• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Properties of The Rational Maps With Buried Components

    2019-04-23 01:44:00

    (Department of Mathematics and Physics,Beijing Institute of Petrochemical Technology,Beijing 102617,China)

    Abstract:Let R(z)be an NCP map with buried components of degree d=degf≥2 on the complex sphereand HD denotes the Hausdor ffdimension.In this paper we prove that if Rn→R algebraically,and Rnand R topologically conjugate for all n>>0,then Rn is an NCP map with buried components for all n>>0,and for some C>0,

    Key words:Julia set;Buried components;Net;Hausdor ffdimension

    §1. Introduction

    Let R(z)be a rational map of degree d=degR≥2 on the complex sphereThe Julia set J(R)of a rational function R is defined to be the closure of all repelling periodic points of R,its complement set is called Fatou set F(R).It is known that J(R)is a perfect set(so J(R)is uncountable,and no point of J(R)is isolated),and also that if J(R)is disconnected,then it has infinitely many components.

    for every x∈X and Rnis topologically conjugate to a subshift of finite type.If only condition|(Rn)0(x)|>1 is satisfied we call the map R|Xexpanding.

    We call a rational function R:J(R)7→ J(R)hyperbolic if there exists n ≥ 1 such that

    Denote CV(R)the critical values of a rational function R.Let

    It follows from[1,Theorem 2.1]that a rational function R:J(R)7→J(R)is hyperbolic if and only if

    Denote by J(R)the Julia set of a rational function.A rational map R is expansive if the Julia set J(R)contains no critical points of R.It follows from[1]that each hyperbolic rational function is expansive and that a rational function is expansive but not hyperbolic if and only if the Julia set contains no critical points of R but intersect the ω-limit set of critical points.

    We call expansive but not hyperbolic rational functions parabolic.It follows from[1]that a rational function R:J(R)7→J(R)is expansive but not hyperbolic if and only if the Julia set J(R)contains no critical points of R but contains at least one parabolic point.

    We recall that if T:X→X is a continuous map of a topological space X,then for every point x ∈ X,the ω-limit set of x denoted by ω(x)is defined to be the set of all limit points of the sequence{Tn(x)}n≥0.We call a point x recurrent if x ∈ ω(x);otherwise x is called non-recurrent.

    The class of NCP maps obviously contains all expanding and parabolic maps.It also comprises the important class of so called subexpanding maps which are defined by the requirement that R|ω(Crit(R))∩J(R)is expanding and the class of geometrically finite maps defined by the property that the forward trajectory of each critical point contained in the Julia set is finite and disjoint from ω-limit set;see ref.[2].

    In paper[3],Sullivan pointed out that there is a surprising good dictionary connecting complex iteration theory and Kleinian groups.He proves that there exists a Kleinian group such that the limit set contains some points not lying on the boundary of any component of the set of discontinuity,and the set of these points is called residual limit set.By analogy with this concept,we define a buried point to be a point on the Julia set not lying on the boundary of any Fatou component.A buried component is defined to be a component of the Julia set which is not on the boundary of any Fatou component.

    By paper[4]we have the following results.

    Theorem A[4]If J(R)is disconnected,then it has uncountable many components,and each point of J(R)is an accumulation point of distinct components of J(R).

    Theorem B[4]Suppose that J(R)is disconnected,and that every component of F(R)has finite connectivity.Then J(R)has a buried component.

    In paper[5]Qiao proved the following result.

    Theorem C[5]Let R(z)be a rational map of degree larger than 1,J(R)6=Then J(R)contains buried components if and only if J(R)is disconnected and F(R)has no completely invariant component.

    McMullen,Beardon and Qiao give some examples in which J(R)has a buried component(see refs.[4-6]).

    A rational function R(z)can be expressed as the quotient

    of two polynomials,where p(z)and q(z)have no common roots.The degree d=degR of R=p/q is then equal to the maximum of the degree of p and q.Thus we can let

    where pn(z)and qn(z)have no common roots,and set dist(Rn,R)=max{|an0?a0|,|an1?a1|,···,|anp? ap|,|bn0? b0|,|bn1?b1|,···,|bnq?bq|}.

    We say rational maps Rnconverge to R algebraically if degRn=degR and,when Rnis expressed as the quotient of two polynomials,the coefficients can be chosen to converge to those of R.Equivalently,Rn→R uniformly in the spherical metric.

    The Julia set J(R)is compact,and the buried components are connected subsets of J(R).So we have the buried components Jb(R)are also compact.

    n>>0 means for all n sufficiently large,and HD(A)denotes the Hausdor ffdimension of a set A.In this paper we shall prove the following theorems:

    Theorem 1 Let R be an NCP map with buried components.If Rn→R algebraically,and Rnand R topologically conjugate,that is,there exists a homeomorphism h:J(Rn)→J(R)such that h?Rn=R?h for all n>>0,then Rnis an NCP map with buried components for all n>>0,and for some C>0,

    where dHdenotes the Hausdor ffdistance,and

    Let(X,ρ)be a metric space,the space X is openly locally connected at the point x ∈ X if there exists arbitrary small connected open neighborhood of x in X.The space X is locally connected if X is openly locally connected at every point.

    Theorem 2 Let R(z)be an NCP map with buried components,if J(R)is locally connected,then any component Ji(R)is either a real-analytic curve or HD(Ji(R))>1.

    §2. Preliminaries and the Construction of A Net

    Let X be a connected complex manifold.A holomorphic family of rational maps,parameterized by X,is a holomorphic map R:X×We denote this map by Rλ(z),where λ∈X and z∈then Rλ:is a rational map.

