李 晶,殷守強,于加春,胡振琪,楊 震,楊超元
?
黃河流域礦區(qū)充填復墾泥沙供需狀況及輸沙路徑分析
李 晶1,殷守強1,于加春1,胡振琪2,楊 震1,楊超元1
(1. 中國礦業(yè)大學(北京)地球科學與測繪工程學院,北京 100083;2. 中國礦業(yè)大學環(huán)境與測繪學院,徐州 221116)
引黃河泥沙充填復墾采煤沉陷地是減輕黃河淤積和提升礦區(qū)復墾率的有效途徑,有助于改善區(qū)域生態(tài)環(huán)境。該文以黃河主要淤積河段及沿岸150 km范圍內的23個國家規(guī)劃礦區(qū)為研究區(qū),分別采用沙量平衡法和開采沉陷預計法估算了黃河流域礦區(qū)充填復墾泥沙的供給量和需求量,初步分析了適宜引黃充填復墾礦區(qū)并設計了概略輸沙路徑。研究結果表明:1950—2013年,黃河主要淤積河段的總泥沙淤積量約為144.31億t;截至2013年,各規(guī)劃礦區(qū)充填復墾總需沙量約為225.12億t;綜合考慮泥沙供需狀況和輸沙距離2個因素,包頭、義馬、焦作、鄭州、肥城、黃河北、淄博7個近距離礦區(qū)和烏海、平頂山、晉城、鶴壁、新汶5個中距離礦區(qū)適宜黃河泥沙充填復墾,需沙量和需調用水量分別為90.19和148.81億t;各適宜充填復墾礦區(qū)的概略輸沙路徑長度處于21.98~109.02 km,總長度約為643 km。研究成果可為黃河泥沙充填復墾技術推廣提供前期專題性基礎數(shù)據(jù),為后續(xù)可行性研究、規(guī)劃設計及充填復墾等相關政策制定提供參考。
土地復墾;排水;煤礦;黃河流域;國家規(guī)劃礦區(qū);泥沙充填復墾;供需狀況
黃河流域分布有全國9大煤炭基地,涉及58個國家規(guī)劃礦區(qū),為國家經濟發(fā)展提供了大量煤炭資源,但同時也產生了大面積的采煤沉陷地甚至積水區(qū)[1],嚴重影響了礦區(qū)生產生活和生態(tài)環(huán)境狀況。充填復墾采煤沉陷地和挖損地是提高礦區(qū)土地復墾率的重要途徑之一,但由于煤矸石、粉煤灰等傳統(tǒng)充填復墾材料數(shù)量不足等原因,目前中國礦區(qū)土地復墾率不到30%[2],且復墾后土地存在潛在污染性[3]。黃河作為連接河源、上中下游及河口等濕地生態(tài)單元的“廊道”,具有防洪蓄水、水源涵養(yǎng)等多種功能,但黃河以“水少沙多、含沙量高”而著稱,部分河段持續(xù)淤積,嚴重影響了正常功能的發(fā)揮。為了減輕河道淤積,保障防洪安全,2013年國務院批復的《黃河流域綜合規(guī)劃(2012—2030年)》[4]明確提出了以“攔、排、調、放、挖”為重點的泥沙利用基本思路。引黃河淤積泥沙充填復墾采煤沉陷地,正是踐行這一思路的有效途徑。為保護河流生態(tài)環(huán)境和河道安全,目前國家實行采砂許可制度,限制泥沙開采,只要堅持趨利避害,選擇適宜的區(qū)域和時段適度取沙,就能充分發(fā)揮引黃充填復墾的積極作用,同時改善河流和礦區(qū)生態(tài)環(huán)境。
目前,國內學者對引黃充填復墾的可行性、技術方法、效果等方面進行了研究。張夢虹等[5]、何強等[6]分析了引黃充填復墾的可行性。中國礦業(yè)大學(北京)胡振琪團隊等針對引黃充填復墾進行了系統(tǒng)的理論研究和工程實踐:通過開展黃河泥沙充填復墾的試驗,比較了復墾土地與附近農田在地貌景觀、理化性質、作物長勢等方面的差異,論證了引黃充填復墾技術的可行性[7-8];胡振琪等[9-10]、邵芳等[11]、王培俊等[12]、朱琦等[13]、陳亞凱等[14]通過深入的研究,形成了包括取沙、輸沙、填沙及土壤重構、沉沙后排水等泥沙充填復墾采煤沉陷地的整套技術體系,并在山東邱集煤礦等地開展了工程實踐;許濤等[15]開展了引黃河泥沙充填復墾采煤沉陷地的區(qū)域適用性評價研究。
理論研究和工程實踐表明,引黃充填復墾技術可行,有利于變“泥沙隱患為復墾之利”,提升礦區(qū)土地復墾率的同時改善河流和礦區(qū)生態(tài)環(huán)境,在黃河流域適宜河段和礦區(qū)推廣這項技術意義重大。由于受多方面因素的影響,該項技術推廣工作很難一蹴而就,需要分前期專題基礎性研究、中期可行性研究和后期規(guī)劃設計和施工等多個階段完成。其中,黃河泥沙淤積和礦區(qū)采煤沉陷狀況分別反映了引黃充填復墾泥沙的最大供給潛力和需求狀況,是影響引黃充填復墾規(guī)模與布局的重要基礎因素,但迄今為止,尚未見區(qū)域乃至國家等宏觀尺度的相關 研究。
本文以黃河主要淤積河段及沿岸150 km范圍內的23個國家規(guī)劃礦區(qū)為研究范圍,通過分析黃河主要淤積河段的泥沙供給與各礦區(qū)充填復墾泥沙需求的關系,據(jù)此概略劃分出適宜引黃充填復墾的礦區(qū),并設計各河段到礦區(qū)的概略輸沙路徑,以期為后續(xù)國家及區(qū)域復墾政策制定、引黃充填復墾可行性研究和相關規(guī)劃等奠定前期探索性研究基礎和提供參考。
