湯騰飛,方漢良,張?俊
?
類Exechon并聯(lián)機(jī)構(gòu)模塊可重構(gòu)概念設(shè)計(jì)與運(yùn)動(dòng)學(xué)分析
湯騰飛,方漢良,張?俊
(福州大學(xué)機(jī)械工程及自動(dòng)化學(xué)院,福州 350116)
可重構(gòu)與模塊化設(shè)計(jì)是實(shí)現(xiàn)并聯(lián)機(jī)構(gòu)多功能、提升裝備加工柔性的關(guān)鍵技術(shù). 受商用Exechon并聯(lián)機(jī)構(gòu)模塊優(yōu)異性能的設(shè)計(jì)啟發(fā),在其變異機(jī)構(gòu)Exe-Variant的基礎(chǔ)上,應(yīng)用機(jī)構(gòu)變異思想提出兩種類Exechon并聯(lián)機(jī)構(gòu)模塊——Exe-Ⅰ和Exe-Ⅱ. 基于可鎖定關(guān)節(jié)、模塊化支鏈以及可重構(gòu)并聯(lián)機(jī)構(gòu)的設(shè)計(jì)思路,依次開展Exechon、Exe-Variant、Exe-Ⅰ和Exe-Ⅱ等4種類Exechon并聯(lián)機(jī)構(gòu)的模塊化、可重構(gòu)概念設(shè)計(jì). 針對(duì)以上并聯(lián)機(jī)構(gòu)模塊進(jìn)行運(yùn)動(dòng)學(xué)分析:運(yùn)用螺旋理論分析類Exechon并聯(lián)機(jī)構(gòu)的系統(tǒng)螺旋系,構(gòu)建類Exechon并聯(lián)機(jī)構(gòu)的系統(tǒng)全雅克比矩陣,依次分析機(jī)構(gòu)自由度和奇異性;通過矢量閉環(huán)方程推導(dǎo)其逆運(yùn)動(dòng)學(xué)模型和動(dòng)平臺(tái)連帶運(yùn)動(dòng);以“分層切片”的工作空間搜索方法預(yù)估其工作空間. 運(yùn)動(dòng)學(xué)對(duì)比分析表明:對(duì)類Exechon并聯(lián)機(jī)構(gòu)模塊開展的可重構(gòu)設(shè)計(jì),保留了并聯(lián)機(jī)構(gòu)的自由度類型和結(jié)構(gòu)奇異性特征,并顯著改善了部分類Exechon并聯(lián)機(jī)構(gòu)的逆運(yùn)動(dòng)學(xué)連帶運(yùn)動(dòng)的復(fù)雜程度以及動(dòng)平臺(tái)可達(dá)工作空間的分布. 最后,借助3D打印技術(shù)制作了Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的原理樣機(jī),運(yùn)動(dòng)學(xué)精度實(shí)驗(yàn)結(jié)果與理論分析結(jié)果吻合較好,數(shù)據(jù)的絕對(duì)誤差在±0.4mm以內(nèi),并且其相對(duì)誤差不大于實(shí)驗(yàn)值的3.2%,驗(yàn)證了運(yùn)動(dòng)學(xué)分析的正確性. 本文提出的可重構(gòu)與模塊化概念設(shè)計(jì),可為類Exechon并聯(lián)機(jī)構(gòu)模塊的高效可重構(gòu)設(shè)計(jì)及其工程應(yīng)用提供關(guān)鍵技術(shù)支撐.
并聯(lián)機(jī)構(gòu);可鎖定關(guān)節(jié);可重構(gòu);運(yùn)動(dòng)學(xué)
少自由度并聯(lián)機(jī)構(gòu)因其高精度、高剛度、低慣量以及結(jié)構(gòu)緊湊等優(yōu)點(diǎn),在機(jī)械加工、分揀搬運(yùn)以及醫(yī)療康復(fù)等領(lǐng)域受到廣泛的關(guān)注[1-3].作為少數(shù)業(yè)已成功商用的并聯(lián)機(jī)構(gòu)之一,Exechon并聯(lián)機(jī)構(gòu)以其拓?fù)浣Y(jié)構(gòu)簡(jiǎn)單、關(guān)節(jié)數(shù)目少(僅13個(gè)單自由度關(guān)節(jié))以及過約束設(shè)計(jì)等優(yōu)點(diǎn)[4],實(shí)現(xiàn)了優(yōu)異的精度和剛度性能,為精密制造,特別是高性能航空結(jié)構(gòu)件的加工提供了一種技術(shù)解決方案[5-6].
以機(jī)構(gòu)學(xué)觀點(diǎn)分析,Exechon并聯(lián)機(jī)構(gòu)模塊為一拓?fù)錁?gòu)型2UR&1SR(U表示虎克鉸,表示移動(dòng)副,R表示轉(zhuǎn)動(dòng)副,S表示球鉸)的機(jī)構(gòu),而通過機(jī)構(gòu)變異得到的類Exechon型Exe-Variant并聯(lián)機(jī)構(gòu)模塊為一拓?fù)錁?gòu)型2RU&1RS的機(jī)構(gòu)[7].比較Exechon和Exe-Variant可知,兩種并聯(lián)機(jī)構(gòu)具有相同的運(yùn)動(dòng)副類型和相似的支鏈配置,僅在運(yùn)動(dòng)副的布置上存在差異.沿用此種機(jī)構(gòu)變異方法,通過對(duì)以上并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)副進(jìn)行重新布置,可構(gòu)造兩種新的類Exechon并聯(lián)機(jī)構(gòu),分別命名為Exe-Ⅰ和Exe-Ⅱ,其拓?fù)錁?gòu)型為2UR&1RS和2RU&1SR.
