• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Intersection Multiplicity of Algebraic Curves

    2019-04-23 01:43:58

    (Shandong Vocational College of Science and Technology,Weifang 261053,China)

    Abstract:In this paper,we study the intersection multiplicity of algebraic curves at a point both in R2and in real projective plane P2.We introduce the fold point of curves and provide conditions for the relations between the intersection multiplicity of curves at a point and the folds of the point.

    Key words:Algebraic curves;intersection multiplicity;projective transformation;d-fold point

    §1. Introduction

    Let F(x,y,z)=0 and G(x,y,z)=0 be two algebraic curves and P a point in P2.It is known that the intersection multiplicity of curves F and G at P is the number of times that the curves F=0 and G=0 intersect at P(cf.[4]).In fact,there are di ff erent ways to define the intersection multiplicity of algebraic curves at a point(cf.[3],[5]-[6],[8]).In algebraic geometry,an important way to study algebraic curves is to analyze its intersections with other curves,and the intersection multiplicity is a useful tool to describe their intersections.Therefore,there is a natural question to ask how to determine the intersection multiplicity of algebraic curves.R.Walker(cf.[7])determined the intersection multiplicity by means of formal power series and the resultant of two algebraic curves,and proved that if P is a point of a curve F=0(resp.G=0)with multiplicity r(resp.s),then F and G intersect at P at least rs times,and exactly rs times when the curves F and G do not have common tangents at P.On the other hand,G.S.Avagyan determined the intersection multiplicity by means of operators with partial derivatives,and proved the same result as the above(cf.[1]-[2]).However,in general,it is difficult to identify the intersection multiplicity of algebraic curves.In this paper,we determine the intersection multiplicity of algebraic curves at a point by using the folds of the point,and show the Theorem3.4 in section 3.

    This paper is organized as follows.In section 2,we review some fundamental facts about the intersection multiplicity of curves at a point in R2and P2.In section 3,we introduce the fold point of curves and provide conditions for the relations between the intersection multiplicity of curves at a point and the folds of the point.

    §2. Preliminaries

    In this section,we introduce the intersection multiplicity of algebraic curves at a point respective in P2and in the real projective plane P2,i.e.,(R3?{0})/~,where the equivalence relation~is defined by(x,y,z)~(x0,y0,z0)if there exists a nonzero λ∈R,such that(x0,y0,z0)=(λx,λy,λz).We also introduce projective transformations,which are linear changes of coordinates and preserve the intersection multiplicity of curves.

    2.1 Intersection multiplicity of curves in R2

    Let f(x,y)=0 and g(x,y)=0 be curves,and let P be any point in R2.We denote the intersection multiplicity of f and g at P by IP(f,g).Since the definition is unintuitive,we first list several intersection properties of curves(cf.[4],[8]).

    Property 2.1[4,Section1]Let f(x,y)=0,g(x,y)=0 and h(x,y)=0 be curves,and P a point in R2.Then

    1.IP(f,g)≥0,and IP(f,g)≥1 if and only if f=0 and g=0 both contain the point P.

    2.IP(f,g)=IP(f,g+fh).

    3.IP(f,gh)=IP(f,g)+IP(f,h).

    4.IP(f,gh)=IP(f,g)if h does not contain the point P.

    Let f(x,y)be a non-zero polynomial.Then the order of f at(0,0)is said to be the smallest degree of the terms of f,denoted by ord(f).Evidently,ord(fg)=ord(f)+ord(g)for polynomials f,g.Let o denotes the origin(0,0)in R2.

    Lemma 2.2[4,Theorem1.11]Let y=p(x)and g(x,y)=0 be curves.Assume that y=p(x)contains the origin o and that y?p(x)is not a factor of g(x,y).Then

    Corollary 2.3 Let f(x,y)=0 be a curve that contains the origin o,and let fd(x,y)be the sum of the terms of degree d in f(x,y),where d=ord(f(x,y)).Assume that l=0 is a line through the origin o.Then Io(l,f)>d if l is a factor of fdand Io(l,f)=d if l is not a factor of fd.

    2.2 Intersection multiplicity of curves in P2

    We extend the intersection multiplicity of curves from R2to P2.Let F(x,y,z)=0 and G(x,y,z)=0 be curves and P a point in P2.Similar as in Section 2.1,we denote the intersection multiplicity of F and G at P by IP(F,G).

    Property 2.4[4,Theorem3.6]In P2,let F(x,y,z)=0,G(x,y,z)=0 and H(x,y,z)=0 be curves,and let P be a point.Then

    1.IP(F,G)≥0,and IP(F,G)≥1 if and only if F and G both contain P.

    2.IP(F,G)=IP(G,F).

    If we set f(x,y)=F(x,y,1),then a point(x,y)of R2which lies on the curve f=0 if and only if the corresponding point(x,y,1)lies on the curve F=0.Let g(x,y)=G(x,y,1).Then the number of intersection points of f=0 and g=0 is the number of points of the form(x,y,1)lying on both F=0 and G=0.Let O be the origin(0,0,1)in P2.