黃河西起巴顏喀拉山,東至渤海,北臨陰山,南到秦嶺,全長約5 464 km,流域面積達79.5 萬km2,干流通常劃分為上、中、下3段[16],不同河段的泥沙主要來源和淤積特征不同。黃河上游的蘭州—頭道拐河段,流域內有沙漠風積沙、十大“孔兌”所攜帶的泥沙匯入,其中巴彥高勒—頭道拐河段為沖積性的平原型河道,每年有一定量的泥沙淤積,河床緩慢上升。頭道拐—孟津的中游河段,流經黃土高原,土壤侵蝕嚴重,盡管河流含沙量較高,但流速極快,河道淤積程度較輕。孟津以下的河段,流域內植被覆蓋度較高,土壤侵蝕程度很弱,區(qū)間來沙可忽略不計,由于河道寬廣而平緩,水流緩而散亂,成為巨大的泥沙沉積場,逐漸演變?yōu)椤暗厣虾印薄?/p>
按照水文觀測站劃分,黃河主要淤積河段包括上游的巴彥高勒—三湖河口、三湖河口—頭道拐,中游的孟津—花園口,下游的花園口—高村、高村—艾山、艾山—利津,見圖1。上述河段泥沙淤積比較嚴重,供沙潛力較大,采集泥沙更加有利。
圖1 黃河水文觀測站和主要淤積河段
黃河流域分布有寧東、神東、陜北、晉北、晉中、黃隴、晉東、河南、魯西9大煤炭基地,涉及58個全國規(guī)劃礦區(qū),總面積約為13.62萬km2,主要分布在寧夏、內蒙古、陜西、山西、河南和山東等6個省級行政區(qū),見圖2。
圖2 黃河流域國家規(guī)劃礦區(qū)空間位置示意圖
相關研究與工程實踐案例表明,國內外高濃度礦漿管道輸送距離可達幾百千米[17-20],但高濃度泥漿管道輸沙距離最遠只有160 km[21]??紤]到最遠輸沙距離的制約,本文以黃河主要淤積河段及其沿岸150 km范圍內的23個國家規(guī)劃礦區(qū)為研究區(qū),并按照距離黃河0~60 km、>60~120 km和>120~150 km的空間差異,將礦區(qū)劃分成近距離(S1)礦區(qū)、中距離(S2)礦區(qū)和遠距離(S3)礦區(qū)3種類型。為便于計算和分析,礦區(qū)與黃河淤積河段的距離用礦區(qū)的幾何中心點與黃河的最短距離表示。
引黃充填復墾技術流程如圖3所示[7],包括:1)采用挖沙船切削河道淤積泥沙,使用潛沙泵設備將黃河河床沖起來的泥沙顆粒與水混合形成高濃度泥漿;2)應用輸沙管道和加壓泵站等,把高濃度泥漿運輸?shù)酱龔蛪▍^(qū)域,泥沙輸送過程不會對自然河道造成人工侵蝕破壞; 3)泥漿運輸?shù)酱龔蛪▍^(qū)域后,采用沉沙排水技術,使 泥沙沉積充填待復墾區(qū)域,并把清水排到附近的溝渠、河道中,根據(jù)相關政策和地方用水需求,使之返回黃 河或者作為當?shù)赜盟?,確保充填復墾后水資源得到充分利用。
圖3 引黃充填復墾技術流程
本文把黃河主要淤積河段作為充填復墾泥沙的供給河段,首先采用沙量平衡法估算這些河段的泥沙淤積量;然后運用開采沉陷預計法估算研究區(qū)范圍內各礦區(qū)的充填復墾需沙量;在此基礎上,分析引黃充填復墾泥沙的供需狀況及其空間差異,初步劃分適宜充填復墾礦區(qū),并設計黃河到各礦區(qū)的概略輸沙路徑。
黃河泥沙淤積量的估算方法包括同流量水位法、斷面法、沙量平衡法等[22]。結合所搜集的數(shù)據(jù)資料,本文采用沙量平衡法[23]估算1950—2013年不同淤積河段的總淤積量,見式(1)。
從中國水利部發(fā)布的《2013年中國河流泥沙公報》[24]中,獲取1950—2013年黃河不同水文觀測站的累計輸沙量數(shù)據(jù)。通過文獻查閱、專家咨詢、實地調查等方式,獲取不同河段的區(qū)間來沙和取沙數(shù)據(jù)。其中,各河段區(qū)間來沙主要考慮流域內支流攜帶泥沙狀況,區(qū)間取沙主要考慮引黃灌溉取沙、采沙場取沙和引黃充填復墾試驗取沙3種途徑。
孟津—花園口段,1990—2013年共建81個采沙場,年均取沙量約499萬m3[27],歷年累計取沙11 976萬m3,按照黃河中游泥沙密度為2.73×103kg/m3[28]進行折算,采沙場累計取沙約3.27億t;花園口—高村段,采沙場年取沙量約為99萬m3[27],1990—2013年累計取沙2 376萬m3,按黃河下游泥沙密度為2.71×103kg/m3[28]折算,累計取沙約為0.64億t;高村—艾山段,采沙場年均取沙約20萬m3[27],1990—2013年累計取沙480萬m3,約為0.13億t。
高村—艾山段,近年來山東省濟寧市等開展了引黃充填復墾試驗,泥沙輸送濃度可達400 kg/m3,利用了約0.02億t黃河泥沙[7,29],治理沉陷地面積約48.67 hm2。
黃河下游河道年均引黃灌溉取沙約0.8125億t[30],1950—2013年累計引黃灌溉取沙量約為52.00億t,分別按照引黃灌溉取沙比例為18%、30%、22.5%和29.5%[30-31]進行估算可知,孟津—花園口、花園口—高村、高村—艾山和艾山—利津的引黃灌溉累計取沙量分別為9.36、15.60、11.70和15.34億t。
綜上分析,分別匯總得到1950—2013年黃河主要淤積河段的區(qū)間取沙狀況(表1)和泥沙輸移狀況(表2)。
表1 1950—2013年黃河主要淤積河段的區(qū)間取沙狀況
注:累計區(qū)間取沙量=采沙場累計取沙量+引黃充填復墾試驗累計取沙量+引黃灌溉累計取沙量。
Note:Sediments outflow = sediments outflow by sand excavation + sediments outflow by filling reclamation experiments + sediments outflow by irrigation.