關(guān)于Exechon并聯(lián)機(jī)構(gòu)模塊及其變異機(jī)構(gòu)的研究主要集中于尺度綜合[8-9]、運(yùn)動(dòng)學(xué)分析[10-12]、靜剛度設(shè)計(jì)[13-14]、動(dòng)力學(xué)分析[15-16]等方面.然而,市場(chǎng)需求的快速轉(zhuǎn)變對(duì)制造裝備的加工柔性提出了嚴(yán)苛要求[17].可重構(gòu)與多功能作為并聯(lián)機(jī)構(gòu)的重要發(fā)展趨勢(shì)[18],也是實(shí)現(xiàn)并聯(lián)機(jī)構(gòu)加工柔性的關(guān)鍵技術(shù).因此,亟需開展類Exechon并聯(lián)機(jī)構(gòu)模塊的可重構(gòu)設(shè)計(jì),以提升該類并聯(lián)裝備應(yīng)對(duì)多樣化加工任務(wù)的能力.
可重構(gòu)機(jī)構(gòu)的設(shè)計(jì)思想在于通過一個(gè)復(fù)合的或集成的機(jī)械系統(tǒng)實(shí)現(xiàn)多任務(wù)需求下的不同配置[19].可重構(gòu)并聯(lián)機(jī)構(gòu)因?yàn)榧婢邆鹘y(tǒng)固定構(gòu)型并聯(lián)機(jī)構(gòu)的高剛度、高精度、低慣量和緊湊結(jié)構(gòu)的優(yōu)點(diǎn),以及可重構(gòu)機(jī)構(gòu)應(yīng)對(duì)多工況、多任務(wù)和多功能需求的快速重構(gòu)特性,成為機(jī)構(gòu)學(xué)領(lǐng)域的研究熱點(diǎn)之一.當(dāng)前,可重構(gòu)并聯(lián)機(jī)構(gòu)的設(shè)計(jì)主要基于變胞運(yùn)動(dòng)副[20-22]、變胞機(jī)構(gòu)[23]、可鎖定關(guān)節(jié)[24-26]、運(yùn)動(dòng)轉(zhuǎn)向機(jī)構(gòu)[27]和運(yùn)動(dòng)限定機(jī)構(gòu)[28]的設(shè)計(jì).Dai等相繼提出了含多個(gè)子態(tài)結(jié)構(gòu)的rT型、vA型和rR型變胞運(yùn)動(dòng)副[20-22],并將其應(yīng)用于可重構(gòu)的變胞并聯(lián)機(jī)構(gòu)的設(shè)計(jì)[23].基于可鎖定關(guān)節(jié)的設(shè)計(jì),Kong等[24]進(jìn)一步分析了一類3自由度可重構(gòu)并聯(lián)機(jī)構(gòu)的構(gòu)型綜合問題.Palpacelli等[25]將具有轉(zhuǎn)軸可重構(gòu)能力的球關(guān)節(jié)應(yīng)用于并聯(lián)機(jī)構(gòu)的開發(fā).Carbonari等[26]提出了一系列具有3-CPU(C表示圓柱副)構(gòu)型的可重構(gòu)并聯(lián)機(jī)構(gòu).與上述通過可鎖定關(guān)節(jié)實(shí)現(xiàn)機(jī)構(gòu)可重構(gòu)的設(shè)計(jì)不同,Kong等[27]研究了具有兩種操作模式的運(yùn)動(dòng)轉(zhuǎn)向機(jī)構(gòu).葉偉等[28]以可重構(gòu)混聯(lián)運(yùn)動(dòng)支鏈為設(shè)計(jì)基礎(chǔ),構(gòu)造了具有多種工作模式的可重構(gòu)并聯(lián)機(jī)構(gòu).
需要指出的是,在機(jī)構(gòu)可重構(gòu)與模塊化設(shè)計(jì)基礎(chǔ)上,系統(tǒng)地開展運(yùn)動(dòng)學(xué)分析是又一關(guān)鍵性設(shè)計(jì)工作.為此,本文以4種類Exechon并聯(lián)機(jī)構(gòu)模塊為研究對(duì)象,開展如下研究工作:首先以筆者前期提出的可鎖定關(guān)節(jié)[29]為基礎(chǔ),開展4種類Exechon并聯(lián)機(jī)構(gòu)模塊的可重構(gòu)概念設(shè)計(jì);然后依次分析類Exechon并聯(lián)機(jī)構(gòu)模塊的自由度、奇異性、逆運(yùn)動(dòng)學(xué)和工作空間,并定性分析了可重構(gòu)設(shè)計(jì)對(duì)其運(yùn)動(dòng)學(xué)性能的影響;最后借助3D打印技術(shù),制作Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的原理樣機(jī),通過設(shè)計(jì)運(yùn)動(dòng)學(xué)精度實(shí)驗(yàn)驗(yàn)證上述運(yùn)動(dòng)學(xué)分析的正確性.希冀通過類Exechon并聯(lián)機(jī)構(gòu)模塊的可重構(gòu)概念設(shè)計(jì)和運(yùn)動(dòng)學(xué)分析,為該類并聯(lián)機(jī)構(gòu)的加工柔性設(shè)計(jì)以及模塊化工程應(yīng)用提供基礎(chǔ)理論指導(dǎo).
如圖1所示,筆者提出的兩類可鎖定球關(guān)節(jié)(lockable spherical joint,LSJ),可分別布置于類Exechon并聯(lián)機(jī)構(gòu)模塊的動(dòng)平臺(tái)和運(yùn)動(dòng)支鏈(LSJ-Ⅰ)以及靜平臺(tái)和運(yùn)動(dòng)支鏈(LSJ-Ⅱ)之間,增強(qiáng)該并聯(lián)機(jī)構(gòu)的可重構(gòu)性.
圖1?可鎖定關(guān)節(jié)剖面結(jié)構(gòu)
以上可鎖定球關(guān)節(jié)的鎖定與解鎖過程如圖2?所示.