    Let x be a basepoint in X.A holomorphic motion of a setparameterized by(X,x)is a family of injections

    one for each λ in X,such that φλ(e)is a holomorphic function of λ for each fixed e,and φx=id.

    Definition 2.1 Given a holomorphic family of rational maps Rλ,we say the corresponding Julia sets J(Rλ)?move holomorphically if there is a holomorphic motion

    such that φλ(J(Rx))=J(Rλ)and

    for all z in J(Rx).Thus φλprovides a conjugacy between Rxand Rλon their respective Julia sets.The motion φλis unique if it exists,by density of periodic cycles in J(Rx).

    The Julia sets move holomorphically at x if they move holomorphically on some neighborhood U of x in X.

    A periodic point z of Rxof period n is persistently indi ff erent if there is a neighborhood U of x and a holomorphic map W:U→such that W(§)= ?,(W(λ))=W(λ),and|()0(W(λ))|=∞for all λ in U.(Here()0(z)=/dz.)

    Lemma 2.1[7](Characterizations of stability) Let Rλbe a holomorphic family of rational maps parameterized by X,and let x be a point in X.Then the following conditions are equivalent:

    1.The number of attracting cycles of Rλis locally constant at x.

    2.The maximum period of an attracting cycle of Rλis locally bounded at x.

    3.The Julia set moves holomorphically at x.

    4.For all y sufficiently closed to x,every periodic point of Ryis attracting,repelling or persistently indi ff erent.

    5.The Julia set Jλdepends continuously on λ (in the Hausdor fftopology)on a neighborhood of x.

    Suppose in addition that ci:X→are holomorphic maps parameterizing the critical points of Rλ.Then the following conditions are also equivalent to those above:

    6.For each i,the function λ 7→(ci(λ)),n=0,1,2,···form a normal family at x.

    7.There is a neighborhood U of x such that for all λ in U,ci(λ) ∈ Jλif and only if ci(x)∈Jx.

    The definition of conformal measures for rational maps was first given by Sullivan as a modification of the Patterson measures for limit sets of Fuchsian groups.A more general definition,showing the connection to ergodic theory,has been given by M.Denker and M.Urba′nski earlier.Let t≥0,a probability measure m on J(R)is called t-conformal for R:J(R)→J(R)if m(J(R))=1 and

    for every Borel set A?J(R)such that R|Ais injective.

    Let R be an NCP map.Denote by Λ(R)the set of all parabolic periodic points of R(these points belong to the Julia set and have an essential influence on its fractal structure),and Crit(R)of all critical points of R.We put

    Set

    Definition 2.2 We define the conical set Jc(R)of R as follow.First,say x belongs to Jc(R,r)if for any?>0,there is a neighborhood U of x and n>0 such that diam(U)<ε and

    is a homeomorphism.Then set

    We have x∈Jc(R)if and only if arbitrary small neighborhood of x can be blow up univalently by the dynamics to balls of definite size centered at Rn(x).

    Lemma 2.2[8]If R:J(R)→J(R)is an NCP map,then

    Note that Curtis T.McMullen used the term radial Julia set Jrad(R)instead of conical set Jc(R)in analogy with Kleinian groups;see ref.[9].

    By paper[9],we have the set Sing(R)is countable.

    Let 0<λ<1.Then there exist an integer m≥1,C>0,an open topological disk U containing no critical values of R up to order m and analytic inverse branches:U→of Rmn(i=1,···,kn≤ dnm,n ≥ 0),satisfying:

    (1) ?n ≥ 0,?1≤ i≤ kn+1,?1≤ j≤ kn,Rm?=,

    (3) for each fixed n ≥ 1,for all i=1,···,knthe setsare pairwise disjoint and?U.

    Now we states as a lemma the following consequence of(1)-(3)by the definition 2.2.

    Lemma 2.3 Let R(z)be an NCP map.For each n,let?n=S{(U):j=1,···,kn}and letS,where U is an open topological disk containing no critical values of R.Then?is a net of Jc(R),i.e.any two sets in?are either disjoint or one is a subset of the other.

    Consider the net?,given by Lemma 2.3.For n≥ 0,the preimages of the sets?iunder Rnthat intersect J(R)are called the nth step pieces of the net.Note that for n≥1 the collection of all the nth step pieces also is a net;we call it a refinement of the net?.

    Lemma 2.4 Let R(z)be an NCP map,and W be an nth step piece of the net?i,then the inverse of

    extends in a injective way to a neighborhood ofonly depending on i.

    Proof Refining the net if necessary,we will prove that for some m≥1 all the mth step pieces(or some of the mth step pieces)of the net are compactly contained in some?i.Then the net formed by the mth step pieces will be the desired net.Thus it is enough to prove that the diameters of the mth step pieces of the net converge uniformly to zero as m→∞.

    Let ε>0,and N ≥ 1 be such that we can partition each ?iin at most N connected sets of diameter less than ε>0.If necessary we can refine the disks ?ismall enough,then R is injective in each cover of the net.Let W be an mth step piece of the net,so that Rmis injective in W.Then by the property(2)of net we have diam(W)→0 as m→∞.The proof of this lemma is complete.

    As in immediate consequence,together with the Koebe Distortion Theorem,we obtain the Bounded Distortion Property.

    Lemma 2.5(Bounded Distortion Property) For any k≥0 the distortion of Rkin each of the kth step pieces of the net is bounded by some constant K>1,independent of k.