表2 1950—2013年黃河主要淤積河段的泥沙輸移狀況
估算各礦區(qū)的充填復墾需沙量,可以采用物理模擬試驗、數(shù)值模擬分析、現(xiàn)場監(jiān)測、理論分析預測等開采沉陷預計方法。其中,除了理論分析預測外,其余方法多針對某一礦山開采區(qū)域,對數(shù)據(jù)參數(shù)要求比較高[32]。基于煤炭產量和下沉系數(shù)的開采沉陷預計方法[6,33]是一種理論分析預測方法,不需要很復雜的數(shù)據(jù),普遍適用于中宏觀礦區(qū)的開采沉陷預計,應用該方法預計研究范圍內各礦區(qū)的采煤沉陷體積和引黃充填復墾需沙量,見式(2)和式(3)。
式中為采煤沉陷體積,億m3;為引黃充填復墾需沙量,億t;為煤炭產量,億t;為下沉系數(shù);為煤炭容重,t/m3;為泥沙平均密度,kg/m3。
從中國煤炭地質總局發(fā)布的《我國大型煤炭基地區(qū)域含水層保護戰(zhàn)略研究》[34]中,獲取截至2013年黃河流域9大煤炭基地國家規(guī)劃礦區(qū)的煤炭產量數(shù)據(jù)。通過查找相關文獻,獲取不同礦區(qū)的下沉系數(shù)。為了便于估算,采用全國不同礦區(qū)各煤層的平均容重,約為1.4 t/m3[35-37]。黃河上游、中游和下游的泥沙平均密度分別為2.74×103、2.73×103和2.71×103kg/m3[28]。
輸沙路徑是指連接黃河到礦區(qū)采煤沉陷地的輸沙管道布局線路。遵循“技術可行、經濟合理”的原則,須統(tǒng)一設計各礦區(qū)的輸沙路徑,遠距離礦區(qū)與近距離礦區(qū)統(tǒng)籌考慮,輸沙管道建設相互銜接,由近及遠,分步實施。不考慮地形、地類等其他因素的影響,應用ArcGIS最短路徑分析功能,分析各礦區(qū)距離黃河主要淤積河段的最短距離及周圍毗鄰礦區(qū)距離,并計算S1、S2、S3礦區(qū)的概略輸沙路徑長度,見式(4)。
式中T1、T2、T3分別表示S1、S2、S3礦區(qū)的概略輸沙路徑長度,km;L1表示S1礦區(qū)與黃河主要淤積河段 的最短距離,km;L1S2表示S1礦區(qū)與周圍S2礦區(qū)的 最短距離,km;L2S3表示S2礦區(qū)與周圍S3礦區(qū)的最短距離,km。
3.1.1 黃河主要淤積河段的泥沙淤積量
根據(jù)黃河主要淤積河段的泥沙輸移狀況(表2),采用式(1)估算出1950—2013年黃河主要淤積河段的泥沙淤積量。結果表明,1950—2013年黃河主要淤積河段的泥沙總淤積量約為144.31 億t,年均淤積量約為2.25億t。其中,孟津—花園口、花園口—高村的淤積程度最嚴重,總淤積量為114.75億t,占所有主要淤積河段總淤積量的79.52%。與相關研究文獻進行對比分析說明,見表3,本文對不同河段淤積量的估算結果相對可靠,與其他多數(shù)文獻所得估算結果接近,能夠較好地反映黃河主要淤積河段的泥沙淤積狀況。
3.1.2 引黃充填復墾礦區(qū)的需沙量
研究區(qū)范圍內共有23個國家規(guī)劃礦區(qū),包括淄博、肥城、黃河北、巨野、焦作、鄭州、義馬、準格爾和包頭等9個S1礦區(qū),新汶、兗州、濟寧、鶴壁、平頂山、晉城、府谷、神東、萬利、烏海等10個S2礦區(qū),棗滕、潞安、霍東、霍州等4個S3礦區(qū),見圖4。
采用式(2)和式(3)估算出至2013年研究區(qū)范圍內各國家規(guī)劃礦區(qū)的充填復墾需沙量,見表4。經試驗測定,當前技術條件下遠距離管道輸沙最大經濟含沙量約為500 kg/m3[7],即每1 m3的泥漿包含約500 kg的泥沙。按照黃河泥沙密度統(tǒng)一取值為2.73×103kg/m3進行估算,1 m3的泥漿中含0.183 m3的黃河泥沙,泥沙與水的體積比約為1∶4.5,按照水的密度為1×103kg/m3估算可知,每充填1 億m3的采煤沉陷空間需調用約4.5億t的水資源。因此,可根據(jù)各礦區(qū)的采煤沉陷體積估算出各礦區(qū)的需調用黃河水量,見表4。
表3 黃河泥沙淤積量估算結果的文獻對比情況
注:“—”表示相應河段沒有參與計算,無對比數(shù)據(jù)。
Note:“—” means no data on the corresponding river segment for not involving in the calculation.
圖4 研究區(qū)內國家規(guī)劃礦區(qū)及其距黃河最短距離
截至2013年,研究區(qū)范圍內各礦區(qū)的充填復墾總需沙量為225.12億t,累計需調用黃河水量371.16億t。其中,S1、S2和S3礦區(qū)的需沙量分別約為72.86、111.62和40.64億t,分別占總需沙量的32.36%、49.58%和18.05%。神東、河南、魯西、晉東、晉中煤炭基地的需沙量分別約為67.81、58.70、46.49、26.21和25.91億t,分別占總需沙量的30.12%、26.07%、20.65%、11.64%和11.51%。
表4 研究區(qū)范圍內國家規(guī)劃礦區(qū)的充填復墾需沙量和需調用水量
3.1.3 充填復墾黃河泥沙供需狀況空間差異分析
表5中黃河主要淤積河段的總泥沙淤積量小于研究范圍內礦區(qū)充填復墾的總需沙量,供需差距為80.81億t。其中,巴彥高勒—三湖河口、花園口—高村和艾山—利津3個河段,泥沙淤積量分別為2.42、40.08和9.43億t,各河段沿岸150 km范圍內礦區(qū)的充填復墾需沙量分別為1.56、3.01和8.75億t,泥沙供給量均大于需求量,因此僅考慮充填物料是否充足這項因素,這3個河段沿岸所有礦區(qū)均適宜采用黃河泥沙充填復墾。三湖河口—頭道拐、孟津—花園口和高村—艾山3個河段,泥沙淤積量分別為12.99、74.67和4.72億t,各河段沿岸150 km范圍內礦區(qū)的需沙量分別為66.25、107.81和37.74億t,泥沙供給量遠小于需求量,因此考慮到黃河泥沙供需狀況,這3個河段沿岸部分礦區(qū)適宜采用黃河泥沙充填復墾,為了節(jié)約輸沙成本,按照距黃河由近到遠的順序確定適宜充填復墾礦區(qū)。
綜上分析,綜合考慮充填復墾泥沙量供需狀況和輸沙距離的制約,黃河沿岸適宜充填復墾礦區(qū)包括包頭、義馬、焦作、鄭州、肥城、黃河北、淄博7個S1礦區(qū)和烏海、平頂山、晉城、鶴壁、新汶5個S2礦區(qū),需沙量分別為45.31和44.88億t,總計為90.19億t,見表5,占研究區(qū)范圍內國家規(guī)劃礦區(qū)總需沙量的40.06%,相當于黃河主要淤積河段總淤積量的62.50%,黃河泥沙充填復墾礦區(qū)需累計調用黃河水量約為148.81 億t。從經濟合理、工程技術便于操作、生態(tài)安全等角度綜合考慮,引黃充填復墾工程宜有選擇地分期推廣,且泥沙充填復墾完沉沙回水后,大部分水仍將返回黃河,不會影響黃河供水安全。
表5 不同河段礦區(qū)充填復墾泥沙供需狀況
注:“*”表示適宜充填復墾礦區(qū),“—”表示相應礦區(qū)沒有參與計算,無對比數(shù)據(jù)。
Note: “*”denotes the suitable filling reclamation mining area, “—” means no data on the corresponding mining areas for not being involved in the calculation.