圖2?可鎖定球關(guān)節(jié)的鎖定與解鎖狀態(tài)轉(zhuǎn)換示意
以上解鎖和鎖定的動(dòng)作均需要在光電位置標(biāo)記點(diǎn)和′(圖2(a))檢測(cè)重合后,再由集成于滑動(dòng)花鍵和外花鍵軸的電磁驅(qū)動(dòng)器(圖2(b))實(shí)現(xiàn)動(dòng)作.此外,電磁驅(qū)動(dòng)器將在可鎖定轉(zhuǎn)軸不動(dòng)作時(shí)對(duì)滑動(dòng)花鍵進(jìn)行制動(dòng),以保持以上動(dòng)作位置的精確.
執(zhí)行以上可鎖定轉(zhuǎn)軸的鎖定與解鎖動(dòng)作,可分別實(shí)現(xiàn)兩類可鎖定球關(guān)節(jié)的關(guān)節(jié)重構(gòu),得到與其對(duì)應(yīng)的R、U和S副.表1所示為可鎖定球關(guān)節(jié)LSJ-Ⅰ和-Ⅱ重構(gòu)的關(guān)節(jié)類型.
以兩類可鎖定球關(guān)節(jié)LSJ-Ⅰ和LSJ-Ⅱ?yàn)榛A(chǔ),集成導(dǎo)軌組件、絲杠-螺母、伺服電機(jī)和支鏈體等模塊,可實(shí)現(xiàn)模塊化運(yùn)動(dòng)支鏈的概念設(shè)計(jì),如圖3所示.
圖3中,可鎖定球關(guān)節(jié)LSJ-Ⅰ和LSJ-Ⅱ可分別重構(gòu)成R、U和S副,并作為從動(dòng)運(yùn)動(dòng)關(guān)節(jié)分別連接支鏈體和動(dòng)、靜平臺(tái)。此外,伺服電機(jī)作為支鏈體的動(dòng)力輸入,用于連接絲杠-螺母,并驅(qū)動(dòng)導(dǎo)軌組件(副).通過組合不同的可鎖定球關(guān)節(jié)的關(guān)節(jié)配置,可形成移動(dòng)副驅(qū)動(dòng)的模塊化支鏈,用以滿足不同拓?fù)錁?gòu)型的類Exechon并聯(lián)機(jī)構(gòu)模塊設(shè)計(jì)方案.
表1?可鎖定球關(guān)節(jié)重構(gòu)的關(guān)節(jié)類型
Tab.1?Various joints reconfiguring from LSJs
圖3?模塊化運(yùn)動(dòng)支鏈結(jié)構(gòu)示意
如圖4所示,將第1.2節(jié)的模塊化運(yùn)動(dòng)支鏈(含伺服驅(qū)動(dòng))與靜平臺(tái)、動(dòng)平臺(tái)(含電主軸)相結(jié)合,即可實(shí)現(xiàn)類Exechon并聯(lián)機(jī)構(gòu)模塊的可重構(gòu)概念設(shè)計(jì).
圖4中,A和B點(diǎn)分別表示與動(dòng)、靜平臺(tái)相連接的可重構(gòu)關(guān)節(jié)的關(guān)節(jié)轉(zhuǎn)動(dòng)中心,C(=1,2,3)點(diǎn)表示支鏈后端軸承的旋轉(zhuǎn)中心;和點(diǎn)分別表示動(dòng)、靜平臺(tái)的幾何中心;位于動(dòng)、靜平臺(tái)的△123和△123均構(gòu)成等腰直角三角形,且直角為∠2=∠2=90°.如圖4所示,具有可重構(gòu)功能的類Exechon并聯(lián)機(jī)構(gòu)模塊可根據(jù)選定的機(jī)構(gòu)拓?fù)錁?gòu)型,確定各個(gè)模塊化運(yùn)動(dòng)支鏈上的可鎖定關(guān)節(jié)配置,在單一機(jī)構(gòu)上實(shí)現(xiàn)多種同類構(gòu)型的快速轉(zhuǎn)換,并通過各支鏈上伺服電機(jī)的驅(qū)動(dòng),實(shí)現(xiàn)動(dòng)平臺(tái)末端的期望運(yùn)動(dòng)輸出,滿足多樣化的工程應(yīng)用需求.
以下簡(jiǎn)要說明類Exechon并聯(lián)機(jī)構(gòu)模塊Exechon和Exe-Variant的可重構(gòu)設(shè)計(jì).
如圖5(a)所示,與動(dòng)平臺(tái)相連的可鎖定球關(guān)節(jié)設(shè)置為R副(LSJ-ⅠR),而與靜平臺(tái)相連的可鎖定球關(guān)節(jié)分別設(shè)置為U副(LSJ-ⅡU)和S副(LSJ-ⅡS),即Exechon并聯(lián)機(jī)構(gòu)模塊由3條拓?fù)錁?gòu)型分別為UR和SR的模塊化運(yùn)動(dòng)支鏈并聯(lián)構(gòu)成.類似地,如圖5(b)所示,與動(dòng)平臺(tái)相連的可鎖定球關(guān)節(jié)分別設(shè)置為U副(LSJ-ⅠU)和S副(LSJ-ⅠS),而與靜平臺(tái)相連的可鎖定球關(guān)節(jié)設(shè)置為R副(LSJ-ⅡR),即Exe-Variant并聯(lián)機(jī)構(gòu)模塊由3條拓?fù)錁?gòu)型分別為RU和RS的模塊化運(yùn)動(dòng)支鏈并聯(lián)構(gòu)成.
借助機(jī)構(gòu)變異方法,對(duì)Exechon和Exe-Variant并聯(lián)機(jī)構(gòu)模塊進(jìn)行構(gòu)型重構(gòu),可得到如圖6所示的類Exechon并聯(lián)機(jī)構(gòu)模塊Exe-Ⅰ和Exe-Ⅱ.
