• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Remark on Double Ore Extensions

    2019-04-23 01:44:14

    (School Of Mathematical Sciences,ZheJiang University,Hangzhou 310027,China)

    Abstract:The aim of this article is to summarize the relationship between double Ore extensions and iterated Ore extensions,and mainly describe the lifting of properties from an algebra A to a(right)double Ore extension B of A which can not be presented as iterated Ore extensions.

    Key words:double Ore extension;iterated Ore extension;lifting of properties

    §1. Introduction

    In 2008,James J.Zhang and Jun Zhang introduced a new construction for extending a given algebra A,called a double Ore extension,this constriction resembles that of an Ore extension.In 2011,Paula A.A.B.Carvalho,Samuel A.Lopes and Jerzy Matczuk described the common part of the Ore extension and double Ore extension of A and o ff ered necessary and sufficient conditions for a double Ore extension AP[y1,y2;σ,δ,τ]to be presented as iterated Ore extensions of the form A[y1;σ1,δ1][y2;σ2,δ2]or A[y2;σ2,δ2][y1;σ1,δ1].They also revealed that the ring-theoretical properties can be lifted from A to a(right)double Ore extension B of A in the iterated case.However,it should be noted that there are no inclusions about the lifting of ring-theoretical properties from A to a(right)double Ore extension B of A in the double case.

    The aim of this article is to summarize the relationship between double Ore extensions and iterated Ore extensions,and mainly describe the lifting of properties from an algebra A to a(right)double Ore extension B of A which can not be presented as iterated Ore extensions.We also give partial answers to the last four questions posed in[4].

    In Section 1,we parallel the constructions of double Ore extensions and Ore extensions,giving some proofs which were omited in[2]and introduce the necessary and sufficient conditions which were mentioned.In Section 2,we give specific examples of ring-theoretical properties which can be lifted from A to a(right)double Ore extension B of A in the iterated case.In Section 3,we investigate the lifting of properties given in Section 2 from A to a(right)double Ore extension B of A in the double case.

    Throughout this article,k is a field and k?is its multiplicative group of units.Everything is over k.

    §2. Double Ore Extensions Versus Iterated Ore Extensions

    In this section,we give definitions and summarize the relationship between double ore extensions and iterated ore extensions,some proofs are supplied if they were omitted in corresponding references.

    Definition 2.1 Let α be an endomorphism of an algebra A and δ an endomorphism of the additive group(A,+).Then δ is called an α derivation of A if δ(ab)= α(a)δ(b)+ δ(a)b for all a,b in A.Note in particular that σ(1)=1 and δ(1)=0.

    Definition 2.2 The Ore extension A[x;σ,δ]of an algebra A is a noncommutative algebra obtained by giving the algebra of polynomials A[x]a new multiplication,subject to the identity xa= σ(a)x+ δ(a).

    Remark 2.1 The noncommutative algebra A[x;σ,δ]is also called skew polynomial algebra.If δ=0,it is denoted by A[x;σ]and is called asymmetric polynomial algebra,if σ =1,it is denoted by A[x;δ]and is called di ff erential polynomial algebra.

    Lemma 2.1 The following statements about an Ore extension A[x;σ,δ]are equivalent:

    (1)Ore extension A[x;σ,δ]is a free right A-module with basis

    (2)σ is an automorphism of A;

    (3)σ is injective and xA+A=Ax+A.

    Proof (1) ? (2)If a ∈ kerσ,then σ(a)=0,xa= δ(a),since A[x;σ,δ]is a free right A-module,hence a=0,σ is injective.It is clear that A[x;σ,δ]is a free left A-module,notice that for an arbitrary a ∈ A,there exists a0∈ A,ax=xa0= σ(a0)x,hence σ is surjective.Thus,σ is an automorphism.

    (2)? (3)Obviously σ is injective,the condition xa= σ(a)x+δ(a)implies xA+A ? Ax+A.For arbitrary a1,a2∈ R,a1x+a2∈ Ax+A,since σ is surjective,there exists∈ A,a1= σ(),thus= σ()x+ δ()=a1x+ δ(),hence a1x+a2=? δ()+a2∈ xA+A,Ax+A?xA+A,so xA+A=Ax+A.

    (3)? (1)For each f(x)∈ A[x;σ,δ],fthe condition xA+A=Ax+A implies thatIfthen ai=0,notice that the coefficient of xiis also σi(),since σ is injective,thus=0,so A[x;σ,δ]is a free right A-module.

    The definition of the double Ore extension is based on the Ore extension.

    Definition 2.3 Let A be an algebra and B be another algebra containing A as a subalgebra.We say B is a right double Ore extension of A if the following conditions hold:

    (1)B is generated by A and two new variables y1and y2;

    (2){y1,y2}satisfies a relation

    where p12,p11∈ k and τ1,τ2,τ0∈ A;

    (4)y1A+y2A+A?Ay1+Ay2+A.

    Let P denote the set of scalar parameters{p12,p11}and let τ denote the set{τ1,τ2,τ0}.We call P the parameter and τ the tail.Similarly,we can define the left double Ore extension B of A.We say B is a double Ore extension if it is a left and right double Ore extension of A with the same generating set{y1,y2}.