    §3. Conformal Iterated Function System

    Let I be a countable index set with at least two elements and let S={φi:X →X:i∈I}be a collection of injective contractions from a compact metric space X(equipped with a metric ρ)into X for which there exists 0

    is a singleton therefor,denoting its only element by π(τ),defines the coding map

    The main object in the theory of iterated function systems is the limit set defined as follows.

    Observe that Γ satisfied the natural invariance equality,Γ = ∪i∈Iφi(Γ).Let S(∞)be the set of limit points of all sequences xi∈ φi(X),i∈ I0,where I0ranges over all infinite subsets of I;see ref.[10].

    Lemma 3.1[11]Iflimi∈Idiam(φi(X))=0,then(S(∞)).

    An iterated function system S={φi:X → X:i∈I},is said to be conformal if X ? Rdfor some d≥1 and the following conditions are satisfied.

    (a)Open Set Condition(OSC).φi(IntX)∩φj(IntX)=?for every pair i,j∈I,i 6=j.

    (c)There exists an open connected set V such that X?V?Rdsuch that all maps φi,i∈ I,extend to C∞conformal di ff eomorphisms of V into V.(Note that for d=1 this just means that all the maps φi,i ∈ I,are monotone di ff eomorphism,for d=2 the words conformal mean holomorphic and antiholomorphic,and for d=3,the maps φi,i ∈ I are M¨obius transformations.)

    (d)(Cone Condition)There exist α,l>0 such that for every x ∈ ?X there exists an open cone Con(x,u,α)? Int(V)with vertex x,the symmetry axis determined by vector u of length l and a central angle of Lebesgue measure α.Here Con(x,u,α)={y:0<(y ? x,u) ≤cosα||y?x||≤ l}.

    (e)Bounded Distortion Property(BDP).There exists K≥1 such that

    for every ω ∈ I?and every pair of points x,y ∈ V,wheremeans the norm of the derivative.

    Lemma 3.2 If R is an NCP map and J(R)is locally connected,then Jc(R)admits a conformal iterated function system satisfying the conditions(a)-(e).

    ProofLet R be an NCP map.By Lemma 2.2,Jc(R)admits a net such that Bi∩Bj= ?,i 6=j.Moreover,we may require the existence of an integer q ≥ 1 and σ >0 such that the following holds:

    If x∈Jc(R),say x∈Bi,and Rqn(x)∈Bt,then there exists a unique holomorphic inverse branch:U(Bt,2σ) →of Rqnsending Rqn(x)to x.Moreover?Biand,taking q sufficiently large,we have

    R?qn

    x(U(Bt,σ/2))? Int(Bi),

    for sufficiently small σ,then,

    For every t=1,2,...,n,...,we now build recursively our iterated function system Stas a disjoint union of the families,j≥ 1,as follows.consists of all the maps,where x,Rq(x)∈ Jc(R)∩Bt.S2tconsists of all the maps,where x,R2q(x)∈ Jc(R)∩Btand Rq(x)/∈Bt.Suppose that the families,...,have been already constructed.Thenis composed of all the mapssuch that y,Rqn(y)∈Jc(R)∩Btand Rqj(y)∈/Btfor every 1≤j≤n?1.

    Let V?Jc(R)be an open set constructed by the net such that it disjoints from the parabolic and critical points and their inverse orbits of R.For any x∈V and finite n<∞,we have

    then

    where x,y∈V and 1≤K<∞is a constant.So the condition(e)Bounded Distortion Property(BDP)holds.It is evident that Rnis holomorphic and antiholomorphic of V into V for all n≥1,then the condition(c)holds.Since J(R)is locally connected,and condition(d)is satisfied.Condition(b)follows immediately from(3.1).In order to prove condition(a),take two distinct mapsandbelong to St.Without loosing generality we may assume that m≤n.Suppose on the contrary that

    Then

    §4. Proof of The Main Results

    Lemma 4.1[9]If Rn→R algebraically,then J(R)?liminf J(Rn).

    Proof of Theorem 1

    Step 1 Since for any non constant rational map R,and any positive integer p,J(Rp)=J(R),we can replace Rn→R with→Rp(which does not change the Julia set).Rnand R topologically conjugate,that is,there exists a homeomorphism h:J(Rn)→J(R)such that

    for all n>>0.If Rnis not an NCP map for all n>>0,then J(Rn)contains a dense subset Θ?J(Rn)such that

    for all n>>0.This contradiction prove that Rnis an NCP map for all n>>0.

    Since Rn→R algebraically,we have if Rnand R are expressed as the quotient of two polynomials,the coefficients of Rncan converge to those of R.Let λR={ai,i=0,1,···,p;bj,j=0,1,...,q}and λRn={ani,i=0,1,···,p;bnj,j=0,1,...,q}be the coefficients of the maps R(z)and Rn(z)respectively,and

    If Rn→R algebraically,we have

    Since Rnand R topologically conjugate,that is,there exists a homeomorphism h:J(Rn)→J(R)such that

    for all n>>0,we have the Julia set moves holomorphically by the definition 2.1.It follows by lemma 2.1(Characterizations of stability)that the Julia set moves holomorphically at λR,and there is a unique holomorphic motion

    such that φλRn(J(R))=J(Rn)and

    for all z in J(R).

    Since the holomorphic motion φλRnis a holomorphic function of λRnin a neighborhood of λR,and φλR=id.We have

    for all z in J(R).By item 5 in Lemma 2.1,the Julia set J(R)depends continuously on λR(in the Hausdor fftopology)on a neighborhood.So we have

    where some constant C>0 only depending on R.