圖4?可重構(gòu)類Exechon并聯(lián)機(jī)構(gòu)模塊概念設(shè)計(jì)
圖5?Exechon和Exe-Variant并聯(lián)機(jī)構(gòu)的可重構(gòu)設(shè)計(jì)方案
圖6?兩種類Exechon并聯(lián)機(jī)構(gòu)的可重構(gòu)設(shè)計(jì)方案
如圖6(a)所示,與動(dòng)平臺(tái)相連的可鎖定球關(guān)節(jié)分別設(shè)置為R副(LSJ-ⅠR)和S副(LSJ-ⅠS),而與靜平臺(tái)相連的可鎖定球關(guān)節(jié)分別設(shè)置為U副(LSJ-ⅡU)和R副(LSJ-ⅡR),即Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊由3條拓?fù)錁?gòu)型分別為UR和RS的模塊化運(yùn)動(dòng)支鏈并聯(lián)構(gòu)成.類似地,如圖6(b)所示,與動(dòng)平臺(tái)相連的可鎖定球關(guān)節(jié)分別設(shè)置為U副(LSJ-ⅠU)和R副(LSJ-ⅠR),而與靜平臺(tái)相連的可鎖定球關(guān)節(jié)分別設(shè)置為R副(LSJ-ⅡR)和S副(LSJ-ⅡS),即Exe-Ⅱ并聯(lián)機(jī)構(gòu)模塊由3條拓?fù)錁?gòu)型分別為RU和SR的模塊化運(yùn)動(dòng)支鏈并聯(lián)構(gòu)成.
圖7中,為便于列寫運(yùn)動(dòng)旋量,分別在類Exechon并聯(lián)機(jī)構(gòu)模塊的動(dòng)、靜平臺(tái)幾何中心和點(diǎn)處設(shè)置相應(yīng)的連體坐標(biāo)系和,其中,坐標(biāo)軸軸沿著2方向,軸垂直于靜平臺(tái);軸沿著2方向,軸垂直于動(dòng)平臺(tái);其余軸線方向由右手定則確定. 此外,在點(diǎn)處設(shè)置動(dòng)平臺(tái)的參考坐標(biāo)系''',并令坐標(biāo)軸'、'和'分別平行于坐標(biāo)軸、和.
如圖7所示,類Exechon并聯(lián)機(jī)構(gòu)模塊中沿各個(gè)關(guān)節(jié)轉(zhuǎn)軸方向的單位方向向量同時(shí)滿足以下幾何約束條件:
?(1)
以下對(duì)圖7所示的類Exechon并聯(lián)機(jī)構(gòu)模塊展開運(yùn)動(dòng)學(xué)分析.在任意機(jī)構(gòu)位姿下,運(yùn)動(dòng)支鏈1的運(yùn)動(dòng)螺旋系為
?(2)
對(duì)式(2)進(jìn)行反螺旋運(yùn)算,即可得到運(yùn)動(dòng)支鏈1的約束螺旋系
?(3)
類似地,可給出運(yùn)動(dòng)支鏈2和3的運(yùn)動(dòng)螺旋系,并由反螺旋運(yùn)算分別求得相應(yīng)支鏈的約束螺旋系為
?(4)
?(5)
組合式(3)~(5)所示的運(yùn)動(dòng)支鏈約束螺旋系,即為類Exechon并聯(lián)機(jī)構(gòu)模塊動(dòng)平臺(tái)的約束螺旋系
?(6)
對(duì)式(6)進(jìn)行反螺旋運(yùn)算,即為類Exechon并聯(lián)機(jī)構(gòu)模塊動(dòng)平臺(tái)的運(yùn)動(dòng)螺旋系
?(7)
并聯(lián)機(jī)構(gòu)動(dòng)平臺(tái)的運(yùn)動(dòng)輸出是其所連接的各個(gè)支鏈的運(yùn)動(dòng)疊加.對(duì)類Exechon并聯(lián)機(jī)構(gòu)模塊而言,其動(dòng)平臺(tái)在參考坐標(biāo)系'''下的運(yùn)動(dòng)螺旋可以表示為
? ? i=1,2,3(8)
??i=1,3(9)
?(10)
在此參考坐標(biāo)系下,運(yùn)動(dòng)支鏈1和3的運(yùn)動(dòng)螺旋系可以表示為
????i=1,3(11)
對(duì)式(11)進(jìn)行反螺旋運(yùn)算,即可得到運(yùn)動(dòng)支鏈1和3的約束螺旋系
????i=1,3(12)
同理,可在參考坐標(biāo)系下列寫運(yùn)動(dòng)支鏈2的運(yùn)動(dòng)螺旋系,并由反螺旋運(yùn)算求得其約束螺旋系
?(13)
?(14)
?(15)
?(16)
?(17)
?(18)
?(19)
?(20)
根據(jù)類Exechon并聯(lián)機(jī)構(gòu)模塊的結(jié)構(gòu)特點(diǎn),可構(gòu)建其逆運(yùn)動(dòng)學(xué)模型,如圖8所示.
??i=1,2,3(21)
????(22)
圖8?類Exechon并聯(lián)機(jī)構(gòu)模塊的逆運(yùn)動(dòng)學(xué)模型
?(23)
計(jì)入式(1)所示的類Exechon并聯(lián)機(jī)構(gòu)模塊各個(gè)關(guān)節(jié)轉(zhuǎn)軸的幾何約束條件,并將式(23)帶入式(21)所示的矢量閉環(huán)方程,即可求解類Exechon并聯(lián)機(jī)構(gòu)模塊連帶運(yùn)動(dòng)方程.選定、和為動(dòng)平臺(tái)的獨(dú)立運(yùn)動(dòng)參數(shù),可分別得到Exechon、Exe-Variant、Exe-Ⅰ和-Ⅱ并聯(lián)機(jī)構(gòu)的連帶運(yùn)動(dòng)方程,即
?(24)
?(25)
?(26) (27)
將以上連帶運(yùn)動(dòng)方程回代到式(21)的閉環(huán)矢量方程,可得到該類并聯(lián)機(jī)構(gòu)運(yùn)動(dòng)學(xué)逆解的統(tǒng)一表達(dá)形式為
??i=1,2,3(28)
據(jù)此,可求得類Exechon并聯(lián)機(jī)構(gòu)模塊動(dòng)平臺(tái)上操作頭末端的位置矢量
?(29)
開展并聯(lián)機(jī)構(gòu)工作空間分析時(shí),其腿長(zhǎng)范圍、轉(zhuǎn)角極限、支鏈干涉等主要約束條件可描述如下。
(1)對(duì)于并聯(lián)機(jī)構(gòu)模塊中運(yùn)動(dòng)支鏈的腿長(zhǎng)約束,支鏈滿足如下約束條件:
???i=1,2,3(30)
式中min和max分別為運(yùn)動(dòng)支鏈最小和最大腿長(zhǎng).