    Remark 2.2 Condition(4)in Definition 1.3 from the above definition is equivalent to the existence of two maps

    Proof Consider the necessity.If y1A+y2A+A?Ay1+Ay2+A,then?a∈A,?map σ11,σ12,σ21,σ22,δ1,δ2:A → A,subject to

    It implies the existence of two maps

    which satisfies

    for all a∈A.The sufficiency is obvious.

    Let B be a right double Ore extension of A,we denote B=AP[y1,y2;σ,δ,τ],where P={p12,p11} ? k,τ={τ1,τ2,τ0} ? A,and σ,δ are as above.

    Example 1.1 A trivial example of a right double Ore extension is when A=k.A right double Ore extension of k,denoted by B,is isomorphic toas a k-vector space.It is isomorphic to the algebra khy1,y2i/(r),where r is the relation

    for some p12,p11,a1,a2,a3∈k.

    In[1],by choosing a suitable basis of the vector space ky1+ky2,we can prove the following lemma.

    Lemma 2.2[1,Lemma1.7]Let B=AP[y1,y2;σ,δ,τ]be a right double Ore extension.

    (1)If p116=0 and p12=1,thenwhere

    (2)If p126=1,thenwhere

    Proof (1)Let B=A{p12,0}[y1,y2;σ,δ,τ]be a double ore extension,then B has a naturalfiltration,given by setting degA=0 and degy1=degy2=1.As an associated graded algebra,

    (2)Let B0=A,B1=A+Ay1+Ay2,B2=A+Ay1+Ay2++Ay1y2+,···,then{0} ? B0? B1? ···? Bi? ···? B satisfiesBiand for all m,n∈ N,Bm·Bn?Bn+m.Hence,B is a filtrated algebra,we can get a associated graded algebra grB=Gn,where G0=B0and for all n>0,Gn=Bn/Bn?1,the multiplication is defined by(x+Bn?1)(y+Bm?1)=xy+Bn+m?1for all x∈Bnand y∈ Bm.

    Let y1,y2∈B1,z1=y1+A=∈B1/B0,z2=y2+A=∈B1/B0,then G1is generated by A and z1,z2,since z1z2==,then Gncan be generated by A and z1,z2,hence,grB can be generated by A and z1,z2.Furthermore

    so τ1= τ2= τ0and

    Hence,δ1(a)= δ2(a)=0,then grBAP0,{0,0,0}].

    Corollary 2.1 Suppose that B=AP[y1,y2;σ,δ,τ]is a right double Ore extension of A with p126=1.Then,there exists a filtration on B such that the associated grated algebra D=grB can be presented as follows:

    (1)D is generated over A by indeterminates z1,z2;

    (2)D is free as a left A-module with basis{:i,j≥0};

    (3)Multiplication in D is given by multiplication in A and the conditions z2z1=p12z1z2and z1A+z2A?Az1+Az2with za=,where z=(z1,z2)0,is obtained from σ andas in Lemma 1.3(b).

    Furthermore,suppose B is a double Ore extension of A,then D is also free as a right A-module with basis{:i,j≥0}and z1A+z2A+Az1+Az2.

    In[1],the authors have given necessary and sufficient conditions for a double Ore extension B=AP[y1,y2;σ,δ,τ]to be presented as iterated Ore extensions of the form A[y1;σ1,d1][y2;σ2,δ2]or A[y2;σ2,δ2][y1;σ1,δ1].

    Theorem 2.1[1,Theorem2.2]Let A,B be k-algebras such that B is an extension of A.Assume P={p12,p11} ? k,τ={τ1,τ2,τ0} ? A,σ is an algebra homomorphism from A to M2×2(A)and δ is a σ-derivation from A to M2×1(A).

    (1)The following conditions are equivalent:

    (a)B=AP[y1,y2;σ,δ,τ]is a right double Ore extension of A which can be presented as an iterated Ore extenision A[y1;σ1,d1][y2;σ2,d2];

    (b)B=AP[y1,y2;σ,δ,τ]is a right double Ore extension of A with σ12=0;

    (c)B=A[y1;σ1,d1][y2;σ2,d2]is an iterated Ore extension such that

    for some pij∈ k,τi∈ A.The maps σ,δ,σiand δi,i=1,2 are related by

    (2)If one of the equivalent statements from(1)holds,then B is a double Ore extension of A if and only if σ1= σ11and σ2|A= σ22are automorphism of A and p126=0.

    Theorem 2.2[1,Theorem2.4]Let B=AP[y1,y2;σ,δ,τ]be a right double Ore extension of the k-algebra A,where P={p12,p11} ? k,τ={τ1,τ2,τ0} ? A,σ :A → M2×2(A)is an algebra homomorphism and δ:A → M2×1(A)is a σ-derivation.Then B can be presented as an iterated Ore extension A[y2;][y1;]if and only if σ21=0,p126=0 and p11=0.In this case,B is a double Ore extension if and only if= σ22and= σ11are automorphisms of A.

    Remark 2.3 Theorem 1.1 and Theorem 1.2 shows the necessary and sufficient conditions for a double Ore extension B to be presented as iterated Ore extensions of A,which gives a method to lift the ring-theoretical properties(being a domain,being prime(semiprime),being right noetherian,having finite right Krull dimension,having finite global dimension)from A to a(right)double Ore extension B of A which can be presented as iterated Ore extensions.We will illustrate the details in Section 2.