    Let?z∈ J(R)and w= φλRn(z)∈ J(Rn),and Uzbe the nets containing z.Denote by Vzthe pull-back of Uzto∈J(R)by Rlfor l≥ 1,where=R?l(z).It follows by the Lemma 2.3 and considering that the Uzare nets that if Vzis a pull-back of Uz,then either Vz∩Uz=?or Vz?Uz.If w∈Uz,then it follows by(4.1)and(4.2)that

    where A~B means C?1B0 the Julia sets J(Rn)are contained in the ?-neighborhood of J(R)for all n>>0.

    So we obtain

    for some constant C>0 only depending on R,where dHdenotes the Hausdor ffdistance.

    Step 2 Let h=HD(J(R))be the Hausdor ffdimension of the Julia set J(R)of the NCP map R.It follows by[1]that there exists exactly one h-conformal measureμand this measure is atomless(theμmeasure of a point is zero).The unique h-conformal measure for R:J(R)→J(R)supported on J(R)has exponent h=HD(J(R)).For all n>>0,Rnis an NCP map.The unique hn-conformal probability measureμnfor Rn:J(Rn)→ J(Rn)supported on J(Rn)has exponent hn=HD(J(Rn))and it is atomless;see ref.[1].Thus to prove that

    it is enough to prove that there is a neighborhood Br(b)of the critical point b∈J(R)such that

    Since R is an NCP map,there exists l>1 such that Rl(b)=w ∈ ω(b),where the set ω(b)(? Sing(R))of accumulation points of the orbit of the critical b.By the completely invariant property of the Julia set,it is enough that we only prove the following

    In fact any weak accumulation point ν ofμngives an R-invariant measure for R:J(R)→ J(R).The previous limit implies thatμn→μ=ν,and it follows that hn→h.Hence,we obtain that

    Since R is an NCP map,we consider the net?as in lemma 2.3 and consider constants C0>0 and θ0∈ (0,1).Let w ∈ ω(b)? Sing(R)be any point.Since Rn→ R algebraic convergence,and Rnand R topologically conjugate,we have

    for all m≥1 and n>>0.Moreover we may suppose that there is a uniform Bounded Distortion property:There is a constant K>1 so that for every k≥1 and every kth step piece W of the net?i,the distortion ofin W is bounded by K for all n>>0;see lemma 2.5.

    Let w∈ω(b)be any point and Bqbe the qth step piece containing uw=Rl(w)and Vqbe the pull-back of Bqby Rlcontaining w.Since Rn→R algebraically and dH(J(Rn),J(R))≤C(dist(Rn,R))1/d,we letbe the pull-back of Bqbycontaining w,n>>0.It follows that for r>0 small there is q=q(r)→∞,as r→0 so that Br(w)?for all n>>0.So we only need to prove that

    Let D be a disc containing w,small enough so thatis at most of degree d.Refining the net if necessary,suppose that B1?Since the probability measureμnis atomless for all n>>0,we have

    Note that for m≥1 we have

    By formula(4.3),we have

    for all n>>0 and some constant C1.By the uniform Bounded Distortion Property and considering thatμnis a probability measure,for some constant C2we have

    for all w∈Bm.So

    Since

    we conclude that

    Therefor,we get

    Step 3 Since Rn→R algebraically,and

    we get J(Rn)is disconnected for all n>>0.By Theorem C,we only need to prove F(Rn)has no completely invariant component for all n>>0.Indeed,supposing that F(Rn)has a completely invariant component F0(Rn)for n>>0(i.e.Rn(F0(Rn))=F0(Rn)=(F0(Rn))).Since Rn→R algebraically,by Lemma 4.1,we get

    for all n>>0.There exists some F0(R)such that F0(R)?F0(Rn)for all n>>0,then R(F0(Rn))=R((F0(Rn)))and R?1(F0(Rn))=R?1(Rn(F0(Rn))).Since Rn→ R algebraically and Rnand R topologically conjugate for all n>>0,we have dH(J(Rn),J(R))≤C(dist(Rn,R))1/d.Equivalently,

    specially,dH(F0(Rn),F0(R))≤C(dist(Rn,R))1/d→0.So we obtain

    and

    It follows that F0(R)is a completely invariant component of R,and this contradict to Theorem C.The proof of Theorem 1 is finished.

    Given x∈ C,θ,r>0,we put

    where η is a representative of θ.We recall that a set Y has a tangent in the direction θ at a point x∈Y if for every r>0

    where H1denotes the 1-dimensional Hausdor ffmeasure(see refs[12,13]).Following[12]we say that a set Y has a strong tangent in the direction θ at a point x provided for each 0< β ≤ 1 there is a some r>0 such that Y ∩ B(x,r)? Con(x,θ,β).

    Lemma 4.2[13]If Y is locally arcwise connected at a point x and Y has a tangent θ at x,then Y has strong tangent θ at x.

    We call a point τ∈ I∞transitive if ω(τ)=I∞,where ω(τ)is the ω-limit set of τ under the shift transformation σ :I∞→ I∞.We denote the set of these points byand put Γt=π().We call the Γtthe set of transitive points of ΓStand notice that for every τ∈,the set{π(σnτ):n ≥ 0}is dense in ΓStorΓSt.