(2)對(duì)于并聯(lián)機(jī)構(gòu)模塊中支鏈(=1,2,3)上關(guān)節(jié)的轉(zhuǎn)角約束,R、U和S副可分別被等效為個(gè)交叉的轉(zhuǎn)動(dòng)關(guān)節(jié),并滿足如下約束條件.
轉(zhuǎn)動(dòng)副(R:=1)的轉(zhuǎn)角為
?(31)
式中R為機(jī)構(gòu)中轉(zhuǎn)動(dòng)副的極限轉(zhuǎn)角.
虎克鉸(U;=1,2)的轉(zhuǎn)角為
?(32)
式中U為機(jī)構(gòu)中虎克鉸的極限轉(zhuǎn)角.
球鉸(S:=1,2,3)的轉(zhuǎn)角為
?(33)
式中S為機(jī)構(gòu)中球鉸的極限轉(zhuǎn)角.
(3)對(duì)于并聯(lián)機(jī)構(gòu)模塊中運(yùn)動(dòng)支鏈和支鏈+1之間不發(fā)生干涉的約束條件[30]為
?????i=1,2,3(34)
式中D和分別為相鄰支鏈間的最短公法線長(zhǎng)度和支鏈最大寬度.
以圖4的樣機(jī)設(shè)計(jì)為例,預(yù)估類Exechon并聯(lián)機(jī)構(gòu)模塊的動(dòng)平臺(tái)可達(dá)工作空間,其幾何參數(shù)可由相應(yīng)的虛擬樣機(jī)模型測(cè)得,具體如表2所示.
表2?并聯(lián)機(jī)構(gòu)的幾何參數(shù)
Tab.2?Geometricparameters of the proposed PKMs
在以上運(yùn)動(dòng)學(xué)逆解分析的基礎(chǔ)上,運(yùn)用筆者前期針對(duì)類Exechon并聯(lián)機(jī)構(gòu)設(shè)計(jì)的“分層切片”式工作空間搜索方法[7],可預(yù)估得到同一機(jī)構(gòu)尺寸條件下,前述4種類Exechon并聯(lián)機(jī)構(gòu)模塊的動(dòng)平臺(tái)可達(dá)工作空間,分別如圖9(a)~(d)所示.
分析圖9可知,4種類Exechon并聯(lián)機(jī)構(gòu)的動(dòng)平臺(tái)可達(dá)工作空間形狀及大小均與構(gòu)型密切相關(guān),并關(guān)于=0對(duì)稱分布,這與并聯(lián)機(jī)構(gòu)中支鏈1、3關(guān)于支鏈2對(duì)稱布置相對(duì)應(yīng).為直觀對(duì)比,不妨以工作空間包絡(luò)體積的大小來衡量該類并聯(lián)機(jī)構(gòu)的工作空間性能.經(jīng)分析,4種類Exechon并聯(lián)機(jī)構(gòu)的工作空間包絡(luò)體積分別是0.317m·rad2、0.445m·rad2、0.477m·rad2和0.538m·rad2,亦即同一機(jī)構(gòu)尺寸條件下,新設(shè)計(jì)的Exe-Ⅰ并聯(lián)機(jī)構(gòu)和Exe-Ⅱ并聯(lián)機(jī)構(gòu)可達(dá)工作空間性能優(yōu)于原Exechon并聯(lián)機(jī)構(gòu)和Exe-Variant并聯(lián)機(jī)構(gòu).
通過以上運(yùn)動(dòng)學(xué)建模與分析不難發(fā)現(xiàn):針對(duì)類Exechon并聯(lián)機(jī)構(gòu)的可重構(gòu)設(shè)計(jì),在保留部分運(yùn)動(dòng)學(xué)特性的同時(shí)也顯著影響了另一部分,具體見表3.
由表3可知,文中基于可重構(gòu)概念設(shè)計(jì)的類Exechon并聯(lián)機(jī)構(gòu)模塊都保留了與Exechon并聯(lián)機(jī)構(gòu)相同的自由度和結(jié)構(gòu)奇異性.此外,相比于其他幾種類Exechon并聯(lián)機(jī)構(gòu),Exe-Ⅰ并聯(lián)機(jī)構(gòu)擁有更加簡(jiǎn)單的牽連運(yùn)動(dòng),便于運(yùn)動(dòng)學(xué)控制;而Exe-Ⅱ并聯(lián)機(jī)構(gòu)擁有更大的工作空間,可以實(shí)現(xiàn)更大的加工范圍;亦即可重構(gòu)設(shè)計(jì)顯著改善了部分類Exechon并聯(lián)機(jī)構(gòu)的逆運(yùn)動(dòng)學(xué)連帶運(yùn)動(dòng)的復(fù)雜程度以及動(dòng)平臺(tái)可達(dá)工作空間的分布.
表3?并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)性能對(duì)比
Tab.3?Kinematiccomparisons of the PKMs
圖9?類Exechon并聯(lián)機(jī)構(gòu)的可達(dá)工作空間
借助3D打印技術(shù),制作了類Exechon型Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的原理樣機(jī),如圖10所示.圖10中,Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的拓?fù)浣Y(jié)構(gòu)及運(yùn)動(dòng)副設(shè)置參見圖6(a)所示的概念設(shè)計(jì),其主要幾何參數(shù)如表4??所示.