    §3. Iterated Ore Extension and Its Properties

    In this section,we give specific examples of ring-theoretical properties which can be lifted from A to a(right)double Ore extension B of A in the iterated case.First,we show the properties of A are,of course,reflected in those of A[x;σ,δ].Some proofs are omited if they were given in[2].

    Theorem 2.1[2,Theorem1.2.9]Let S=A[x;σ,δ],then

    (1)If σ is injective and A is a domain,then S is a domain.

    (2)If σ is an automorphism and A is a prime(semiprime)ring,then S is a prime(semiprime)ring.

    (3)If σ is an automorphism and A is left(right)noetherian,then S is left(right)noetherian.

    Definition 3.1 If a,b belongs to a poset A,and a≥b,then we define a/b={x∈A|a≥x≥b}.This is a subposet of A and is called the factor of a by b.By a descending chain{an}of elements of A is meant that a1≥ a2≥ ···an≥ ···;and the factors ai/ai+1are called the factors of the chain.The poset A is said to satisfy the d.c.c(or to be an antichain)provided that every descending chain in A is eventually constant.

    Definition 3.2 We now define the deviation of a poset A,devA for short.If A is trival then devA=?∞.If A is nontrival but satisfies the d.c.c.then devA=0.For a general ordinal α,we define devA= α provided:

    (1)devA 6=β<α;

    (2)In any descending chain of elements of A all but finitely many factors have deviation less than α.

    Proposition 3.1[2,Proposition6.2.1]Let f:A → B be a poset map,and let γ,δ be ordinals with γ+δ≤ δ+ γ.Suppose that whenever dev(a1/a2)≥ δ for ai∈ A,then dev(f((a1)/f(a2))≥ γ.

    (1)If either there is no factor(a1/a2)in A with dev(a1/a2)≥ δ or there is no factor b1/b2in B with devb1/b2≥ γ,then devA ≤ δ;

    (2)Otherwise γ +devA ≤ δ+devB.

    Definition 3.3 If M is a right R-module then the Krull dimension of M,written K(M),is defined to be the deviation of L(M),the lattice of submodules of M.In particular,K(RR)is the right Krull dimension of R.

    Lemma 3.1[2,Proposition6.5.3]Let R?T be a ring extension,θ:L(RR)→L(TT)with A 7→ AT for A is a right ideal of R,which preserves proper containment,then K(RR)≤ K(TT).

    Corollary 3.1[2,Corollary6.5.3]Let R?T be a ring extension such thatRT is free,then K(RR)≤K(TT).

    Proof SinceRT is free,so it is flat,then AT ~=A ? T,θ preserves proper containment,by Lemma 2.1,K(RR)≤K(TT).

    Theorem 3.2[2,Theorem6.5.4]Let R be a ring of finite right Krull dimension,σ an automorphism and δ a σ-derivation,then K(R) ≤ K(R[x;σ,δ]) ≤ K(R)+1;In particular,if δ=0,then K(R[x;σ])=K(R)+1.

    Definition 3.1 One defines the projective dimension of a right R-module MR,written pdMR,to be the shortest length n of a projective resolution.

    or∞if no finite projective resolution exists.

    Definition 3.5 The right global dimension of a ring R,denoted by rgldR,is defined to be the super bound of pdMRfor all right R-modules M.

    Theorem 3.3[2,Theorem7.5.3]Let R be a ring of finite global dimension,σ an automorphism and δ a σ-derivation,then rgldR ≤ rgld(R[x;σ,δ])≤ rgldR+1.

    The next theorem is based on Theorem 1.1 and the ring-theoretical properties of an Ore extension mentioned in the section.

    Theorem 3.4 Suppose B=AP[y1,y2;σ,δ,τ]is a double Ore extension of A which can be presented as an iterated Ore extenision A[y1;σ1,d1][y2;σ2,d2].

    (1)If σ1= σ11and σ2|A= σ22are injective and A is a domain,then B is a domain.

    (2)If A is a prime(semiprime)ring,then B is a prime(semiprime)ring;

    (3)If A is left(right)noetherian,then B is is left(right)noetherian;

    (4)If A is a ring of finite right Krull dimension,then K(A)≤K(B)≤K(A)+2;In particular,if δ=0,then K(B)=K(A)+2;

    (5)If A is a ring of finite global dimension,then rgldA≤rgldB≤rgldA+2.

    Remark 3.1 Theorem 2.4 illustrates the details of lifting.However,the aim of this paper is to show that the lifting need not to be depended on iterated Ore extensions,some examples are given in Section 3 to illustrate the idea.

    §4. Double Ore Extension and Its Properties

    In this section,we investigate the lifting of properties given in Section 2 from A to a(right)double Ore extension B of A in the double case.Some proofs are omited if they were given in[2].

    Theorem 4.1 Suppose B=AP[y1,y2;σ,δ,τ]is a right double Ore extension of A.kerσ12=kerσ21=k,p12=1 and A is a domain,then B is a domain.