    Lemma 4.3[13]Ifhas a strong tangent at a point x= π(τ),τ∈ I∞,thenhas a strong tangent at every point

    If R is an NCP map,by Lemma 2.3 and Lemma 3.2,Jc(R)admits a conformal iterated function system St.It is obvious that the Julia set J(R)coincides with the limit setby Lemma 3.1.So we have,

    Lemma 4.4 If R is an NCP map and the Julia set J(R)is locally connected,then J(R)has a strong tangent at every point of J(R).

    Proof of Theorem 2 Since R is an NCP map with a buried component,the Julia set J(R)is disconnected and it has uncountable many components by Theorem A and Theorem C.Denoted by Ji(R)any component of J(R),if HD(Ji(R))=1,then our goal is to show that Ji(R)is a real-analytic curve.

    J(R)is locally connected,then Jc(R)admits a conformal iterated function system St={:t∈s}for finite s satisfying the conditions(a)-(e)by Lemma 3.2.

    Let w∈Ji(R)be a repelling fixed point and l be the straight line determined by the strongly tangent direction of Ji(R)at w.(If Ji(R)is a real-analytic curve,then there exists a conformal map ψ :D → H such that ψ(w)=w and ψ(?D)is the straight line determined by the strongly tangent direction of Ji(R)at w,where?D?Ji(R)and H is the half plane.So we can suppose that Ji(R)is a segment of a straight line.)Then w is an attracting fixed point of R?1.Moreover,

    is a conformal map,where U(w)is a disk centered at w.Suppose now that Ji(R)is not contained in l.Consider x∈Ji(R)l such that x∈U(w),then

    and for every n≥0 we have

    Since the map R?1:U(w)→ U(w)is conformal,we get

    It follows that w and R?n(x)(n≥ 0)are contained in the same line l06=l and this implies that l0is the strongly tangent straight line of Ji(R)at w.Therefor,we conclude that l is not a strongly tangent straight line of Ji(R)at w.This contradiction proves that Ji(R)?l.So Ji(R)is a real-analytic curve.

