Therefore,the most superior electrochemical properties of S@α-MnO2-PEDOT composite(50∶2)were presented.The presence of conductive PEDOT buffer layer,effective MnO2nanotubes matrix,bonding interaction between polysulfides and MnO2,and synergistic effect among them yield a robust architecture for enhancing the electrochemical performances of lithium sulfur batteries.

    3 Conclusions

    In summary,a sulfur cathode has been prepared using hollow α-MnO2nanotubes and exterior PEDOT coating as host materials to immobilize sulfur and capture polysulfides.The hollow α-MnO2nanotube structure not only can accommodate volumetric change ofsulfur,butalso can provide conveniention channels and physical constraint for sulfur/polysulfides.It also can effectively adsorb the polysulfides produced during charge-discharge process by the formation of chemical bond of Mn-S.Moreover,a buffer layer of PEDOT was covered on the surface of MnO2to further enhance the conductivity of the composite cathodes,accelerate electronic transmission,and boost stability of the composites.The S@α-MnO2-PEDOT composites exhibited excellent electrochemical performance.It could reach a capacity of 774.4 mAh·g-1at a current density of 1 675 mA·g-1(1C)after 200 cycles and 854.1 mAh·g-1at a current density of 3 350 mA·g-1(2C).The research provides an effective approach for the preparation of highperformance sulfur cathodes based on tubular transition metal oxides with functionalizing conducting polymer,manifesting a promising pattern to achieve perfect stability,excellent reversibility,fast kinetics,high energy density and long cycle life for Li-S batteries.

    Supporting information is available at http://www.wjhxxb.cn

    猜你喜歡
    朱紅郵電大學(xué)納米管
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    西安郵電大學(xué)設(shè)計(jì)作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    抗疫聚云端 一起向未來(lái)
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    最近鄰弱交換相互作用對(duì)spin-1納米管磁化強(qiáng)度的影響
    重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