    Proof Consider the monomialsand,the product of the monomials is a mapping φ :B ×B → B,now we explain that φ is injective.Supposeandthey are polynomials of degree m and n respectively,and aij,bklare nonzero leading coefficients.We make a convention

    (1)In the first position of the Cartesian product,if s1

    (2)In the second position of the Cartesian product,if t1

    In this sense,we get a unique monomial through φ.Then we multiply the monomials and get

    (1)If bkl∈ k,notice that σ11(k)= σ22(k)=k,σ12(k)= σ21(k)=0,p12=1,the leading term of fg is

    Since kerσ11=kerσ22=,then the leading coefficients is nonzero,so the degree of fg is n+m.Hence B is a domain.

    (2)If bkl∈,notice that σ11=σ22=0,p12=1,the leading term of fg is

    Since kerσ12=kerσ21=k,then the leading coefficients is nonzero,so the degree of fg is n+m.Hence B is a domain.

    (3)If bkl∈A,without loss of generality,suppose bkl=,where∈k,notice that σ11=σ22=0,p12=1,the leading term of fg is

    Since kerσ12=kerσ21=k,A=k ⊕,then the leading coefficients is nonzero,so the degree of fg is n+m.Hence B is a domain.

    Theorem 4.2 Suppose B=AP[y1,y2;σ,δ,τ]is a right double Ore extension of A.=kerσ21=k,p12=1 and A is a prime(semiprime)ring,then B is a prime(semiprime)ring.

    Proof The sorting for the elements in B is as in the Theorem 3.1.Suppose f and g are the given polynomials in the proof of Theorem 3.1,since,kerσ12=kerσ21=k,p12=1,each element of Equation 3.1,Equation 3.2 or Equation 3.3 in Theorem 3.1 is the leading coefficient of some element of fAg.Thusand so.Hence B is a prime(semiprime)ring.

    Lemma 4.1 If S is a filtered ring and grS is right noetherian then S is right noetherian.

    Lemma 4.2 if S is a filtered ring and I is the right ideal of S.The map I 7→grI is a partially ordered set map L(SS)→L(grSgrS)which is injective on chains.

    Lemma 4.3 Let R,S be rings with R?S,RS faithfully flat and rgldR<∞.If SRis projective,then rgldR≤rgldS.

    Lemma 4.4 Let S be a filtered ring,then rgldS≤rgldgrS.

    Theorem 4.3 Suppose A is a finitely generated commutative algebra,that is,for I is an ideal ofNowis a right double Ore extension of A.We denotethen

    (1)B is right noetherian;

    (2)B is a ring of finite right Krull dimension;

    (3)If B is a double Ore extension of A,then B is a ring of finite global dimension.

    Thus,grB is the iterated Ore extensionwhere σ0(z1)=

    (1)By Hilbert’s Basis Theorem,grB is right noetherian,then B is right noetherian.

    (2)On the one hand,notice thatAB is free,by Corollary 2.1,K(AA)≤K(BB);on the other hand,by Theorem 2.4,K(grB)=K(k[z1])+1+K(A)=K(A)+2,by Lemma 3.2 and Proposition 2.1,we have K(B)≤K(grB)=K(A)+2.To summarize,K(A)≤K(B)≤K(A)+2.

    (3)On the one hand,since B is a double Ore extension,henceAB and BAare free,soAB is faithfully flat and BAis projective,by Lemma 3.3,rgldA≤rgldB;on the other hand,by Theorem 2.4,rgld(grB)=rgld(k[z1])+1+rgld(A)=rgld(A)+2,by Lemma 3.4,we have rgld(B)≤rgld(grB)=rgld(A)+2.To summarize,rgld(A)≤rgld(B)≤rgld(A)+2.

    (1)B is right noetherian;

    (2)B is a ring of finite right Krull dimension;

    (3)If B is a double Ore extension of A,then B is a ring of finite global dimension.

    Proof Consider that when hji=1,then A=k[x1,x2,···,xn]is a special case of Theorem 3.3.

    Thus,grB is the iterated Ore extensionwhere σ0(z1)=

    The following proof is similar to Theorem 3.3.In particular,by Theorem 2.4,we have n≤K(B)≤n+2.

    Remark 4.1 Notice that in Theorem 3.1,Theorem 3.2,Theorem 3.3 and Theorem 3.4,B need not to be the iterated Ore extension of A,but we have lifted the properties given in Section 2 from A to a(right)double Ore extension B of A in these special cases.

    Lemma 4.5 Let B=kP[y1,y2;σ0,δ0,τ].Then Bk[x1][x2;σ2,d2]is an iterated Ore extension,where σ2is the algebra endomorphism of the polynomial ring k[x1]defined by σ2(x1)=p12x1+ τ2and d2is the σ2derivation of k[x1]given by d2(x1)=+τ0.Moreover,B is a double Ore extension of k if and only if

    In[3],Yongjun Xu,Hua-Lin Huang and Dingguo Wang generalized the Ore extension and double Ore extension and introduced the definition of multiple Ore extension.

    Definition 4.1 Let A be an algebra and B be another algebra containing A as a subalgebra.We say B is a n-Ore extension of A if the following conditions hold:

    (1)B is generated by A and n new variables y1,y2,···,yn;

    (2)For any 1 ≤ i

    (4)There exist a k-linear map σ :A → Mn(A)and a k-linear map δ:A → A⊕nsuch that

    where Mn(A)is the k×k matrix algebra with entries in A.

    Set

    then we denote the n-Ore extension B of A by B=A[y1,y2,···,yk;σ,δ,P,T].When k ≥ 2,the n-Ore extension is called a multiple Ore extension.