在圖4基礎上,按照式(4)概略設計出適宜充填復墾礦區(qū)的輸沙路徑并計算其長度,見圖5和表6。適宜充填復墾礦區(qū)的概略輸沙路徑長度范圍為21.98~109.02 km,總長度為643 km。其中,肥城、黃河北、焦作、鄭州等4個礦區(qū)概略輸沙路徑長度小于30 km,淄博、義馬礦區(qū)為30~50 km,包頭、鶴壁、晉城、平頂山、新汶、烏海礦區(qū)為>50~110 km,其中烏海礦區(qū)的輸沙路徑最長,約為109.02 km。
圖5 適宜充填復墾礦區(qū)的概略輸沙路徑
表6 適宜充填復墾礦區(qū)的概略輸沙路徑長度
本文以黃河主要淤積河段及沿岸150 km范圍內的23個國家規(guī)劃礦區(qū)為研究范圍,估算了礦區(qū)充填復墾泥沙供需狀況和輸沙距離,分析了適宜引黃充填復墾的礦區(qū),并設計了概略輸沙路徑。結論如下:
1)1950—2013年,黃河主要淤積河段的泥沙淤積量約為144.31億t;截至2013年,研究區(qū)范圍內各礦區(qū)充填復墾總需沙量約為225.12億t。
2)巴彥高勒—三湖河口、花園口—高村和艾山—利津,泥沙供給量大于需求量,沿岸所有礦區(qū)適宜引黃充填復墾;三湖河口—頭道拐、孟津—花園口和高村—艾山,泥沙供給量小于需求量,沿岸部分礦區(qū)適宜引黃充填復墾。綜合考慮充填復墾泥沙供需狀況和輸沙距離的制約,包頭、義馬、焦作、鄭州、肥城、黃河北、淄博7個近距離礦區(qū)和烏海、平頂山、晉城、鶴壁、新汶5個中距離礦區(qū)劃分為適宜充填復墾礦區(qū),需沙量和需調用水量分別為90.19和148.81億t。
3)適宜充填復墾礦區(qū)的概略輸沙路徑長度處于21.98~109.02 km,總長度約為643 km。肥城、黃河北、焦作、鄭州等4個礦區(qū)概略輸沙路徑最短,烏海礦區(qū)最長。
本文從宏觀區(qū)域尺度分析了黃河泥沙淤積量與礦區(qū)充填復墾需沙量的供需狀況,從泥沙供給關系、輸沙距離2個制約因素角度分析了適宜充填復墾礦區(qū),研究成果可以作為引黃充填復墾技術推廣應用的前期專題研究基礎,為充填復墾可行性研究、規(guī)劃設計和施工及充填復墾等國家和區(qū)域政策制定提供參考。針對顧及因素少、僅考慮泥沙供需關系和距離因素等不足,今后可采用演繹法,逐一疊加不同河段的自然生態(tài)狀況、其他用途的需水需沙狀況、水沙開采限制政策、各礦區(qū)已復墾情況、不同區(qū)域土地復墾的必要性和急迫性、最新觀測泥沙量數(shù)據(jù)和更加精準的沉陷監(jiān)測數(shù)據(jù)等因素進行修正,使研究成果更具前瞻性、指導性和可操作性。
[1] 李晶,申瑩瑩,焦利鵬,等. 基于Landsat TM/OLI影像的兗州煤田水域面積動態(tài)監(jiān)測[J]. 農業(yè)工程學報,2017,33(18):243-250. Li Jing, Shen Yingying, Jiao Lipeng, et al. Dynamic monitoring of water areas in Yanzhou coalfield based on Landsat TM/OLI images[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(18): 243-250. (in Chinese with English abstract)
[2] 丁翔,白中科. 煤礦城市土地生態(tài)安全評價與預測:以山西省朔州市為例[J]. 中國礦業(yè),2018,27(3):81-86. Ding Xiang, Bai Zhongke. Evaluation and prediction of land ecological security in coal mine city: A case study of Shuozhou City, Shanxi Province[J]. China Mining Magazine, 2018, 27(3): 81-86. (in Chinese with English abstract)
[3] 徐良驥,黃璨,章如芹,等. 煤矸石充填復墾地理化特性與重金屬分布特征[J]. 農業(yè)工程學報,2014,30(5): 211-219. Xu Liangji, Huang Can, Zhang Ruqin, et al. Physical and chemical properties and distribution characteristics of heavy metals in reclaimed land filled with coal gangue[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 211-219. (in Chinese with English abstract)
[4] 水利部黃河水利委員會. 黃河流域綜合規(guī)劃(2012-2030年)[M]. 鄭州:黃河水利出版社,2013.