    《周禮》大宰九式研究
    古代文明(2016年2期)2016-04-26 07:14:47
    二氧化鈦納米管的制備及其應(yīng)用進(jìn)展
    Sediment rarefaction resuspension and contaminant release under tidal currents*
    TiO2納米管負(fù)載Pd-Ag催化1,2-二氯乙烷的選擇性加氫脫氯
    一级黄色大片毛片| 中文在线观看免费www的网站 | 久9热在线精品视频| 制服诱惑二区| 99精品久久久久人妻精品| 99精品久久久久人妻精品| 国产区一区二久久| 最新在线观看一区二区三区| 老司机福利观看| xxx96com| 日日夜夜操网爽| 久久国产精品影院| 久久久久久久久久黄片| 桃红色精品国产亚洲av| 亚洲在线自拍视频| 日韩中文字幕欧美一区二区| 久久久久久久久久黄片| 国产av又大| 两个人看的免费小视频| 一区二区三区高清视频在线| 午夜福利免费观看在线| 精品无人区乱码1区二区| 欧美最黄视频在线播放免费| 国产精品综合久久久久久久免费| 淫秽高清视频在线观看| 99热6这里只有精品| 中文字幕av电影在线播放| 欧美亚洲日本最大视频资源| 欧美黑人欧美精品刺激| 免费在线观看黄色视频的| 国产aⅴ精品一区二区三区波| 欧美精品亚洲一区二区| 久久精品国产亚洲av香蕉五月| 18禁美女被吸乳视频| 亚洲成a人片在线一区二区| 波多野结衣巨乳人妻| 国产爱豆传媒在线观看 | tocl精华| 波多野结衣巨乳人妻| 91字幕亚洲| 亚洲精品粉嫩美女一区| 在线观看日韩欧美| 亚洲午夜理论影院| 国产野战对白在线观看| 精品国产乱码久久久久久男人| 中文字幕精品亚洲无线码一区 | 国产精品免费一区二区三区在线| 亚洲黑人精品在线| 久久国产精品人妻蜜桃| 亚洲精品中文字幕在线视频| 成人亚洲精品一区在线观看| 久久这里只有精品19| 成人精品一区二区免费| 精品久久久久久,| 91av网站免费观看| 亚洲精品国产一区二区精华液| 欧美精品啪啪一区二区三区| 男女下面进入的视频免费午夜 | 亚洲国产欧美网| 国产亚洲精品久久久久久毛片| 欧美性长视频在线观看| 黄片大片在线免费观看| 午夜免费激情av| 精品熟女少妇八av免费久了| 精品午夜福利视频在线观看一区| 黄片播放在线免费| netflix在线观看网站| av免费在线观看网站| 亚洲专区中文字幕在线| 精品国产一区二区三区四区第35| 亚洲精品美女久久av网站| 欧美激情高清一区二区三区| 欧美黑人巨大hd| 后天国语完整版免费观看| 国产久久久一区二区三区| 激情在线观看视频在线高清| 亚洲,欧美精品.| 大香蕉久久成人网| 色播在线永久视频| 亚洲国产看品久久| 国产亚洲av嫩草精品影院| 91老司机精品| 午夜福利在线在线| 亚洲av熟女| 日韩欧美在线二视频| 婷婷精品国产亚洲av| 午夜福利一区二区在线看| 黄频高清免费视频| 国产成人欧美在线观看| 精品少妇一区二区三区视频日本电影| 97人妻精品一区二区三区麻豆 | 麻豆一二三区av精品| 亚洲欧美日韩高清在线视频| 搞女人的毛片| 麻豆久久精品国产亚洲av| www日本黄色视频网| 国产真人三级小视频在线观看| 精品国产美女av久久久久小说| 日韩欧美一区视频在线观看| 在线观看一区二区三区| 黄片小视频在线播放| 久久性视频一级片| 中文资源天堂在线| 国产欧美日韩一区二区三| 大香蕉久久成人网| 看片在线看免费视频| 韩国精品一区二区三区| av在线天堂中文字幕| 精品久久蜜臀av无| 熟女电影av网| 嫩草影院精品99| 国产单亲对白刺激| 黄色成人免费大全| videosex国产| 法律面前人人平等表现在哪些方面| 日本成人三级电影网站| 一二三四社区在线视频社区8| 亚洲成人久久爱视频| netflix在线观看网站| 亚洲第一av免费看| 男人操女人黄网站| 757午夜福利合集在线观看| 国产高清激情床上av| 久久性视频一级片| 精品高清国产在线一区| 美女大奶头视频| 夜夜爽天天搞| 观看免费一级毛片| 91字幕亚洲| 国产亚洲精品久久久久5区| 午夜久久久在线观看| 久久香蕉精品热| 老汉色av国产亚洲站长工具| 欧美中文日本在线观看视频| 亚洲精品在线美女| 少妇裸体淫交视频免费看高清 | 人人澡人人妻人| 伊人久久大香线蕉亚洲五| 免费观看人在逋| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 俄罗斯特黄特色一大片| 欧美中文综合在线视频| 亚洲成人久久性| 听说在线观看完整版免费高清| 欧美一级毛片孕妇| 国产一区二区三区视频了| 精品久久久久久久毛片微露脸| 