    Acknowledgements. The author thanks supervisor D.-M.Lu for useful conversations on the subject,for providing the references,for reading an earlier version of the paper and for his useful comments.

    一区二区三区四区激情视频 | 国产一级毛片七仙女欲春2| 国内久久婷婷六月综合欲色啪| 欧美日韩亚洲国产一区二区在线观看| 亚洲人成伊人成综合网2020| 一本一本综合久久| 亚洲国产色片| 日韩欧美精品免费久久 | 757午夜福利合集在线观看| 日本熟妇午夜| 白带黄色成豆腐渣| 亚洲专区国产一区二区| 欧美最新免费一区二区三区 | 国产高清视频在线观看网站| 亚洲熟妇熟女久久| 日韩欧美免费精品| 日本黄大片高清| 国产视频一区二区在线看| 在线观看免费视频日本深夜| av天堂在线播放| 亚洲美女黄片视频| 久久国产乱子免费精品| 色噜噜av男人的天堂激情| 他把我摸到了高潮在线观看| 少妇的逼好多水| a级毛片a级免费在线| 欧美在线一区亚洲| 国产亚洲av嫩草精品影院| aaaaa片日本免费| 亚洲欧美精品综合久久99| 精品人妻一区二区三区麻豆 | 国产真实伦视频高清在线观看 | 国产av不卡久久| 十八禁网站免费在线| 亚洲无线在线观看| 久久亚洲真实| 三级毛片av免费| 色尼玛亚洲综合影院| 免费人成在线观看视频色| 国产免费男女视频| 欧美三级亚洲精品| 大型黄色视频在线免费观看| 丁香欧美五月| 国产成年人精品一区二区| 欧美一区二区国产精品久久精品| 岛国在线免费视频观看| 免费搜索国产男女视频| 久久久久国内视频| 麻豆av噜噜一区二区三区| 在线播放国产精品三级| 精品国内亚洲2022精品成人| 熟妇人妻久久中文字幕3abv| 亚洲人成网站在线播放欧美日韩| 国产一级毛片七仙女欲春2| 我的老师免费观看完整版| 亚洲欧美日韩无卡精品| 香蕉av资源在线| 亚洲综合色惰| 国产三级黄色录像| 丝袜美腿在线中文| 午夜精品久久久久久毛片777| 成年免费大片在线观看| 国产成人啪精品午夜网站| 国产在线精品亚洲第一网站| 日日摸夜夜添夜夜添小说| 一本综合久久免费| 三级男女做爰猛烈吃奶摸视频| 亚洲av成人不卡在线观看播放网| 一区福利在线观看| 十八禁网站免费在线| 美女xxoo啪啪120秒动态图 | 一个人看视频在线观看www免费| 波野结衣二区三区在线| 人人妻,人人澡人人爽秒播| 色综合亚洲欧美另类图片| 国产国拍精品亚洲av在线观看| 久久亚洲真实| 亚洲精品456在线播放app | 亚洲一区二区三区不卡视频| 99视频精品全部免费 在线| 亚洲精品亚洲一区二区| 在线观看一区二区三区| 国产国拍精品亚洲av在线观看| 成人午夜高清在线视频| 国产成人aa在线观看| 欧洲精品卡2卡3卡4卡5卡区| 日韩大尺度精品在线看网址| 国内精品一区二区在线观看| 午夜两性在线视频| av国产免费在线观看| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区成人| 51国产日韩欧美| 天堂网av新在线| 亚洲经典国产精华液单 | 欧美色欧美亚洲另类二区| 久久人妻av系列| 欧美精品啪啪一区二区三区| 一个人看视频在线观看www免费| 夜夜看夜夜爽夜夜摸| 成人三级黄色视频| 长腿黑丝高跟| 一个人观看的视频www高清免费观看| 在线看三级毛片| 免费人成在线观看视频色| 不卡一级毛片| 日韩欧美一区二区三区在线观看| 美女xxoo啪啪120秒动态图 | 日韩精品中文字幕看吧| 波野结衣二区三区在线| 91字幕亚洲| 丰满的人妻完整版| 一个人免费在线观看电影| 别揉我奶头~嗯~啊~动态视频| 国产又黄又爽又无遮挡在线| 亚洲一区二区三区不卡视频| 91久久精品电影网| 欧美日本亚洲视频在线播放| 久久精品夜夜夜夜夜久久蜜豆| 亚洲国产欧美人成| 欧美成人一区二区免费高清观看| 女人被狂操c到高潮| 国产精品自产拍在线观看55亚洲| 免费观看人在逋| 久久性视频一级片| 99热这里只有精品一区| 欧美激情国产日韩精品一区| 熟女电影av网| 成人三级黄色视频| 国产精品日韩av在线免费观看| 久久午夜亚洲精品久久| 日本在线视频免费播放| 亚洲无线观看免费| 大型黄色视频在线免费观看| 亚洲精品色激情综合| 色精品久久人妻99蜜桃| 欧美丝袜亚洲另类 | 成人欧美大片| 不卡一级毛片| 97超视频在线观看视频| 天天躁日日操中文字幕| 精品久久久久久成人av| 在线播放无遮挡| 