    Lemma 2.5[4,Property3.1]Let F(x,y,z)=0 and G(x,y,z)=0 be curves in P2,and let f(x,y)=F(x,y,1)and g(x,y)=G(x,y,1).Then

    In projective geometry,projective transformations play a central role.A projective transformation of P2is a map T:P2→P2defined by T:(x,y,z)7→A(x,y,z),where A∈GL(3,R)is an invertible 3×3 matrix,and it is always a bijection which maps lines to lines.Note that if T is a projective transformation and points P,Q lie on a line L,then T(P)and T(Q)lie on T(L).Similarly,if lines L1and L2intersect at a point P0,then the lines T(L1)and T(L2)intersect at the point T(P0).In fact,we can transform any four points,no three of which are collinear,into any four points,no three of which are collinear.

    Lemma 2.6[4,Theorem3.4]In P2,let A,B,C,D,be four points,no three of which are collinear,and let A0,B0,C0,D0,be four points,no three of which are collinear.Then there is a projective transformation that maps A,B,C,D to A0,B0,C0,D0,respectively.

    Since projective transformations preserve intersection multiplicity of curves(cf.[4]),we canfind the number of times that two curves intersect at any point in P2.

    Lemma 2.7[4,Property3.5]Let F(x,y,z)=0 and G(x,y,z)=0 be curves in P2,and let T be a projective transformation that maps(x,y,z)to(x0,y0,z0)in P2.Assume that F0(x0,y0,z0)and G0(x0,y0,z0)are the images of F(x,y,z)and G(x,y,z)under T,respectively.Then

    for any point P∈P2,where P0=T(P).

    §3. Fold Point and Intersection Multiplicity of Curves

    In this section,we introduce the fold point of curves and provide conditions for the relations between the intersection multiplicity of curves at a point and the folds of the point in R2and in P2.

    Definition 3.1 Let G(x,y,z)=0 be a curve and P a point in P2.Then we call P a d-fold point of G=0 if there is a non-negative integer d,such that all but a finite number of lines intersect G exactly d times at P,and all other lines intersect G more than d times at P and there are at most d such lines.

    Similarly,we can define a e-fold point of a curve in R2for a non-negative integer e.

    Lemma 3.2 Let F(x,y,z)=0 be a curve that contains a point P in P2,and let d be a non-negative integer.Set f(x,y)=F(x,y,1).Then the point P is a d-fold point of F=0 if and only if ord(f)=d.

    Proof By Lemma 2.6,there is a projective transformation T that maps P to the origin O=(0,0,1).Following Lemma 2.5 and Lemma 2.7,it is suffice to show that the origin o is a d-fold point of f=0 if and only if ord(f)=d.Let l=px+qy=0 be a line in R2,where p,q are not all zero.We may assume that q 6=0.

    Suppose that the origin o is a d-fold point of f=0 and that ord(f)=d0.Let fd0be the sum of the terms of degree d0in f.From Lemma 2.5,we know that if l is a factor of fd0,then Io(l,f)=ord(f(x,?))>d0;and if l is not a factor of fd0,then Io(l,f)=ord(f(x,?))=d0.From Definition 3.1,we obtain that d0=d.

    Conversely,assume that ord(f)=d.Let fdbe the sum of the terms of degree d in f.By

    Lemma 2.2,if l is a factor of fd,then Io(l,f)=ord(f(x,?))>d;and if l is not a factor of fd,then Io(l,f)=ord(f(x,?))=d.This means that the origin o is a d-fold point of f=0 following Definition 3.1.

    Let d,e,k be non-negative integers.

    Theorem 3.3 Let F(x,y,z)=0 and G(x,y,z)=0 be curves that intersect at a point P in P2.Assume that P is a d-fold point of F=0 and a e-fold point of G=0.If 1≤d≤e,then there is a curve H=0 such that

    where P is a k-fold point of H=0 for k≥e?1.

    Proof Since P is a d-fold point of F=0,there exists a line L=0 through the point P,such that IP(L,F)=d.By Lemma 2.6,we may assume that P=(0,0,1)and L=y=0.Let f(x,y)=F(x,y,1)and let fdbe the sum of the terms of degree d in f.Then we can factor for distinct lines pix+qiy=0,where siare positive integers and r(x,y)is a polynomial that has no factor of degree 1.Following Lemma 2.5,we have that IP(F,y)=Io(f,y)=d,which implies that y is not a factor of fdby Corollary 2.3.In other words,pi6=0 for all i and the coefficient of the term xd?(s1+···+sk)in r is non-zero.Thus,the coefficient of the term xdin fdis non-zero,and we can write

    for some polynomials p(x)with p(0)6=0 and s(x,y),every term of s has degree at least d?1.Set g(x,y)=G(x,y,1).Similarly,we can write

    for some polynomials q(x)and t(x,y),every term of t has degree at least e?1.Following Lemma 2.5 and Property 2.1(2),(3)and(4),we have

    Since ord(s)≥d?1 and ord(t)≥e?1,we can write

    for some polynomials m(x)and n(x,y),every term of n has degree at least d?2,and

    for some polynomials u(x)and v(x,y),every term of v has degree at least e?2.Set h=tp? sxe?dq.Then

    which has order at least e?1,and the origin o is a k-fold point of h=0 for k≥e?1 following Lemma 3.2.Set H(x,y,1)=h(x,y)and multiply each term of h by the power of z to produce a term of degree deg(h),where deg(h)is the maximal degree of the terms of h.Thus,we obtain a homogeneous polynomial H(x,y,z)which satisfies IP(F,H)=Io(f,h)from Lemma 2.5.By Lemma 3.2,we know that P is a k-fold point of H=0.Hence,we obtain the assertion.