欧美一级毛片孕妇| 一进一出抽搐gif免费好疼| 香蕉丝袜av| 国产精品永久免费网站| 91字幕亚洲| а√天堂www在线а√下载| 欧美日韩亚洲国产一区二区在线观看| 18禁观看日本| 欧美成人性av电影在线观看| 脱女人内裤的视频| av欧美777| 欧美乱妇无乱码| 在线国产一区二区在线| 黄色女人牲交| 亚洲成人久久爱视频| 在线十欧美十亚洲十日本专区| 1024香蕉在线观看| 狂野欧美激情性xxxx| 少妇 在线观看| 国产黄a三级三级三级人| 亚洲成a人片在线一区二区| 亚洲专区国产一区二区| 久久久精品欧美日韩精品| 国产精品久久电影中文字幕| 亚洲精品在线观看二区| 大香蕉久久成人网| 天天一区二区日本电影三级| 亚洲精品粉嫩美女一区| 亚洲第一电影网av| 日韩成人在线观看一区二区三区| 后天国语完整版免费观看| av电影中文网址| 少妇被粗大的猛进出69影院| 久久久国产成人精品二区| 精品福利观看| 久久中文字幕一级| 成人欧美大片| 精品国产美女av久久久久小说| 国产真实乱freesex| 亚洲专区字幕在线| 亚洲精品粉嫩美女一区| 国产av一区在线观看免费| 久久精品人妻少妇| 俺也久久电影网| 在线国产一区二区在线| 在线免费观看的www视频| aaaaa片日本免费| 亚洲专区国产一区二区| 欧美日韩乱码在线| 亚洲欧美精品综合久久99| 丰满人妻熟妇乱又伦精品不卡| 丝袜人妻中文字幕| 中文字幕精品亚洲无线码一区 | 国产99白浆流出| 91成年电影在线观看| 亚洲精品国产一区二区精华液| 老熟妇仑乱视频hdxx| av视频在线观看入口| 午夜免费鲁丝| 草草在线视频免费看| 日韩有码中文字幕| 熟女电影av网| 欧美日韩福利视频一区二区| 手机成人av网站| 在线天堂中文资源库| 久久久国产成人精品二区| 日本成人三级电影网站| 成人午夜高清在线视频 | 香蕉丝袜av| 人人澡人人妻人| 丁香欧美五月| 午夜精品久久久久久毛片777| 久久久久国产精品人妻aⅴ院| 99在线人妻在线中文字幕| 美女扒开内裤让男人捅视频| 日本五十路高清| 丝袜人妻中文字幕| 成年版毛片免费区| 久久人妻福利社区极品人妻图片| 日日夜夜操网爽| 久久亚洲精品不卡| 久久久国产成人精品二区| 国产成人欧美| 大香蕉久久成人网| 在线十欧美十亚洲十日本专区| 免费高清视频大片| 国产激情久久老熟女| 18禁观看日本| 高清毛片免费观看视频网站| 色老头精品视频在线观看| 亚洲av日韩精品久久久久久密| 亚洲第一电影网av| 在线观看一区二区三区| 精品久久蜜臀av无| 2021天堂中文幕一二区在线观 | 婷婷精品国产亚洲av在线| 俺也久久电影网| 免费在线观看视频国产中文字幕亚洲| 一个人免费在线观看的高清视频| 成人欧美大片| 亚洲国产欧洲综合997久久, | АⅤ资源中文在线天堂| 最新美女视频免费是黄的| 欧美av亚洲av综合av国产av| 免费在线观看成人毛片| 亚洲专区中文字幕在线| 麻豆国产av国片精品| 精品福利观看| 美女高潮到喷水免费观看| 夜夜夜夜夜久久久久| 免费在线观看视频国产中文字幕亚洲| 757午夜福利合集在线观看| 99精品在免费线老司机午夜| 亚洲自偷自拍图片 自拍| 国产蜜桃级精品一区二区三区| 亚洲人成电影免费在线| 又黄又粗又硬又大视频| 国产三级在线视频| 男女之事视频高清在线观看| 可以免费在线观看a视频的电影网站| 国产乱人伦免费视频| 国产精品,欧美在线| 久久精品国产亚洲av高清一级| 成人手机av| 国产高清videossex| 美女国产高潮福利片在线看| 国产蜜桃级精品一区二区三区| 桃红色精品国产亚洲av| 精品国产乱子伦一区二区三区| 久久精品人妻少妇| 精品免费久久久久久久清纯| 精品久久久久久成人av| 国产99白浆流出| 亚洲人成77777在线视频| 精品久久蜜臀av无| 欧美成人午夜精品| АⅤ资源中文在线天堂| xxxwww97欧美| 老司机在亚洲福利影院| 免费在线观看完整版高清| 亚洲人成电影免费在线| 国产免费男女视频| 18禁国产床啪视频网站| 亚洲成人久久爱视频| 超碰成人久久| 国产欧美日韩一区二区三| 久久久精品国产亚洲av高清涩受| 757午夜福利合集在线观看| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 亚洲av中文字字幕乱码综合 | 久久精品91无色码中文字幕| 黄色a级毛片大全视频| 好男人电影高清在线观看| 国产伦人伦偷精品视频| 校园春色视频在线观看| 激情在线观看视频在线高清| 一级毛片女人18水好多| 一级黄色大片毛片| 亚洲精品美女久久av网站| 最新在线观看一区二区三区| 国产精品1区2区在线观看.