麻豆久久精品国产亚洲av| 精品一区二区三区视频在线观看免费| 午夜影院日韩av| 舔av片在线| 简卡轻食公司| 中文字幕久久专区| 久久国产精品影院| 3wmmmm亚洲av在线观看| 免费电影在线观看免费观看| 黄色视频,在线免费观看| 亚洲最大成人手机在线| 精品久久久久久成人av| 国产精品亚洲美女久久久| 91字幕亚洲| 亚洲精品粉嫩美女一区| 桃红色精品国产亚洲av| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情久久久久久爽电影| 亚洲真实伦在线观看| 国产黄a三级三级三级人| 麻豆国产av国片精品| 国产大屁股一区二区在线视频| 少妇熟女aⅴ在线视频| 2021天堂中文幕一二区在线观| 亚洲精品粉嫩美女一区| 久久久色成人| 国产成人a区在线观看| 亚洲人成网站在线播放欧美日韩| 色噜噜av男人的天堂激情| 性色av乱码一区二区三区2| 桃色一区二区三区在线观看| 日韩大尺度精品在线看网址| 亚洲中文字幕一区二区三区有码在线看| 99久久精品热视频| 亚洲av熟女| 免费看日本二区| 亚洲中文日韩欧美视频| 欧美日韩黄片免| 97超视频在线观看视频| 午夜福利在线观看吧| 两人在一起打扑克的视频| 国产伦精品一区二区三区四那| 免费在线观看影片大全网站| 亚洲国产欧洲综合997久久,| 一本久久中文字幕| 国内久久婷婷六月综合欲色啪| 亚洲一区二区三区不卡视频| 欧美日本亚洲视频在线播放| 麻豆国产97在线/欧美| 三级毛片av免费| 久久国产精品人妻蜜桃| 免费av不卡在线播放| 久久精品国产自在天天线| 99国产综合亚洲精品| 午夜激情福利司机影院| 国产色爽女视频免费观看| 日本成人三级电影网站| eeuss影院久久| 观看美女的网站| aaaaa片日本免费| 赤兔流量卡办理| 我的老师免费观看完整版| 国产高清视频在线观看网站| 欧美xxxx黑人xx丫x性爽| 欧美极品一区二区三区四区| 韩国av一区二区三区四区| 波多野结衣高清无吗| 久久精品国产亚洲av香蕉五月| 性插视频无遮挡在线免费观看| 国产v大片淫在线免费观看| 91在线观看av| 日韩人妻高清精品专区| 久久久久久久久大av| 99久久无色码亚洲精品果冻| 国产v大片淫在线免费观看| 韩国av一区二区三区四区| 精品久久久久久,| 欧美一区二区国产精品久久精品| 午夜免费激情av| 亚洲国产精品久久男人天堂| 欧美绝顶高潮抽搐喷水| 亚洲美女黄片视频| 噜噜噜噜噜久久久久久91| 午夜激情欧美在线| 波多野结衣巨乳人妻| 91久久精品电影网| 亚洲av成人av| 日本一二三区视频观看| 成熟少妇高潮喷水视频| 亚洲午夜理论影院| 亚洲精品一区av在线观看| 嫩草影院精品99| 亚洲一区高清亚洲精品| 亚洲一区二区三区不卡视频| 日本五十路高清| 九九热线精品视视频播放| 免费在线观看成人毛片| 免费av观看视频| 日韩精品青青久久久久久| 有码 亚洲区| 热99re8久久精品国产| 成人精品一区二区免费| 日本免费一区二区三区高清不卡| 色吧在线观看| 国产在线男女| 999久久久精品免费观看国产| 亚洲自偷自拍三级| 给我免费播放毛片高清在线观看| 乱码一卡2卡4卡精品| 午夜两性在线视频| 高清日韩中文字幕在线| a在线观看视频网站| 窝窝影院91人妻| 国产三级在线视频| 日本免费a在线| 亚洲美女搞黄在线观看 | 最近在线观看免费完整版| 高潮久久久久久久久久久不卡| av在线蜜桃| 亚洲国产欧洲综合997久久,| 真人一进一出gif抽搐免费| 免费一级毛片在线播放高清视频| 亚洲成人精品中文字幕电影| 两个人视频免费观看高清| 蜜桃亚洲精品一区二区三区| 欧美不卡视频在线免费观看| 午夜a级毛片| 亚洲黑人精品在线| 天堂网av新在线| 免费无遮挡裸体视频| 久久99热这里只有精品18| 日韩高清综合在线| 高清在线国产一区| 国产一级毛片七仙女欲春2| 成年女人永久免费观看视频| 性欧美人与动物交配| 亚洲经典国产精华液单 | 国产 一区 欧美 日韩| 亚洲一区二区三区色噜噜| 欧美日韩中文字幕国产精品一区二区三区| 在线看三级毛片| 伊人久久精品亚洲午夜| 香蕉av资源在线| 别揉我奶头~嗯~啊~动态视频| 在线播放无遮挡| 久久亚洲精品不卡| 午夜福利视频1000在线观看| 精品国内亚洲2022精品成人| 日韩欧美国产一区二区入口| 精品免费久久久久久久清纯| 日韩欧美国产在线观看| 老熟妇仑乱视频hdxx| 久久久精品欧美日韩精品| 亚洲av电影不卡..