    日本三级黄在线观看| 日韩免费av在线播放| 黄色 视频免费看| 久热这里只有精品99| 久久中文字幕人妻熟女| 国产欧美日韩综合在线一区二区| 精品国产乱子伦一区二区三区| 少妇 在线观看| 91成人精品电影| 国产午夜精品久久久久久| 亚洲aⅴ乱码一区二区在线播放 | 国产欧美日韩精品亚洲av| 中亚洲国语对白在线视频| 成年女人毛片免费观看观看9| 国产精品野战在线观看| www.自偷自拍.com| 久久久精品欧美日韩精品| av福利片在线| 精品国内亚洲2022精品成人| 丝袜在线中文字幕| 亚洲中文av在线| 国产欧美日韩一区二区精品| 国产精品野战在线观看| 亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| 亚洲欧美激情综合另类| 成人永久免费在线观看视频| 啦啦啦免费观看视频1| 亚洲九九香蕉| 桃色一区二区三区在线观看| 国产片内射在线| 色老头精品视频在线观看| 久久人人精品亚洲av| 成人亚洲精品一区在线观看| 国产国语露脸激情在线看| 久久人人爽av亚洲精品天堂| 亚洲电影在线观看av| 国产精品久久久久久精品电影 | 成年女人毛片免费观看观看9| 咕卡用的链子| 国产xxxxx性猛交| 免费女性裸体啪啪无遮挡网站| av片东京热男人的天堂| 一本大道久久a久久精品| 国产男靠女视频免费网站| 久久久久久大精品| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看| 黄色女人牲交| 亚洲成av人片免费观看| 真人做人爱边吃奶动态| 国产野战对白在线观看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲第一欧美日韩一区二区三区| 欧美国产精品va在线观看不卡| 午夜福利18| 极品教师在线免费播放| 99久久综合精品五月天人人| 色婷婷久久久亚洲欧美| 久久久久久久午夜电影| 岛国视频午夜一区免费看| 国产精品日韩av在线免费观看 | 久久国产精品人妻蜜桃| 欧美乱码精品一区二区三区| 在线观看免费视频日本深夜| 国产精品综合久久久久久久免费 | 久久天躁狠狠躁夜夜2o2o| 性少妇av在线| 人妻丰满熟妇av一区二区三区| 亚洲一区中文字幕在线| 悠悠久久av| 国产av一区二区精品久久| 久久久久久大精品| 99香蕉大伊视频| 日日夜夜操网爽| 欧美一区二区精品小视频在线| 变态另类丝袜制服| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女 | 91精品国产国语对白视频| 女人被躁到高潮嗷嗷叫费观| 俄罗斯特黄特色一大片| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 婷婷六月久久综合丁香| 麻豆国产av国片精品| 看免费av毛片| 亚洲自拍偷在线| 高清黄色对白视频在线免费看| 欧美日韩亚洲国产一区二区在线观看| 激情在线观看视频在线高清| 日本精品一区二区三区蜜桃| 欧美色欧美亚洲另类二区 | 视频在线观看一区二区三区| 黄片播放在线免费| 日韩免费av在线播放| 久久久精品欧美日韩精品| 少妇的丰满在线观看| 国产精品乱码一区二三区的特点 | 日韩大尺度精品在线看网址 | 色av中文字幕| 国产一级毛片七仙女欲春2 | 亚洲人成伊人成综合网2020| 免费观看精品视频网站| 国产日韩一区二区三区精品不卡| www日本在线高清视频| 亚洲国产精品sss在线观看| 69av精品久久久久久| www.熟女人妻精品国产| 身体一侧抽搐| 精品国产乱码久久久久久男人| 久久久久国产一级毛片高清牌| 老熟妇乱子伦视频在线观看| 免费av毛片视频| 国产精华一区二区三区| 亚洲av片天天在线观看| 国产精品久久久人人做人人爽| 亚洲人成电影观看| 咕卡用的链子| 国产精品免费一区二区三区在线| 免费在线观看亚洲国产| 亚洲专区国产一区二区| 国产一区二区激情短视频| 日本vs欧美在线观看视频| 久久精品亚洲精品国产色婷小说| 亚洲精品久久成人aⅴ小说| 又大又爽又粗| netflix在线观看网站| 丁香欧美五月| 好男人在线观看高清免费视频 | 一进一出抽搐gif免费好疼| 国产亚洲欧美在线一区二区| 99在线视频只有这里精品首页| svipshipincom国产片| 精品一区二区三区视频在线观看免费| 黄片小视频在线播放| 久久久国产成人免费| 中文字幕高清在线视频| 中文字幕人成人乱码亚洲影| 好男人在线观看高清免费视频 | 在线国产一区二区在线| 一区福利在线观看| 香蕉国产在线看| 91精品国产国语对白视频| 亚洲欧美激情在线| 精品人妻在线不人妻| 十八禁人妻一区二区| 在线av久久热| 欧美不卡视频在线免费观看 | 在线观看免费视频网站a站| 欧美成人一区二区免费高清观看 | 国产精品av久久久久免费| 少妇的丰满在线观看| 一级a爱视频在线免费观看| 人人妻人人爽人人添夜夜欢视频| 精品国产一区二区久久| 少妇 在线观看| 亚洲精品美女久久av网站| 免费不卡黄色视频| 免费无遮挡裸体视频| 国产精品免费一区二区三区在线| 国产国语露脸激情在线看| 国产免费男女视频| 日本精品一区二区三区蜜桃| 91麻豆av在线| 女性被躁到高潮视频| 午夜免费成人在线视频| 日韩视频一区二区在线观看| 天堂影院成人在线观看| 欧美日本亚洲视频在线播放| 久久性视频一级片| 黑人欧美特级aaaaaa片| 激情在线观看视频在线高清| 热re99久久国产66热| 久久久久久久久久久久大奶| 18美女黄网站色大片免费观看| 亚洲自拍偷在线| 啦啦啦免费观看视频1| 黄色女人牲交| 亚洲狠狠婷婷综合久久图片| 午夜精品在线福利| 中文字幕最新亚洲高清| 曰老女人黄片| 国产成人系列免费观看| 成人亚洲精品一区在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 九色国产91popny在线| 国语自产精品视频在线第100页| 免费少妇av软件| 黑丝袜美女国产一区| 无人区码免费观看不卡| 精品久久久久久久人妻蜜臀av | 日本欧美视频一区| 免费搜索国产男女视频| 亚洲午夜理论影院| 亚洲成av片中文字幕在线观看| 免费不卡黄色视频| 色哟哟哟哟哟哟| 亚洲九九香蕉| 可以在线观看毛片的网站| 99re在线观看精品视频| 日本一区二区免费在线视频| 少妇熟女aⅴ在线视频| 国产精品二区激情视频| 