圖10?Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊原理樣機(jī)
表4?Exe-Ⅰ并聯(lián)機(jī)構(gòu)原理樣機(jī)的幾何參數(shù)
Tab.4?Geometricparameters of the Exe-Ⅰ PKM
以圖10中給出的類Exechon型Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的原理樣機(jī)為例,開展如圖11所示的運(yùn)動(dòng)精度實(shí)驗(yàn),用以驗(yàn)證前文提出的類Exechon并聯(lián)機(jī)構(gòu)模塊的運(yùn)動(dòng)學(xué)模型.
如圖11所示,上位機(jī)(PC)將期望位姿的點(diǎn)位數(shù)據(jù)傳輸給下位機(jī)(基于DSP的控制模塊),進(jìn)而通過與DSP模塊通訊的電機(jī)驅(qū)動(dòng)器驅(qū)動(dòng)對(duì)應(yīng)支鏈的步進(jìn)電機(jī),實(shí)現(xiàn)動(dòng)平臺(tái)末端點(diǎn)預(yù)定的軌跡輸出. 與此同時(shí),激光追蹤儀(LEICA AT960)實(shí)時(shí)追蹤位于動(dòng)平臺(tái)末端的標(biāo)定球(點(diǎn)),并通過與之相連的數(shù)采計(jì)算機(jī)記錄動(dòng)平臺(tái)末端的軌跡數(shù)據(jù).
為充分驗(yàn)證Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的2R1T運(yùn)動(dòng)能力,設(shè)置其動(dòng)平臺(tái)末端點(diǎn)的期望軌跡為一空間螺旋線.采用如圖11所示的運(yùn)動(dòng)精度實(shí)驗(yàn)設(shè)計(jì)進(jìn)行實(shí)驗(yàn),并測(cè)量位于末端點(diǎn)的運(yùn)動(dòng)軌跡上的n個(gè)(=1,2,…,33)離散點(diǎn),其結(jié)果如圖12所示.
由圖12可知,實(shí)驗(yàn)所得的末端點(diǎn)的運(yùn)動(dòng)軌跡構(gòu)成一空間螺旋線,并與相應(yīng)的理論分析軌跡吻合較好.這一現(xiàn)象表明:類Exechon型Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊能夠?qū)崿F(xiàn)2個(gè)轉(zhuǎn)動(dòng)自由度和1個(gè)移動(dòng)自由度的2R1T運(yùn)動(dòng)能力,驗(yàn)證了第2.1節(jié)中有關(guān)類Exechon并聯(lián)機(jī)構(gòu)模塊的自由度分析結(jié)論.
為直觀地分析Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的運(yùn)動(dòng)精度,以末端點(diǎn)的3個(gè)坐標(biāo)分量為分析對(duì)象,給出螺旋運(yùn)動(dòng)軌跡的運(yùn)動(dòng)精度對(duì)比,如圖13所示.
圖11?類Exechon并聯(lián)機(jī)構(gòu)模塊的運(yùn)動(dòng)精度實(shí)驗(yàn)
圖12?Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的實(shí)驗(yàn)測(cè)試軌跡
如圖13所示,Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊末端點(diǎn)的各個(gè)坐標(biāo)分量的實(shí)驗(yàn)值和理論值都吻合較好,數(shù)據(jù)的絕對(duì)誤差在±0.4mm以內(nèi),并且其相對(duì)誤差不大于實(shí)驗(yàn)值的3.2%,驗(yàn)證了前文中類Exechon并聯(lián)機(jī)構(gòu)模塊的運(yùn)動(dòng)學(xué)逆解模型的有效性及Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊實(shí)驗(yàn)樣機(jī)的設(shè)計(jì)精度.
圖13?Exe-Ⅰ并聯(lián)機(jī)構(gòu)模塊的運(yùn)動(dòng)精度對(duì)比
由于作為實(shí)驗(yàn)對(duì)象的并聯(lián)機(jī)構(gòu)原理樣機(jī)是采用熔融沉積式的3D打印技術(shù)制作,推測(cè)以上實(shí)驗(yàn)誤差來源于打印材料的結(jié)構(gòu)塑性和運(yùn)動(dòng)關(guān)節(jié)的裝配間隙.因此,有望通過采用塑性變形較小的打印材料、在運(yùn)動(dòng)學(xué)中計(jì)及關(guān)節(jié)間隙或?qū)Σ⒙?lián)機(jī)構(gòu)進(jìn)行實(shí)時(shí)運(yùn)動(dòng)補(bǔ)償,搭建更高精度的類Exechon并聯(lián)機(jī)構(gòu)模塊.此部分內(nèi)容,將另行撰文討論.
(1)提出了基于兩類可鎖定球關(guān)節(jié)和模塊化運(yùn)動(dòng)支鏈的可重構(gòu)并聯(lián)機(jī)構(gòu)模塊概念設(shè)計(jì),給出了可鎖定球關(guān)節(jié)的變換過程以及關(guān)節(jié)轉(zhuǎn)軸的設(shè)置方案,完成了4種類Exechon并聯(lián)機(jī)構(gòu)模塊的可重構(gòu)設(shè)計(jì).
(2)運(yùn)動(dòng)學(xué)分析表明:4種類Exechon并聯(lián)機(jī)構(gòu)模塊均具有2R1T運(yùn)動(dòng)能力;在一定條件下存在結(jié)構(gòu)奇異位姿,但始終不存在約束奇異;同一機(jī)構(gòu)尺寸條件下,Exe-Ⅰ和Exe-Ⅱ并聯(lián)機(jī)構(gòu)可達(dá)工作空間性能優(yōu)于Exechon和Exe-Variant并聯(lián)機(jī)構(gòu).
(3)通過可鎖定關(guān)節(jié)設(shè)計(jì),在模塊化運(yùn)動(dòng)支鏈層面開展的機(jī)構(gòu)可重構(gòu)設(shè)計(jì),保留了與Exechon并聯(lián)機(jī)構(gòu)相同的自由度和結(jié)構(gòu)奇異性,并顯著改善了部分類Exechon并聯(lián)機(jī)構(gòu)的逆運(yùn)動(dòng)學(xué)連帶運(yùn)動(dòng)的復(fù)雜程度以及動(dòng)平臺(tái)可達(dá)工作空間的分布.