在线观看| 精品国产亚洲在线| 欧美性猛交╳xxx乱大交人| 色av中文字幕| 欧美三级亚洲精品| 色综合站精品国产| 老司机福利观看| 黄色日韩在线| 五月玫瑰六月丁香| 免费在线观看亚洲国产| 欧美不卡视频在线免费观看| 精品乱码久久久久久99久播| x7x7x7水蜜桃| h日本视频在线播放| 99热只有精品国产| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 97超视频在线观看视频| 午夜激情福利司机影院| 婷婷亚洲欧美| 免费电影在线观看免费观看| 午夜精品久久久久久毛片777| 91在线观看av| 精品国产三级普通话版| 国产欧美日韩一区二区精品| 欧美乱色亚洲激情| 日韩欧美三级三区| 一级作爱视频免费观看| 成人永久免费在线观看视频| 丰满的人妻完整版| 国产成人av教育| 免费看光身美女| 久久精品国产清高在天天线| 久9热在线精品视频| 国产精品99久久久久久久久| 91麻豆精品激情在线观看国产| 好男人在线观看高清免费视频| 亚洲午夜理论影院| 日韩欧美一区二区三区在线观看| 国产精品美女特级片免费视频播放器| 亚洲国产日韩欧美精品在线观看| 国产主播在线观看一区二区| 国产淫片久久久久久久久 | 丁香欧美五月| 毛片女人毛片| 亚洲,欧美,日韩| 亚洲av免费在线观看| 成年免费大片在线观看| 久久国产精品影院| 有码 亚洲区| 特大巨黑吊av在线直播| 亚洲专区国产一区二区| 麻豆国产97在线/欧美| 一级av片app| 熟女电影av网| 亚洲最大成人av| 日本在线视频免费播放| 久久精品人妻少妇| 性插视频无遮挡在线免费观看| 日日摸夜夜添夜夜添小说| avwww免费| 简卡轻食公司| 成人高潮视频无遮挡免费网站| 免费电影在线观看免费观看| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女| 亚州av有码| 蜜桃亚洲精品一区二区三区| 日韩欧美 国产精品| 国产高清有码在线观看视频| 天堂网av新在线| 18禁黄网站禁片免费观看直播| 亚洲国产色片| 亚洲av二区三区四区| 国产精品精品国产色婷婷| 真实男女啪啪啪动态图| 色在线成人网| 亚洲人与动物交配视频| 久久国产精品影院| 最近视频中文字幕2019在线8| 国内久久婷婷六月综合欲色啪| 久久欧美精品欧美久久欧美| 毛片一级片免费看久久久久 | 午夜激情福利司机影院| 中文亚洲av片在线观看爽| 一级毛片久久久久久久久女| 亚洲人成网站高清观看| 亚洲成人精品中文字幕电影| 男插女下体视频免费在线播放| 看黄色毛片网站| 精品国产三级普通话版| 最近在线观看免费完整版| 白带黄色成豆腐渣| 天堂√8在线中文| 尤物成人国产欧美一区二区三区| 99国产极品粉嫩在线观看| 国产高潮美女av| 亚洲av一区综合| 国内精品久久久久精免费| 一级a爱片免费观看的视频| 国产美女午夜福利| 成人国产综合亚洲| 亚洲无线在线观看| 国产在视频线在精品| 亚洲乱码一区二区免费版| 午夜老司机福利剧场| 天天一区二区日本电影三级| 有码 亚洲区| 99久久成人亚洲精品观看| 午夜影院日韩av| 亚洲欧美日韩高清专用| 婷婷亚洲欧美| 久久久精品欧美日韩精品| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 深夜a级毛片| av女优亚洲男人天堂| 女同久久另类99精品国产91| 99国产综合亚洲精品| 国产探花在线观看一区二区| 国产高清激情床上av| 无人区码免费观看不卡| 999久久久精品免费观看国产| 一区二区三区四区激情视频 | 国产老妇女一区| 深夜精品福利| 男人狂女人下面高潮的视频| 国产爱豆传媒在线观看| 99riav亚洲国产免费| 久久久久久久久久成人| 久久久久久国产a免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲性夜色夜夜综合| 午夜精品一区二区三区免费看| 热99在线观看视频| 久久久国产成人精品二区| 日韩精品青青久久久久久| 久久午夜亚洲精品久久| 久久国产精品影院| 国产精品久久久久久人妻精品电影| 国产激情偷乱视频一区二区| 3wmmmm亚洲av在线观看| 最新在线观看一区二区三区| 悠悠久久av| 男插女下体视频免费在线播放| 白带黄色成豆腐渣| а√天堂www在线а√下载| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 一卡2卡三卡四卡精品乱码亚洲| 国产免费一级a男人的天堂| 国产精品一及| 欧美+亚洲+日韩+国产| 1024手机看黄色片| av天堂中文字幕网| 亚洲av第一区精品v没综合| 看黄色毛片网站| 精品久久久久久久久av| 中文字幕人妻熟人妻熟丝袜美| 久久精品久久久久久噜噜老黄 | 在线观看午夜福利视频| 