[5] 張夢虹, 吳侃. 濟寧北部礦區(qū)引黃河泥沙充填復墾優(yōu)化分析[J]. 金屬礦山, 2016, 45(5):158-162. Zhang Menghong, Wu Kan. Optimization analysis of Yellow River sediment reclamation in the northern mining area of Jining[J]. Metal Mine, 2016, 45(5): 158-162. (in Chinese with English abstract)
[6] 何強,吳侃,許冬,等. 南四湖流域采煤沉陷區(qū)引黃復墾需沙量估算與分析[J]. 中國礦業(yè),2015,24(2):67-71. He Qiang, Wu Kan, Xu Dong, et al. Estimation and analyses of sediment demand in the reclamation with the Yellow River in the mining subsidence land of Nansihu Lake drainage area[J]. China Mining Magazine, 2015, 24(2): 67-71. (in Chinese with English abstract)
[7] 胡振琪,王培俊,邵芳. 引黃河泥沙充填復墾采煤沉陷地技術的試驗研究[J]. 農業(yè)工程學報,2015,31(3):288-295. Hu Zhenqi, Wang Peijun, Shao Fang. Technique for filling reclamation of mining subsidence land with Yellow River sediment[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 288-295. (in Chinese with English abstract)
[8] 胡振琪,邵芳,多玲花. 黃河泥沙間隔條帶式充填采煤沉陷地復墾技術及實踐[J]. 煤炭學報,2017,42(3):557-566. Hu Zhenqi, Shao Fang, Duo Linghua. Technique of reclaiming subsided land with Yellow River sediments in the form of spaced strips[J]. Journal of China Coal Society, 2017, 42(3): 557-566. (in Chinese with English abstract)
[9] Hu Zhenqi, Shao Fang, Mcsweeney K, et al. Reclaiming subsided land with Yellow River sediments: Evaluation of soil-sediment columns[J]. Geoderma, 2017, 307(23): 210-219.
[10] 胡振琪,多玲花,王曉彤. 采煤沉陷地夾層式充填復墾原理與方法[J]. 煤炭學報,2018,43(1):198-206. Hu Zhenqi, Duo Linghua, Wang Xiaotong. Principle and method of reclaiming subsidence land with inter-layers of filling materials[J]. Journal of China Coal Society, 2018, 43(1): 198-206. (in Chinese with English abstract)
[11] 邵芳,胡振琪,王培俊,等. 基于黃河泥沙充填復墾采煤沉陷地覆土材料的優(yōu)選[J]. 農業(yè)工程學報,2016,32(增刊 2):352-358. Shao Fang, Hu Zhenqi, Wang Peijun, et al. Selection of alternative soil for filling reclamation with Yellow River sediment in coal-mining subsidence areas[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(Supp. 2): 352-358. (in Chinese with English abstract)
[12] 王培俊,胡振琪,邵芳,等. 黃河泥沙作為采煤沉陷地充填復墾材料的可行性分析[J]. 煤炭學報,2014,39(6): 1133-1139. Wang Peijun, Hu Zhenqi, Shao Fang, et al. Feasibility analysis of Yellow River sediment used as the filling reclamation material of mining subsidence land[J]. Journal of China Coal Society, 2014, 39(6): 1133-1139. (in Chinese with English abstract)
[13] 朱琦,胡振琪,王培駿,等. 濟寧市采煤沉陷地引黃充填沉沙排水量預測及利用效益分析[J]. 金屬礦山,2016,45(11):63-68. Zhu Qi, Hu Zhenqi, Wang Peijun, et al. Drainage quantity forecasting and efficiency assessment on filling reclamation of mining subsidence land with Yellow River sediment in Jining[J]. Metal Mine, 2016, 45(11): 63-68. (in Chinese with English abstract)
[14] 陳亞凱,邵芳,喬志勇. 黃河泥沙充填復墾耕地表層土壤垂直入滲特性研究[J]. 中國生態(tài)農業(yè)學報,2014,22(7):798-805. Chen Yakai, Shao Fang, Qiao Zhiyong. Vertical infiltration characteristics of reclaimed farmland soils with Yellow River sediment fill[J]. Chinese Journal of Eco-Agriculture, 2014, 22(7): 798-805. (in Chinese with English abstract)
[15] 許濤,趙艷玲,肖武,等. 引黃河泥沙充填復墾采煤沉陷地區(qū)域適用性評價:以濟寧市為例[J]. 中國農業(yè)大學學報,2017, 22(2):106-114. Xu Tao, Zhao Yanling, Xiao Wu, et al. The regional suitability evaluation index system of filling reclamation of mining subsidence land with Yellow River sediment: A case study of Jining City[J]. Journal of China Agricultural University, 2017, 22(2): 106-114. (in Chinese with English abstract)
[16] 趙玉,穆興民,何毅,等. 1950-2011年黃河干流水沙關系變化研究[J]. 泥沙研究,2014,39(4):32-38. Zhao Yu, Mu Xingmin, He Yi, et al. Relationship between runoff and sediment discharge in the main channel of Yellow River from 1950 to 2011[J]. Journal of Sediment Research, 2014, 39(4): 32-38. (in Chinese with English abstract)
[17] Gandhi R L, Norwood J, Che Y. Cross-country bauxite slurry transportation[M]// Don Donaldson, Benny E. Essential readings in light metals. New York, USA: Springer International Publishing Company, 2016: 70-74.
[18] Cowper S N T, Cowper J N T, Thomas A D. Slurry pipelines: Past, present and future[J]. Australian Journal of Multi- disciplinary Engineering, 2009, 7(2): 189-196.
[19] Bhabra H. Slurry pipeline now goes the distance[J]. World Pumps, 2013, 2013(6): 38-40.
[20] 陳光國,夏建新. 我國礦漿管道輸送技術水平與挑戰(zhàn)[J]. 礦冶工程,2015,35(2):29-32,37. Chen Guangguo, Xia Jianxin. Existing technology and technical challenges in slurry pipeline transportation development in China[J]. Mining and Metallurgical Engineering, 2015, 35(2): 29-32, 37. (in Chinese with English abstract)
[21] Welp T, Ray G. Application of long distance conveyance of dredged sediment to Louisiana coastal restoration[R]. Vicksburg, Mississippi, USA: Army Engineer Research and Development Center, 2011.