(4)借助3D打印技術(shù)制作了一型并聯(lián)機(jī)構(gòu)原理樣機(jī),并通過運(yùn)動(dòng)精度實(shí)驗(yàn)驗(yàn)證了運(yùn)動(dòng)學(xué)分析的正確性.本文所開展的可重構(gòu)概念設(shè)計(jì)和運(yùn)動(dòng)學(xué)分析,為類Exechon并聯(lián)機(jī)構(gòu)模塊的工程樣機(jī)設(shè)計(jì)、加工柔性設(shè)計(jì)和模塊化工程應(yīng)用打下了良好基礎(chǔ).
[1] Chen Xiang,Liu Xinjun,Xie Fugui,et al. A comparison study on motion/force transmissibility of two typical 3-DoF parallel manipulators: The sprint Z3 and A3 tool heads[J]. International Journal of Advanced Robotic Systems,2014,11(1):1-10.
[2] 趙?慶,王攀峰,黃?田. 考慮鏈間耦合的高速并聯(lián)機(jī)器人慣性參數(shù)預(yù)估方法[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2017,50(8):868-876.
Zhao Qing,Wang Panfeng,Huang Tian. An inertial parameter estimation method for high-speed parallel robots by considering inter-chain coupling[J]. Journal of Tianjin University:Science and Technology,2017,50(8):868-876(in Chinese).
[3] 劉海濤,熊?坤,賈昕胤,等. 3自由度冗余驅(qū)動(dòng)下肢康復(fù)并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)學(xué)優(yōu)化設(shè)計(jì)[J]. 天津大學(xué)學(xué)報(bào):自然科學(xué)與工程技術(shù)版,2018,51(4):357-366.
Liu Haitao,Xiong Kun,Jia Xinyin,et al. Kinematic optimization of a redundantly actuated 3-DOF parallel mechanism for lower-limb rehabilitation[J]. Journal of Tianjin University:Science and Technology,2018,51(4):357-366(in Chinese).
[4] Bi Z M,Jin Yan. Kinematic modeling of Exechon parallel kinematic machine[J]. Robotics and Computer Integrated Manufacturing,2011,27(1):186-193.
[5] 張?俊,趙艷芹. Exechon并聯(lián)模塊的靜剛度建模與分析[J]. 機(jī)械工程學(xué)報(bào),2016,52(19):34-41. Zhang Jun,Zhao Yanqin. Stiffness modeling and evaluation for Exechon parallel kinematic machine module[J]. Journal of Mechanical Engineering,2016,52(19):34-41(in Chinese).
[6] Jin Yan,Mctoal P,Higgins C,et al. Parallel kinematic assisted automated aircraft assembly[J]. International Journal of Robotics and Mechatronics,2014,1(3):89-95.
[7] Tang Tengfei,Zhao Yanqin,Zhang Jun,et al. Conceptual Design and Workspace Analysis of an Exechon-Inspired Parallel Kinematic Machine[M]// Advances in Reconfigurable Mechanisms and Robots II. Cham,Switzerland:Springer Publishing Company,2016:445-453.
[8] Jin Yan,Bi Z M,Liu Haitao,et al. Kinematic analysis and dimensional synthesis of exechon parallel kinematic machine for large volume machining[J]. ASME Journal of Mechanisms and Robotics,2015,7(4):041004-01-041004-8.
[9] Jin Yan,Bi Z M,Higgins C,et al. Optimal design of a new parallel kinematic machine for large volume machin-ing[M]//Advances in Reconfigurable Mechanisms and Robots I. London,UK:Springer Publishing Company,2012:343-354.
[10]Zlatanov D,Zoppi M,Molfino R. Constraint and singularity analysis of the Exechon tripod[C]// ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. USA:ASME,2012:679-688.
[11]柴馨雪,項(xiàng)濟(jì)南,李秦川. 2-UPR-RPU 并聯(lián)機(jī)構(gòu)奇異分析[J]. 機(jī)械工程學(xué)報(bào),2015,51(13):144-151. Chai Xinxue,Xiang Jinan,Li Qinchuan. Singularity analysis of a 2-UPR-RPU parallel mechanism[J]. Journal of Mechanical Engineering,2015,51(13):144-151(in Chinese).
[12]Jin Yan,Lian Binbin,Price M,et al. QrPara:A new reconfigurable parallel manipulator with 5 axis capability[M]//Advances in Reconfigurable Mechanisms and RobotsⅡ. Cham,Switzerland:Springer Publishing Company,2016:247-258.
[13]Zhang Jun,Zhao Yanqin,Jin Y. Kinetostatic model based stiffness analysis of Exechon PKM[J]. Robotics and Computer Integrated Manufacturing,2016,37:208-220.
[14]Bi Z M. Kinetostatic modeling of Exechon parallel kinematic machine for stiffness analysis[J]. The International Journal of Advanced Manufacturing Technology,2014,71(1/2/3/4):325-335.
[15]Bonnemains T,Chanal H,Bouzgarrou B C,et al. Dynamic model of an overconstrained PKM with compliances:The Tripteor X7[J]. Robotics and Computer Integrated Manufacturing,2013,29(1):180-191.
[16]Zhang Jun,Zhao Yanqin,Jin Yan. Elastodynamic modeling and analysis for an Exechon parallel kinematic machine[J]. ASME Journal of Manufacturing Science and Engineering,2016,138(3):031011-1-031011-14.
[17]Bi Z M,Lang S Y T,Verner M,et al. Development of reconfigurable machines[J]. The International Journal of Advanced Manufacturing Technology,2008,39(11/12):1227-1251.
[18]黃?田,李?曚,吳孟麗,等. 可重構(gòu)PKM模塊的選型原則——理論與實(shí)踐[J]. 機(jī)械工程學(xué)報(bào),2005,41(8):36-41.
Huang Tian,Li Meng,Wu Mengli,et al. Criteria for conceptual design of reconfigurable PKM modules—theory and application[J]. Journal of Mechanical Engineering,2005,41(8):36-41(in Chinese).