| 久久久久久大精品| 色尼玛亚洲综合影院| 欧美三级亚洲精品| 天堂√8在线中文| 最近最新中文字幕大全免费视频| 色av中文字幕| 中文字幕高清在线视频| 99国产极品粉嫩在线观看| 露出奶头的视频| 日本一区二区免费在线视频| 夜夜躁狠狠躁天天躁| 婷婷精品国产亚洲av| 国产av一区二区精品久久| 免费女性裸体啪啪无遮挡网站| 成年女人毛片免费观看观看9| 搞女人的毛片| 一级a爱片免费观看的视频| 欧美激情高清一区二区三区| www国产在线视频色| 国内精品久久久久精免费| 国产真人三级小视频在线观看| 亚洲成a人片在线一区二区| 999久久久国产精品视频| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 日韩av在线大香蕉| 婷婷亚洲欧美| 欧美成人性av电影在线观看| 色婷婷久久久亚洲欧美| 狠狠狠狠99中文字幕| 亚洲一区二区三区不卡视频| 99国产综合亚洲精品| 麻豆一二三区av精品| 99在线人妻在线中文字幕| 国产在线精品亚洲第一网站| 美女高潮喷水抽搐中文字幕| 夜夜躁狠狠躁天天躁| 免费在线观看完整版高清| 精品久久久久久久久久久久久 | 日韩欧美免费精品| 亚洲国产日韩欧美精品在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 99热只有精品国产| 黑人欧美特级aaaaaa片| 男女床上黄色一级片免费看| 看免费av毛片| 国产亚洲欧美在线一区二区| 波多野结衣巨乳人妻| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 99精品欧美一区二区三区四区| 黑人欧美特级aaaaaa片| 国产欧美日韩精品亚洲av| 久久久久久久久免费视频了| 99在线人妻在线中文字幕| 免费观看精品视频网站| 久久久久久久午夜电影| 韩国av一区二区三区四区| 琪琪午夜伦伦电影理论片6080| 中文字幕久久专区| 色综合站精品国产| 亚洲国产欧美网| 精品久久久久久久毛片微露脸| 看黄色毛片网站| 琪琪午夜伦伦电影理论片6080| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 91九色精品人成在线观看| 一个人免费在线观看的高清视频| 亚洲一区二区三区不卡视频| 狠狠狠狠99中文字幕| 少妇熟女aⅴ在线视频| 亚洲av熟女| 亚洲一区中文字幕在线| 中国美女看黄片| 国产视频一区二区在线看| cao死你这个sao货| 久久国产精品影院| 久久午夜亚洲精品久久| 午夜福利高清视频| 亚洲成a人片在线一区二区| 午夜影院日韩av| www国产在线视频色| 国产又爽黄色视频| 丰满人妻熟妇乱又伦精品不卡| 色综合亚洲欧美另类图片| 中文字幕最新亚洲高清| 一二三四社区在线视频社区8| 亚洲 欧美一区二区三区| 天堂√8在线中文| 中文字幕av电影在线播放| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕高清在线视频| 91av网站免费观看| 亚洲色图av天堂| 欧美成人一区二区免费高清观看 | 午夜激情福利司机影院| 1024手机看黄色片| e午夜精品久久久久久久| 国产激情偷乱视频一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲av美国av| 在线观看免费日韩欧美大片| 制服人妻中文乱码| 一进一出抽搐gif免费好疼| av视频在线观看入口| 久久青草综合色| 亚洲第一av免费看| 好男人在线观看高清免费视频 | 黄片小视频在线播放| 欧美丝袜亚洲另类 | 露出奶头的视频| 中文字幕最新亚洲高清| 91成人精品电影| 欧美成狂野欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 免费电影在线观看免费观看| 老司机午夜十八禁免费视频| 国产精品乱码一区二三区的特点| 久久国产精品男人的天堂亚洲| 青草久久国产| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| 99国产精品一区二区三区| 视频区欧美日本亚洲| 怎么达到女性高潮| 日韩精品免费视频一区二区三区| a在线观看视频网站| 又黄又粗又硬又大视频| 黄色视频,在线免费观看| 国产精品野战在线观看| 99在线人妻在线中文字幕| 黄片播放在线免费| 丰满的人妻完整版| 人妻久久中文字幕网| а√天堂www在线а√下载| 日韩欧美 国产精品| 欧美性猛交黑人性爽| 欧美日韩亚洲国产一区二区在线观看| 国产精品99久久99久久久不卡| 国产一区二区在线av高清观看| 法律面前人人平等表现在哪些方面| 韩国精品一区二区三区| 