伦理电影大哥的女人| 国产精品久久久久久精品电影| 精品午夜福利视频在线观看一区| 村上凉子中文字幕在线| 国产成人aa在线观看| 日本黄大片高清| 男插女下体视频免费在线播放| 一级黄色大片毛片| 岛国在线免费视频观看| 欧美日韩国产亚洲二区| 亚洲av电影在线进入| 少妇的逼水好多| 国产亚洲欧美在线一区二区| 99精品在免费线老司机午夜| 久久人人爽人人爽人人片va | 日日摸夜夜添夜夜添av毛片 | 一个人看视频在线观看www免费| 亚洲精品一区av在线观看| 成人特级av手机在线观看| 最后的刺客免费高清国语| 三级毛片av免费| 精品久久久久久成人av| 又黄又爽又免费观看的视频| 亚洲av免费在线观看| 成年女人毛片免费观看观看9| 欧美又色又爽又黄视频| 午夜精品久久久久久毛片777| 亚洲中文字幕一区二区三区有码在线看| 中亚洲国语对白在线视频| 久久久久国产精品人妻aⅴ院| 欧美性感艳星| 夜夜躁狠狠躁天天躁| 久久精品夜夜夜夜夜久久蜜豆| 欧美3d第一页| 日韩欧美精品v在线| 成年免费大片在线观看| 国产乱人视频| 午夜精品久久久久久毛片777| 欧美三级亚洲精品| 美女cb高潮喷水在线观看| 夜夜看夜夜爽夜夜摸| 国产亚洲精品久久久com| 午夜福利在线观看免费完整高清在 | 国产白丝娇喘喷水9色精品| 乱人视频在线观看| 日日摸夜夜添夜夜添av毛片 | 久久久久久久午夜电影| 午夜精品一区二区三区免费看| 精品乱码久久久久久99久播| 别揉我奶头 嗯啊视频| 国产主播在线观看一区二区| 精品日产1卡2卡| 男人舔女人下体高潮全视频| 亚洲久久久久久中文字幕| 日本 av在线| 精品久久久久久成人av| 97人妻精品一区二区三区麻豆| 国内精品久久久久久久电影| 男人舔奶头视频| 国产人妻一区二区三区在| 日韩欧美 国产精品| 国产麻豆成人av免费视频| 大型黄色视频在线免费观看| 亚洲人成电影免费在线| 日韩人妻高清精品专区| 精品人妻熟女av久视频| 亚洲 国产 在线| 国产真实乱freesex| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 午夜免费成人在线视频| 两人在一起打扑克的视频| 日韩成人在线观看一区二区三区| 亚洲精品456在线播放app | 久久久久久久久大av| 观看免费一级毛片| 国产精品一区二区三区四区久久| 国内精品久久久久精免费| АⅤ资源中文在线天堂| 色综合婷婷激情| 偷拍熟女少妇极品色| 国产精品不卡视频一区二区 | 国产亚洲精品综合一区在线观看| 最近视频中文字幕2019在线8| 亚洲,欧美,日韩| 99国产精品一区二区蜜桃av| 婷婷亚洲欧美| 一边摸一边抽搐一进一小说| 熟女电影av网| 禁无遮挡网站| 身体一侧抽搐| 亚洲人与动物交配视频| 亚洲国产精品合色在线| 欧美日韩中文字幕国产精品一区二区三区| a级一级毛片免费在线观看| 露出奶头的视频| 中文资源天堂在线| 日本a在线网址| 黄色日韩在线| 午夜福利视频1000在线观看| 悠悠久久av| 国产中年淑女户外野战色| 日韩成人在线观看一区二区三区| 色av中文字幕| 黄色女人牲交| 久久久久久久亚洲中文字幕 | 国产亚洲精品综合一区在线观看| 国产黄色小视频在线观看| 搞女人的毛片| 国产精品久久久久久人妻精品电影| 久久香蕉精品热| 国产人妻一区二区三区在| 国产男靠女视频免费网站| 桃色一区二区三区在线观看| 亚洲美女黄片视频| 亚洲男人的天堂狠狠| 国产免费av片在线观看野外av| 国产aⅴ精品一区二区三区波| 十八禁网站免费在线| 91在线观看av| 最近中文字幕高清免费大全6 | a级一级毛片免费在线观看| or卡值多少钱| 成人高潮视频无遮挡免费网站| 一夜夜www| 国产精品1区2区在线观看.| 给我免费播放毛片高清在线观看| 久久久久久九九精品二区国产| 中文字幕精品亚洲无线码一区| 午夜影院日韩av| 亚洲国产精品久久男人天堂| 美女黄网站色视频| 亚洲av中文字字幕乱码综合| 极品教师在线免费播放| 国产精品国产高清国产av| 男女视频在线观看网站免费| 九九在线视频观看精品| 麻豆成人午夜福利视频| 精品人妻1区二区| 99久国产av精品| 亚洲综合色惰| 窝窝影院91人妻| 免费看美女性在线毛片视频| 国产白丝娇喘喷水9色精品| 久久性视频一级片| 男人舔奶头视频| 欧美另类亚洲清纯唯美| 久久精品国产清高在天天线| 窝窝影院91人妻| 亚洲av一区综合| 小说图片视频综合网站| 简卡轻食公司| av国产免费在线观看| 久久久久久久亚洲中文字幕 | 少妇的逼水好多| 国产高清有码在线观看视频| 亚洲中文字幕日韩| 欧美色欧美亚洲另类二区| 九九久久精品国产亚洲av麻豆|