[19]Song Chaoyang,F(xiàn)eng Huijuan,Chen Yan,et al. Reconfigurable mechanism generated from the network of Bennett linkages[J]. Mechanism and Machine Theory,2015,88:49-62.
[20]Zhang Ketao,Dai Jian S,F(xiàn)ang Yuefa. Geometric constraint and mobility variation of two 3SvPSv metamorphic parallel mechanisms[J]. ASME Journal of Mechanical Design,2013,135(1):011001-1-011001-8.
[21]Gan Dongming,Dai Jian S,Dias J,et al. Unified kinematics and singularity analysis of a metamorphic parallel mechanism with bifurcated motion[J]. ASME Journal of Mechanisms and Robotics,2013,5(3):031004-1-031004-11.
[22]Gan Dongming,Dias J,Seneviratne L. Unified kinematics and optimal design of a 3rRPS metamorphic parallel mechanism with a reconfigurable revolute joint[J]. Mechanism and Machine Theory,2016,96:239-254.
[23]Gan Dongming,Dai Jian S,Dias J,et al. Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion[J]. ASME Journal of Mechanisms and Robotics,2016,8(5):051001-1-051001-9.
[24]Kong Xianwen,Jin Yan. Type synthesis of 3-DOF multi-mode translational/spherical parallel mechanisms with lockable joints[J]. Mechanism and Machine Theory,2016,96:323-333.
[25]Palpacelli M C,Carbonari L,Palmieri G,et al. Analysis and design of a reconfigurable 3-DoF parallel manipulator for multimodal tasks[J]. IEEE/ASME Transactions on Mechatronics,2015,20(4):1975-1985.
[26]Carbonari L,Callegari M,Palmieri G,et al. A new class of reconfigurable parallel kinematic machines[J]. Mechanism and Machine Theory,2014,79:173-183.
[27]Kong Xianwen,Huang Chintien. Type synthesis of single-DOF single-loop mechanisms with two operation modes[C]// International Conference on Reconfigurable Mechanisms and Robots. London,UK,2009:136-141.
[28]葉?偉,方躍法,郭?盛,等. 基于運(yùn)動(dòng)限定機(jī)構(gòu)的可重構(gòu)并聯(lián)機(jī)構(gòu)設(shè)計(jì)[J]. 機(jī)械工程學(xué)報(bào),2015,51(13):137-143.
Ye Wei,F(xiàn)ang Yuefa,Guo Sheng,et al. Design of reconfigurable parallel mechanisms with discontinuously movable mechanism[J]. Journal of Mechanical Engineering,2015,51(13):137-143(in Chinese).
[29]Tang Tengfei,Zhang Jun. Conceptual design and comparative stiffness analysis of an Exechon-like parallel kinematic machine with lockable spherical joints[J]. International Journal of Advanced Robotic Systems,2017,14(4):1-13.
[30]黃?真,趙永生,趙鐵石. 高等空間機(jī)構(gòu)學(xué)[M]. 北京:高等教育出版社,2006.
Huang Zhen,Zhao Yongsheng,Zhao Tieshi. Advanced spatial Mechanism[M]. Beijing:Higher Education Press,2006(in Chinese).
Conceptual Reconfigurable Design and Kinematic Analysis of the Exechon-Like Parallel Kinematic Machine
Tang Tengfei,F(xiàn)ang Hanliang,Zhang Jun
(School of Mechanical Engineering and Automation,F(xiàn)uzhou University,F(xiàn)uzhou 350116,China)
Reconfigurable and modular designs can be a key technology to realize the versatility as well as improve the flexibility of parallel kinematic machines(PKMs). Inspired by the design of the high-performance Exechon PKM,two novel Exechon-like PKMs—Exe-Ⅰ and Exe-Ⅱ are proposed on the basis of the Exe-Variant PKM. Four types of reconfigurable Exechon-like PKM modules—Exechon,Exe-Variant,Exe-Ⅰ,and Exe-Ⅱ were conceptually designed by following the design flows of lockable joints,modular limbs,and reconfigurable PKMs. With regard to the kinematic analysis of Exechon-like PKMs,the degrees of freedom(DoF)and singularities were analyzed with the screw theory,wherein the screw systems of the Exechon-like PKMs were formulated and overfull Jacobian matrices of the PKMs were derived. Loop-closure equations were formulated to develop the inverse kinematic model and parasitic motions of the moving platform. The reachable workspaces of the proposed PKMs were predicted by a “sliced partition” algorithm. A comparative analysis of the kinematics shows that the reconfigurable design of the Exechon-like PKMs can keep the DoF of the PKMs and their architectural singularities unchanged. The analysis also shows that the reconfigurable design can significantly improve the complexity of the parasitic motions of inverse kinematics and the distributions of the moving platform’s reachable workspaces for several Exechon-like PKMs. Finally,using the 3D printing technology,a laboratory prototype of Exe-Ⅰ PKM was built to conduct the kinematic experiment. The experimental values agree well with the theoretical values. The absolute error is less than ±0.4 mm and the relative error is within 3.2%,which verifies the effectiveness of the proposed kinematic analysis module. The conceptual designs of reconfigurable and modular PKMs in this study can prove to be key techniques to realize efficient reconfigurable designs and engineering applications of Exechon-like PKMs.
parallel kinematic machine;lockable joint;reconfigurable;kinematics
10.11784/tdxbz201808073
TH112
A
0493-2137(2019)07-0733-12
2018-08-25;
2018-11-08.
湯騰飛(1991—??),男,博士研究生,tengfei413zm@163.com.
張?俊,zhang_jun@fzu.edu.cn.
福建省工業(yè)機(jī)器人基礎(chǔ)部件技術(shù)重大研發(fā)平臺(tái)資助項(xiàng)目(2014H2004).
the Fujian Provincial Industrial Robot Basic Components Technology Research and Development Center(No. 2014H2004).
(責(zé)任編輯:金順愛)