免费久久久久久久精品成人欧美视频| 一区二区三区高清视频在线| 人成视频在线观看免费观看| 欧美日本视频| 长腿黑丝高跟| 色尼玛亚洲综合影院| 午夜福利高清视频| 午夜免费激情av| 国产亚洲精品综合一区在线观看 | 91成人精品电影| 99riav亚洲国产免费| 中文字幕高清在线视频| 日本精品一区二区三区蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 成人国产一区最新在线观看| 国产精品久久视频播放| 午夜成年电影在线免费观看| 国产成+人综合+亚洲专区| 国产激情久久老熟女| 国产成人啪精品午夜网站| 国语自产精品视频在线第100页| 免费在线观看完整版高清| 亚洲一卡2卡3卡4卡5卡精品中文| 国产成+人综合+亚洲专区| 男人舔女人下体高潮全视频| av网站免费在线观看视频| 中文字幕最新亚洲高清| 国语自产精品视频在线第100页| 丁香欧美五月| 久久久久久国产a免费观看| 男人操女人黄网站| 首页视频小说图片口味搜索| 黄色视频不卡| av网站免费在线观看视频| 国产精品一区二区在线不卡| 99久久久亚洲精品蜜臀av| 国产成人精品在线电影| 自拍欧美九色日韩亚洲蝌蚪91| 一边摸一边抽搐一进一出视频| 亚洲国产看品久久| 18禁美女被吸乳视频| 亚洲欧美精品综合久久99| 一级毛片高清免费大全| 大型黄色视频在线免费观看| videosex国产| 精品一区二区三区四区五区乱码| 精品久久久精品久久久| 国产成人系列免费观看| 99国产精品一区二区蜜桃av| 久久热在线av| 好男人电影高清在线观看| 国产一区二区在线av高清观看| 国产成人av教育| 精品国产国语对白av| 国产亚洲精品第一综合不卡| 狠狠狠狠99中文字幕| 精品久久久久久成人av| 一级黄色大片毛片| 日韩欧美三级三区| 在线观看日韩欧美| or卡值多少钱| www.www免费av| 亚洲avbb在线观看| 亚洲成人免费电影在线观看| 大陆偷拍与自拍| xxx96com| 宅男免费午夜| 亚洲国产中文字幕在线视频| 啦啦啦免费观看视频1| 美女 人体艺术 gogo| 国产亚洲av高清不卡| 午夜亚洲福利在线播放| 韩国av一区二区三区四区| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 国产精品久久久久久精品电影 | 久久久久久久久免费视频了| 国产欧美日韩一区二区三| 可以免费在线观看a视频的电影网站| 日韩免费av在线播放| 国产成人影院久久av| 不卡av一区二区三区| 久久久久久久午夜电影| 精品国内亚洲2022精品成人| www.999成人在线观看| 日韩欧美在线二视频| 久久国产乱子伦精品免费另类| 欧美人与性动交α欧美精品济南到| 老司机在亚洲福利影院| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 亚洲欧美激情综合另类| 亚洲中文日韩欧美视频| 女人高潮潮喷娇喘18禁视频| 欧美成人性av电影在线观看| 久久伊人香网站| 老汉色∧v一级毛片| 久久久久久大精品| 老司机福利观看| 激情视频va一区二区三区| 久久久国产精品麻豆| 精品午夜福利视频在线观看一区| 欧美成人午夜精品| 久久久国产精品麻豆| 成熟少妇高潮喷水视频| 精品国产超薄肉色丝袜足j| 国产成人精品在线电影| 成熟少妇高潮喷水视频| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 成人亚洲精品av一区二区| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 久久久久精品国产欧美久久久| 老司机靠b影院| 久久精品国产亚洲av高清一级| 国产aⅴ精品一区二区三区波| 国产午夜福利久久久久久| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 亚洲成人久久性| 亚洲一码二码三码区别大吗| 精品久久久久久久久久免费视频| 日本免费一区二区三区高清不卡 | 久久久精品国产亚洲av高清涩受| a在线观看视频网站| 99久久综合精品五月天人人| 久久热在线av| 亚洲成国产人片在线观看| 久久国产亚洲av麻豆专区| 人人妻,人人澡人人爽秒播| 亚洲国产精品成人综合色| 中文字幕久久专区| 美女免费视频网站| 国产精华一区二区三区| 午夜日韩欧美国产| 国产免费av片在线观看野外av| 天天躁夜夜躁狠狠躁躁| 国产成人精品在线电影| 久久精品国产综合久久久| 亚洲精品国产精品久久久不卡| 黄片播放在线免费| 一二三四社区在线视频社区8| 久久热在线av| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 一级a爱视频在线免费观看| 性色av乱码一区二区三区2| 欧美乱码精品一区二区三区| 香蕉丝袜av| 国产精品亚洲美女久久久| 极品教师在线免费播放| 亚洲av片天天在线观看| 99国产综合亚洲精品| 午夜日韩欧美国产| 国产精品av久久久久免费| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 日韩大尺度精品在线看网址 | 在线av久久热| 久久国产精品男人的天堂亚洲| www国产在线视频色| 免费看a级黄色片| 免费在线观看亚洲国产| 日韩成人在线观看一区二区三区| 大码成人一级视频| 日韩精品免费视频一区二区三区| 欧美中文综合在线视频| 日韩欧美一区二区三区在线观看| 最近最新中文字幕大全电影3 | 国产一区二区激情短视频| 亚洲色图综合在线观看| 亚洲中文av在线| 99国产精品99久久久久| 99国产综合亚洲精品| 搡老熟女国产l中国老女人| 嫩草影院精品99| 女人爽到高潮嗷嗷叫在线视频| 1024香蕉在线观看| 欧美人与性动交α欧美精品济南到| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 一级毛片精品| 国产一区二区三区在线臀色熟女| 无限看片的www在线观看| 日本免费a在线| 91在线观看av| 最近最新中文字幕大全免费视频| www日本在线高清视频| 大型av网站在线播放| 亚洲av五月六月丁香网| 大香蕉久久成人网| 纯流量卡能插随身wifi吗| 女警被强在线播放| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| av中文乱码字幕在线| 日本vs欧美在线观看视频| 午夜福利18| 国产精品亚洲av一区麻豆| 巨乳人妻的诱惑在线观看| 成人三级做爰电影| 黄色女人牲交| 人妻丰满熟妇av一区二区三区| 99在线人妻在线中文字幕| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 成人永久免费在线观看视频| 国产精品久久久久久人妻精品电影| 免费无遮挡裸体视频| 这个男人来自地球电影免费观看| 国产成人欧美| 97超级碰碰碰精品色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 熟女少妇亚洲综合色aaa.