[22] 侯素珍,王平,郭秀吉,等. 黃河內蒙古段河道泥沙淤積對水沙的響應[J]. 泥沙研究,2015,40(1):61-66. Hou Suzhen, Wang Ping, Guo Xiuji, et al. Responses of river sedimentation to water-sediment conditions in Inner Mongolia reach of upper Yellow River[J]. Journal of Sediment Research, 2015, 40(1): 61-66. (in Chinese with English abstract)
[23] 安催花,魯俊,錢裕,等. 黃河寧蒙河段沖淤時空分布特征與淤積原因[J]. 水利學報,2018,49(2):1-13. An Cuihua, Lu Jun, Qian Yu, et al. Spatial-temporal distribution characteristic and course of sedimentation in the Ningxia-Inner Mongolia reaches of the Yellow River[J]. Journal of Hydraulic Engineering, 2018, 49(2): 1-13. (in Chinese with English abstract)
[24] 中華人民共和國水利部. 2013年中國河流泥沙公報[M]. 北京:中國水利水電出版社,2014.
[25] 楊根生,拓萬全,戴豐年,等. 風沙對黃河內蒙古河段河道泥沙淤積的影響[J]. 中國沙漠,2003,23(2):54-61. Yang Gensheng, Tuo Wanquan, Dai Fengnian, et al. Contribution of sand sources to the silting of riverbed in Inner Mongolia segment of Huanghe River[J]. Journal of Desert Research, 2003, 23(2): 54-61. (in Chinese with English abstract)
[26] 林秀芝,郭彥,侯素珍. 內蒙古十大孔兌輸沙量估算方法探討[J]. 泥沙研究,2014,39(2):16-20. Lin Xiuzhi, Guo Yan, Hou Suzhen. Estimation of sediment discharge of ten tributaries of Yellow River in Inner Mongolia[J]. Journal of Sediment Research, 2014, 39(2): 16-20. (in Chinese with English abstract)
[27] 行紅磊,許發(fā)文,行鑫鑫. 淺談河南黃河泥砂利用的有效方式與途徑[C]// 2015第七屆全國河湖治理與水生態(tài)文明發(fā)展論壇論文集. 北京:中國水利技術信息中心,2015:56-60.
[28] 和瑞莉,李靜,張石娃. 黃河流域泥沙密度試驗研究[J]. 人民黃河,1999,21(3):8-10,49. He Ruili, Li Jing, Zhang Shiwa. Experimental study of sediment density in the Yellow River basin[J]. Yellow River, 1999, 21(3): 8-10, 49. (in Chinese with English abstract)
[29] 江恩慧,曹永濤,董其華,等. 黃河泥沙資源利用的長遠效應[J]. 人民黃河,2015,37(2):1-5,12. Jiang Enhui, Cao Yongtao, Dong Qihua, et al. Long term effects of the Yellow River sediment resources utilization[J]. Yellow River, 2015, 37(2): 1-5, 12. (in Chinese with English abstract)
[30] 徐建華,張培德,林銀平,等. 時段劃分對黃河下游灌溉引沙量計算值的影響[J]. 西北水資源與水工程學報,1998(3):49-51.
[31] 林秀芝,劉琦,曲少軍. 黃河下游引水引沙對河道沖淤調整影響分析[J]. 泥沙研究,2010,35(6):44-49. Lin Xiuzhi, Liu Qi, Qu Shaojun. Impact of diverted water and sediment on erosion and deposition in Lower Yellow River[J]. Journal of Sediment Research, 2010, 35(6): 44-49. (in Chinese with English abstract)
[32] 代張音,江澤標,張路. 順層巖質斜坡開采沉陷預測模型研究[J]. 巖石力學與工程學報,2017,36(12):3012-3020. Dai Zhangyin, Jiang Zebiao, Zhang Lu. A model for predicting mining subsidence in bedding rock slopes[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3012-3020. (in Chinese with English abstract)
[33] 賀一波,吳侃. 濟寧礦區(qū)北區(qū)引黃河泥沙充填復墾限制因素及協(xié)調措施[J]. 煤礦開采,2016,21(4):95-99. He Yibo, Wu Kan. Limitation factors and coordinate measures of filling reclamation with silt of Yellow River in the north part of Jining mine district[J]. Coal Mining Technology, 2016, 21(4): 95-99. (in Chinese with English abstract)
[34] 中國煤炭地質總局水文地質局. 我國大型煤炭基地區(qū)域含水層保護戰(zhàn)略研究[R]. 邯鄲:中國煤炭地質總局水文地質局,2013.
[35] 劉海燕. 兗州煤田主采煤層頂板穩(wěn)定性評價[D]. 青島:山東科技大學,2004. Liu Haiyan. Evaluation of the Stability of Main Coal Seam’s Roof in Yanzhou Coalfield[D]. Qingdao: Shandong University of Science and Technology, 2004. (in Chinese with English abstract)
[36] 劉小瓊. 滕北礦區(qū)太原組沉積特征與聚煤規(guī)律研究[D]. 青島:山東科技大學,2007. Liu Xiaoqiong. Study of Sedimentary Characteristics and the Law of Coal Accumulation of Taiyuan Formation in Tengbei Coal Mine[D]. Qingdao: Shandong University of Science and Technology, 2007. (in Chinese with English abstract)
[37] 于健浩. 急傾斜煤層充填開采方法及其圍巖移動機理研究[D]. 北京:中國礦業(yè)大學(北京),2013. Yu Jianhao. Research of Steep Seam Backfill Mining Methods and Its Mechanism of Surrounding Rock Movement[D]. Beijing: China University of Mining and Technology (Beijing), 2013. (in Chinese with English abstract)
[38] 張洪宇,申紅彬. 孔兌入匯對黃河內蒙古段河道淤積的影響[J]. 人民黃河,2017,39(3):5-9. Zhang Hongyu, Shen Hongbin. Impact of tributaries inflow on channel sedimentation in Inner Mongolia reach of Yellow River[J]. Yellow River, 2017, 39(3): 5-9. (in Chinese with English abstract)
[39] 周麗艷,魯俊,張建. 黃河寧蒙河段沙量平衡法沖淤量的計算及修正[J]. 人民黃河,2008,30(7):30-31.