桃红色精品国产亚洲av| 中文资源天堂在线| 亚洲男人天堂网一区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲 国产 在线| 禁无遮挡网站| www日本在线高清视频| 亚洲人成77777在线视频| 精品第一国产精品| 一区二区日韩欧美中文字幕| 最新在线观看一区二区三区| 91字幕亚洲| 1024手机看黄色片| 午夜两性在线视频| 日韩欧美免费精品| 看免费av毛片| 香蕉av资源在线| 久久久精品国产亚洲av高清涩受| 国产精品一区二区精品视频观看| 国产一区在线观看成人免费| av欧美777| 久久这里只有精品19| 精品国产亚洲在线| 51午夜福利影视在线观看| 久久 成人 亚洲| 亚洲熟妇中文字幕五十中出| 观看免费一级毛片| 国产成年人精品一区二区| 黄片播放在线免费| 亚洲成av片中文字幕在线观看| 国产又黄又爽又无遮挡在线| 色综合亚洲欧美另类图片| svipshipincom国产片| 成人三级黄色视频| 国产视频内射| 波多野结衣高清无吗| 给我免费播放毛片高清在线观看| 777久久人妻少妇嫩草av网站| 亚洲性夜色夜夜综合| 伦理电影免费视频| 精品人妻1区二区| 亚洲色图 男人天堂 中文字幕| 免费无遮挡裸体视频| 制服丝袜大香蕉在线| 色综合婷婷激情| 变态另类丝袜制服| 久久久久精品国产欧美久久久| 国产一区在线观看成人免费| 欧美丝袜亚洲另类 | www.999成人在线观看| 久久久久久久久免费视频了| 国产欧美日韩一区二区三| 熟女少妇亚洲综合色aaa.| 此物有八面人人有两片| 麻豆成人午夜福利视频| 每晚都被弄得嗷嗷叫到高潮| 成人手机av| 熟女电影av网| 久久久久国内视频| 免费无遮挡裸体视频| 麻豆国产av国片精品| 日韩成人在线观看一区二区三区| 亚洲人成网站高清观看| 俄罗斯特黄特色一大片| 亚洲成人免费电影在线观看| 成年免费大片在线观看| 国产一卡二卡三卡精品| 国产亚洲精品av在线| 久久久久国内视频| 亚洲精品一区av在线观看| 亚洲第一电影网av| 天天添夜夜摸| 午夜两性在线视频| 亚洲一区高清亚洲精品| 18禁国产床啪视频网站| 成人永久免费在线观看视频| 国产色视频综合| 色在线成人网| 国产成人av激情在线播放| 性色av乱码一区二区三区2| 夜夜看夜夜爽夜夜摸| 亚洲成a人片在线一区二区| 国产91精品成人一区二区三区| 亚洲国产日韩欧美精品在线观看 | 国产三级在线视频| 国产在线精品亚洲第一网站| 午夜亚洲福利在线播放| 国产99白浆流出| 中出人妻视频一区二区| 天堂√8在线中文| 亚洲一区中文字幕在线| 一进一出抽搐动态| 他把我摸到了高潮在线观看| 真人做人爱边吃奶动态| 视频在线观看一区二区三区| 神马国产精品三级电影在线观看 | 精品一区二区三区视频在线观看免费| 亚洲免费av在线视频| 亚洲精品色激情综合| 日韩国内少妇激情av| 国产熟女午夜一区二区三区| avwww免费| 亚洲国产日韩欧美精品在线观看 | 国产精品久久久久久亚洲av鲁大| 国产人伦9x9x在线观看| 少妇裸体淫交视频免费看高清 | 亚洲欧美日韩无卡精品| 怎么达到女性高潮| 啪啪无遮挡十八禁网站| 神马国产精品三级电影在线观看 | 999精品在线视频| 精品日产1卡2卡| 久久久久久国产a免费观看| 一级a爱视频在线免费观看| 国产日本99.免费观看| 国产精品免费一区二区三区在线| 美国免费a级毛片| 好男人在线观看高清免费视频 | 免费在线观看日本一区| 亚洲国产精品成人综合色| 亚洲av成人不卡在线观看播放网| www.精华液| 国产精品自产拍在线观看55亚洲| 亚洲精品在线美女| 校园春色视频在线观看| 国产精品爽爽va在线观看网站 | 成人免费观看视频高清| 一级黄色大片毛片| 性欧美人与动物交配| 久久精品影院6| 国产精品1区2区在线观看.| 夜夜夜夜夜久久久久| 十八禁网站免费在线| 午夜激情av网站| 国产日本99.免费观看| 中文字幕人妻丝袜一区二区| 日韩精品中文字幕看吧| 免费在线观看亚洲国产| 亚洲成av片中文字幕在线观看| 婷婷亚洲欧美| aaaaa片日本免费| 十八禁网站免费在线| 亚洲精品一卡2卡三卡4卡5卡| 国产97色在线日韩免费| 啦啦啦 在线观看视频| 日本成人三级电影网站| 中出人妻视频一区二区| 女性生殖器流出的白浆| 亚洲五月色婷婷综合| 亚洲第一欧美日韩一区二区三区| 成人免费观看视频高清| 一区二区三区激情视频| 美女扒开内裤让男人捅视频| av在线天堂中文字幕| 一区二区三区高清视频在线| 正在播放国产对白刺激| 久久精品国产亚洲av高清一级| 此物有八面人人有两片| 我的亚洲天堂| 精品久久久久久久末码| 天天躁狠狠躁夜夜躁狠狠躁| 麻豆一二三区av精品|