| 日韩欧美一区二区三区在线观看| 亚洲欧美日韩高清在线视频| 成人亚洲精品一区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 男女下面插进去视频免费观看| 欧美日韩精品网址| 国产精品久久视频播放| 国产精品秋霞免费鲁丝片| 国产av在哪里看| 三级毛片av免费| 妹子高潮喷水视频| 久久亚洲真实| 级片在线观看| 亚洲 欧美一区二区三区| 国产又爽黄色视频| 久久久国产成人免费| 国产亚洲精品综合一区在线观看 | 99国产综合亚洲精品| 久久影院123| 女人被躁到高潮嗷嗷叫费观| 久久久久九九精品影院| 久久精品亚洲精品国产色婷小说| 美女高潮喷水抽搐中文字幕| 熟女少妇亚洲综合色aaa.| 国产精品综合久久久久久久免费 | 久久影院123| 国产又色又爽无遮挡免费看| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 日本a在线网址| 亚洲av成人一区二区三| 男女做爰动态图高潮gif福利片 | 欧美乱码精品一区二区三区| 狠狠狠狠99中文字幕| 免费无遮挡裸体视频| 黄片大片在线免费观看| 午夜福利高清视频| 大码成人一级视频| 国产私拍福利视频在线观看| 中文字幕av电影在线播放| 久久中文字幕一级| 国语自产精品视频在线第100页| 久久性视频一级片| 乱人伦中国视频| 大码成人一级视频| 亚洲,欧美精品.| 亚洲情色 制服丝袜| 亚洲精品粉嫩美女一区| 国产伦一二天堂av在线观看| 午夜福利在线观看吧| 国产成人欧美| 亚洲成国产人片在线观看| 国产av一区二区精品久久| 啦啦啦观看免费观看视频高清 | 9热在线视频观看99| 在线观看免费日韩欧美大片| 大型黄色视频在线免费观看| 人妻久久中文字幕网| 日韩欧美三级三区| 9191精品国产免费久久| 亚洲五月天丁香| 久久婷婷成人综合色麻豆| 两人在一起打扑克的视频| 男人舔女人下体高潮全视频| 久久久久久久久免费视频了| 叶爱在线成人免费视频播放| 麻豆成人av在线观看| 欧美日韩福利视频一区二区| 亚洲国产精品999在线| 国产精品一区二区在线不卡| 91成年电影在线观看| 国产精品国产高清国产av| 欧美成狂野欧美在线观看| 亚洲精品一区av在线观看| 国产成人啪精品午夜网站| 久久精品影院6| 中文字幕精品免费在线观看视频| 一本久久中文字幕| 免费看a级黄色片| 国内久久婷婷六月综合欲色啪| 国产一区二区三区综合在线观看| 超碰成人久久| 香蕉国产在线看| 亚洲少妇的诱惑av| 久久久久精品国产欧美久久久| 日韩三级视频一区二区三区| 天天一区二区日本电影三级 | 国产野战对白在线观看| 久久久久精品国产欧美久久久| 国产一区二区激情短视频| 欧美日韩瑟瑟在线播放| 亚洲色图 男人天堂 中文字幕| 国产野战对白在线观看| 久久影院123| 成在线人永久免费视频| 黑人巨大精品欧美一区二区mp4| 国产成人av教育| 精品一品国产午夜福利视频| 亚洲精品av麻豆狂野| 久久精品国产亚洲av高清一级| 动漫黄色视频在线观看| 国产成人欧美在线观看| 午夜福利,免费看| 亚洲国产日韩欧美精品在线观看 | 国产精品永久免费网站| 琪琪午夜伦伦电影理论片6080| 一边摸一边抽搐一进一出视频| tocl精华| 天天躁狠狠躁夜夜躁狠狠躁| 人人澡人人妻人| 欧美激情高清一区二区三区| 亚洲成人免费电影在线观看| 最新在线观看一区二区三区| 亚洲,欧美精品.| 成人永久免费在线观看视频| 国产色视频综合| 91成人精品电影| 日韩欧美国产在线观看| 叶爱在线成人免费视频播放| 精品国产亚洲在线| 老司机午夜福利在线观看视频| 成人三级做爰电影| 日韩三级视频一区二区三区| 曰老女人黄片| 99久久国产精品久久久| 日韩欧美一区二区三区在线观看| 看黄色毛片网站| 欧美成人一区二区免费高清观看 | 日本三级黄在线观看| 国产亚洲欧美在线一区二区| av免费在线观看网站| 亚洲人成伊人成综合网2020| 国产一卡二卡三卡精品| 国产伦一二天堂av在线观看| 欧美成狂野欧美在线观看| 欧美av亚洲av综合av国产av| 成熟少妇高潮喷水视频| 久久精品国产清高在天天线| 窝窝影院91人妻| 一级片免费观看大全| 天天躁夜夜躁狠狠躁躁| 免费久久久久久久精品成人欧美视频| 国产三级黄色录像| 一级黄色大片毛片| 免费不卡黄色视频| 啦啦啦免费观看视频1| 日本在线视频免费播放| АⅤ资源中文在线天堂| 女性被躁到高潮视频| 久久香蕉激情| 国产野战对白在线观看| 精品久久久久久成人av| 亚洲成av片中文字幕在线观看| www日本在线高清视频| 免费在线观看黄色视频的| 精品人妻在线不人妻| 久久久久久久久中文| a在线观看视频网站| 午夜影院日韩av| 国内精品久久久久精免费| 高清黄色对白视频在线免费看| 一级黄色大片毛片| 欧美日韩一级在线毛片| 无遮挡黄片免费观看| 欧美国产日韩亚洲一区| 老汉色av国产亚洲站长工具| 看黄色毛片网站| 搡老妇女老女人老熟妇| 亚洲精品一卡2卡三卡4卡5卡| 给我免费播放毛片高清在线观看| 天天躁夜夜躁狠狠躁躁| 欧美在线黄色| x7x7x7水蜜桃| 少妇熟女aⅴ在线视频| 69av精品久久久久久| 女同久久另类99精品国产91| 一级作爱视频免费观看| 午夜影院日韩av| 国产精品永久免费网站| 亚洲av成人av| 欧美日本视频| 最近最新免费中文字幕在线| 动漫黄色视频在线观看| 国产精品秋霞免费鲁丝片| 99re在线观看精品视频| www.熟女人妻精品国产| АⅤ资源中文在线天堂| 好看av亚洲va欧美ⅴa在| 色精品久久人妻99蜜桃| 国产成人欧美| 女人精品久久久久毛片| 国产av一区二区精品久久| 精品国内亚洲2022精品成人| 中文字幕另类日韩欧美亚洲嫩草|