[40] 馬睿,韓鎧御,鐘德鈺,等. 不同治理方案下黃河下游河道的沖淤變化研究[J]. 人民黃河,2017,39(12):37-46. Ma Rui, Han Kaiyu, Zhong Deyu, et al. Study on the riverbed erosion and deposition for different training schemes in the Lower Yellow River[J]. Yellow River, 2017, 39(12): 37-46. (in Chinese with English abstract)
[41] 李潔,夏軍強,鄧珊珊,等. 近30年黃河下游河道深泓線擺動特點[J]. 水科學進展,2017,28(5):652-661. Li Jie, Xia Junqiang, Deng Shanshan, et al. Characteristics of channel thalweg migration in the lower Yellow River over the past 30 years[J]. Advances in Water Science, 2017, 28(5): 652-661. (in Chinese with English abstract)
[42] 郭振忠,周業(yè)亭,孫少磊. 基于許廠煤礦厚松散層下開采地表沉陷規(guī)律研究與應用[J]. 中國高新技術企業(yè),2012,18(22):128-129.
[43] 林育秀. 肥城礦區(qū)地表移動變形參數(shù)規(guī)律研究[D]. 青島:山東科技大學,2007. Lin Yuxiu. Study on the Laws of Parameters of Surface Movement and Deformation on Feicheng Mining Area[D]. Qingdao: Shandong University of Science and Technology, 2007. (in Chinese with English abstract)
[44] 李晨. 巨野龍固礦井塌陷區(qū)農業(yè)園區(qū)規(guī)劃研究[D]. 泰安:山東農業(yè)大學,2013. Li Chen. The Plan of Agricultural Park in Juye Longgu Mine Subsidence Area[D]. Taian: Shandong Agricultural University, 2013. (in Chinese with English abstract)
[45] 徐乃忠,葛少華,林英良,等. 山東黃河北煤田地表沉陷規(guī)律研究[J]. 煤炭科學技術,2011,39(6):97-101. Xu Naizhong, Ge Shaohua, Lin Yingliang, et al. Study on Shandong coalfield surface subsidence law in the north of Yellow River[J]. Coal Science & Technology, 2011, 39(6): 97-101. (in Chinese with English abstract)
[46] 郭文兵,鄧喀中,鄒友峰. 地表下沉系數(shù)計算的人工神經網絡方法研究[J]. 巖土工程學報,2003,25(2):212-215. Guo Wenbing, Deng Kazhong, Zou Youfeng. Study on artificial neural network method for calculation of subsidence coefficient[J]. Chinese Jounal of Geotechnical Engineering, 2003, 25(2): 212-215. (in Chinese with English abstract)
[47] 龔望書. 鄭州礦區(qū)規(guī)劃環(huán)評中的地表沉陷預測探討[J]. 中國西部科技,2011,10(2):6-7.
[48] 岳明. 神東風積沙礦區(qū)開采沉陷主要影響因素研究[D]. 包頭:內蒙古科技大學,2014. Yue Ming. The Research of Shen-dong Aeolian Sand Mining Area of Main Influencing Factors of Mining Subsidence[D]. Baotou: Inner Mongolia University of Science & Technology, 2014. (in Chinese with English abstract)
[49] 郝國偉,王登振,安泰. 南屯煤礦33上02工作面開采沉陷預計分析[J]. 山東煤炭科技,2016,34(5):50-51.Hao Guowei, Wang Dengzhen, An Tai. Prediction and analysis of mining subsidence of Nantun coal mine 3302 working face[J]. Shandong Coal Science & Technology, 2016, 34(5): 50-51. (in Chinese with English abstract)
[50] 鄧麗. 煤—糧復合區(qū)耕地保護問題研究——以濟寧市為例[D]. 曲阜:曲阜師范大學,2010. Deng Li. Study on the Protection of Farmland in the Coal-grain Complex Area: A Case Study of Jining City[D]. Qufu: Qufu Normal University, 2010. (in Chinese with English abstract)
[51] 李松濤. 基于GIS的新汶礦區(qū)地表沉陷規(guī)律系統(tǒng)研究[D]. 青島:山東科技大學,2005. Li Songtao. Study on the Surface Subsidence Law of Xinwen Mining Area Based on GIS[D]. Qingdao: Shandong University of Science and Technology, 2005. (in Chinese with English abstract)
[52] 謝和平,周宏偉,王金安,等. FLAC在煤礦開采沉陷預測中的應用及對比分析[J]. 巖石力學與工程學報,1999,18(4):397-401. Xie Heping, Zhou Hongwei, Wang Jinan, et al. Application of FLAC to predict ground surface displacements due to coal extraction and its comparative analysis[J]. Chinese Journal of Rock Mechanics & Engineering, 1999, 18(4): 397-401. (in Chinese with English abstract)
[53] 趙曉峰. 榆林某煤礦采空區(qū)地表移動變形預測及其工程分區(qū)[J]. 煤田地質與勘探,2011,39(4):39-42. Zhao Xiaofeng. Prediction and engineering division of the ground movement and deformation above the gob of a coal mine in Yulin[J]. Coal Geology & Exploration, 2011, 39(4): 39-42. (in Chinese with English abstract)
[54] 薛明科,汪玉松,王俊. 隆東煤礦開采沉陷預測分析[J]. 工礦自動化,2013,39(10):39-43. Xue Mingke, Wang Yusong, Wang Jun. Prediction and analysis of mining subsidence in Longdong coal mine[J]. Industry & Mine Automation, 2013, 39(10): 39-43. (in Chinese with English abstract)
[55] 湯伏全,姚頑強,夏玉成. 薄基巖下淺埋煤層開采地表沉陷預測方法[J]. 煤炭科學技術,2007,35(6):108-110,71. Tang Fuquan, Yao Wanqiang, Xia Yucheng. Prediction method of ground subsidence for coal mining in seam under thin base rock[J]. Coal Science & Technology, 2007, 35(6): 108-110,71.. (in Chinese with English abstract)
[56] 李杰. 萬利礦區(qū)淺埋煤層開采地表移動變形規(guī)律[J]. 煤礦開采,2013,18(4):8-13. Li Jie. Surface movement and deformation rule of mining shallow-buried coal-seam in Wanli mining area[J]. Coal Mining Technology, 2013, 18(4): 8-13. (in Chinese with English abstract)
[57] 黃先棟. 高潛水位采煤沉陷耕地報損核減標準與制度設計[D]. 北京:中國礦業(yè)大學(北京),2017. Huang Xiandong. The Verification-reduction Standard and System Design of Subsided Farmland in High Groundwater Coal Mines[D]. Beijing: China University of Mining and Technology (Beijing), 2017. (in Chinese with English abstract)
[58] 郝兵元,胡海峰,白文斌,等. 地表沉陷預測參數(shù)可靠性分析及取值優(yōu)化研究[J]. 太原理工大學學報,2011,42(2):184-187. Hao Bingyuan, Hu Haifeng, Bai Wenbin, et al. Reliability analysis and optimization of value on parameters of surface subsidence prediction[J]. Journal of Taiyuan University of Technology, 2011, 42(2): 184-187. (in Chinese with English abstract)
[59] 李春意,高永格,崔希民. 基于正態(tài)分布時間函數(shù)地表動態(tài)沉陷預測研究[J]. 巖土力學,2016,37(增刊 1):108-116. Li Chunyi, Gao Yongge, Cui Ximin. Progressive subsidence prediction of ground surface based on the normal distribution time function[J]. Rock & Soil Mechanics, 2016, 37(Supp. 1): 108-116. (in Chinese with English abstract)
[60] 王紅軍. 黃土坡煤礦地表沉陷預測及影響分析[J]. 山西煤炭,2010,30(12):48-50. Wang Hongjun. Prediction and influence analysis on surface subsidence in Huangtupo mine[J]. Shanxi Coal, 2010, 30(12): 48-50. (in Chinese with English abstract)
Analysis of supply-demand and transportation path of sediments for filling reclamation of mining areas in Yellow River basin
Li Jing1, Yin Shouqiang1, Yu Jiachun1, Hu Zhenqi2, Yang Zhen1, Yang Chaoyuan1
(1.100083,; 2.221116,)
Subsided mined-land reclamation with Yellow River Sediments is an effective way and a win-win strategy for reducing the Yellow River sedimentation and accelerating mined land reclamation by using sediments as filling materials, which is of great significance to improve the regional ecological environment. In order to analyze the maximal supply amount and sediments demand for the filling reclamation of mining areas in the Yellow River basin, in this paper, we took the Yellow River and 23 national planning mining areas within 150 km away from the main sediments deposition segments of the Yellow River as the study area. Through the analysis of supply and demand of sediments for the filling reclamation of mining areas, the river segments and mining areas suitable for filling reclamation were preliminarily identified and the schematic sediments transport paths were also designed. Firstly, the sediments balance equation was used to estimatethe sedimentation amount in main sediments deposition segments of the Yellow River in 1950-2013. Secondly, the sediments demand for filling reclamation of all mining areas withinthe study area was estimated. Based on the above two steps, we analyzed the spatial difference on the relation of Yellow River sediments supply and demand for the filling reclamation in all main sediments deposition segments. Finally, the sediments transport paths of different mining areas were designed as a whole by following the principle that the path should be shortest for minimum construction and labor costs involved. The results showed that the main sediments deposition segments of the Yellow River are Bayangol-Toudaoguai and Mengjin-Lijin, whose total sedimentation amount was 14.431 billiontons in 1950 -2013.Therefore, the sedimentation was the most serious in the river segment called Mengjin-Gaocun, where the accumulated sedimentation amount was 11.475 billion tons in 1950-2013. By the distance difference from the Yellow River, those 23 mining areas were further divided into three types of mining groups, including nine short-distance (S1) mining areas, 10 middle-distance (S2) mining areas, and four long-distance (S3) mining areas, which were 0 - 60 km, >60 - 120 km and >120 - 150 km away from the Yellow River, respectively. Their total sediments demand amount was about 22.512 billion tons by 2013. The spatial relationship between the supply and demand of the Yellow River sediments was unbalanced, thus not all mining areas could be reclaimed with Yellow River Sediment for insufficient sediment in some river segments. In the river segments including Bayangol-Sanhuhekou, Huayuankou-Gaocun, Aishan-Lijin, the sedimentation amount could cover the reclamation demand, thus all the mining areas could be filling-reclaimed using the sediments only judging by the difference between the sediment supply and reclamation demand, but in the river segments including Sanhuhekou-Toudaoguai, Mengjin-Huayuankou and Gaocun-Aishan, the sedimentation amount was less than the reclamation demand, thus only part of the mining areas could be suitable for the sediment-filling reclamation application. As a result, 7 S1 mining areas and 5 S2 mining areas, including Baotou, Yima, Jiaozuo, Zhengzhou, Feicheng, Huang Hebei, Zibo, Wuhai, Pingdingshan, Jincheng, Hebi and Xinwen, were comparatively suitable for filling reclamation by both sediments transportation length and sediments sufficiency or not, whose total sediments demand was 4.531 billion tons around and 4.488 billion tons, respectively by 2013, about 9.019 billion tonsin total, accounting for about 40.06% of the total sediments demand of all mining areas and about 62.50% of the total sedimentation amount in the study area. The total water involved for sediment transportation to the mining areas suitable for filling reclamation was about 14.881 billion tons by 2013. The sediments transport paths length of the mining areas suitable for filling reclamation was about 21.98 - 109.02 km away from the Yellow River. The total sediments transport paths length to the suitable mining areas was about 643 km. The study is the foundation for the wide-scale promotion of the filling reclamation technology of mining areas with Yellow River sediments, and is helpful for the subsequent feasibility study, the relevant planning and reclamation policies making.
land reclamation; drainage; coal mines; the Yellow River basin; national planning mining area; filling reclamation with sediments; difference between sediment amount and its demand
2018-05-02
2019-01-19
國家自然科學基金資助項目(41501564);國家“十二五”科技支撐計劃資助項目(2012BAC04B03)
李 晶,教授,博士生導師,主要研究方向為土地利用與土地復墾、生態(tài)遙感、3S應用。Email:lijing@cumtb.edu.cn
10.11975/j.issn.1002-6819.2019.05.033
TD88
A
1002-6819(2019)-05-0268-10
李 晶,殷守強,于加春,胡振琪,楊 震,楊超元. 黃河流域礦區(qū)充填復墾泥沙供需狀況及輸沙路徑分析[J]. 農業(yè)工程學報,2019,35(5):268-277.doi:10.11975/j.issn.1002-6819.2019.05.033 http://www.tcsae.org
Li Jing, Yin Shouqiang, Yu Jiachun, Hu Zhenqi, Yang Zhen, Yang Chaoyuan. Analysis of supply-demand and transportation path of sediments for filling reclamation of mining areas in Yellow River basin[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 268-277. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.05.033 http://www.tcsae.org