    Theorem 3.4 Let F(x,y,z)=0 and G(x,y,z)=0 be curves and P a point in P2.Assume that P is a d-fold point of F=0 and a e-fold point of G=0,then

    Proof We may assume that d≤e by Property 2.4(2).When d=1 and e=1,we have that IP(F,G)≥1 following Property 2.4(1).Fix the integer e.

    Assume that d=1.From Theorem 3.3,there exists a curve H1=0,such that

    and P is a k1-fold point of H1=0 for k1≥e?1.If k1=1,then IP(F,G)≥2≥de with e≤2.If k1>1,then there exists a curve H2=0,such that

    and P is a k2-fold point of H2=0 for k2≥k1?1≥e?2.Assume that there exists a curve Hm=0 for some positive integer m with m

    and P is a km-fold point of Hm=0 for km≥km?1?1≥ e?m.If km=1,then IP(F,G)≥m+1≥de with e≤m+1.If km>1,then there exists a curve Hm+1=0,such that

    and P is a km+1-fold point of Hm+1=0 for km+1≥km?1≥e?(m+1).Inductively,if m=e?1 and ke?1=1,then IP(F,G)≥ (e?1)+1=e=de.If ke?1>1,then there exists a curve He=0,such that

    and P is a ke-fold point of He=0 for ke≥ ke?1?1≥ 0.Clearly,IP(F,G)≥ de.Hence,we obtain that IP(F,G)≥de when d=1.

    Assume that IP(F,G)≥le if P is a l-fold point of F=0 for 1≤l

    with e≤l+1 by the assumption and Property 2.4(2).If>l,then there exists a curve=0,such that

    Therefore,by induction and the arbitrary of e,we obtain the assertion.

    Corollary 3.5 Let f(x,y)=0 and g(x,y)=0 be curves in R2.Assume that the origin o is a d-fold point of f=0 and a e-fold point of g=0.Then Io(f,g)≥de.

    Proof Let deg(f)(resp.deg(g))denote the maximal degree of the terms of f(resp.g).Multiply each term of f(resp.g)by the power of z to produce a term of degree deg(f)(resp.deg(g)),we obtain a homogeneous polynomial and denoted F(x,y,z)(resp.G(x,y,z)).From Lemma 3.2,we know that the origin O=(0,0,1)is a d-fold point of F=0 and a e-fold point of G=0.By Lemma 2.5 and Theorem 3.4,we have that IO(F,G)=Io(f,g)≥de.Hence,the assertion holds.

    高清在线视频一区二区三区| 麻豆精品久久久久久蜜桃| 国产精品久久久久久精品古装| 欧美97在线视频| 国产日韩欧美在线精品| 久久婷婷青草| 亚洲成av片中文字幕在线观看 | 少妇的逼水好多| 国产一区二区激情短视频 | 在线观看一区二区三区激情| 国产精品国产三级国产专区5o| 最近2019中文字幕mv第一页| 女人被躁到高潮嗷嗷叫费观| 在线观看人妻少妇| 午夜免费观看性视频| 亚洲欧美成人精品一区二区| 久久精品人人爽人人爽视色| 国产免费一级a男人的天堂| 哪个播放器可以免费观看大片| 中文精品一卡2卡3卡4更新| 亚洲精品av麻豆狂野| 亚洲国产精品成人久久小说| 欧美成人午夜精品| 另类精品久久| 亚洲成国产人片在线观看| 国产淫语在线视频| 欧美 日韩 精品 国产| 亚洲成人手机| 青青草视频在线视频观看| 国产高清国产精品国产三级| 欧美性感艳星| 欧美另类一区| 这个男人来自地球电影免费观看 | 99久久中文字幕三级久久日本| 制服诱惑二区| av播播在线观看一区| 亚洲精品视频女| 一级,二级,三级黄色视频| 寂寞人妻少妇视频99o| 永久网站在线| 成年人免费黄色播放视频| 国内精品宾馆在线| 久久ye,这里只有精品| 在线观看国产h片| 国产男女内射视频| 国产一区二区在线观看日韩| 大香蕉久久成人网| a级毛片在线看网站| 欧美日韩一区二区视频在线观看视频在线| 国产成人aa在线观看| 久久精品久久精品一区二区三区| 99热国产这里只有精品6| 成人亚洲精品一区在线观看| 国产成人精品福利久久| 国产精品.久久久| 看十八女毛片水多多多| 欧美激情 高清一区二区三区| 亚洲人成网站在线观看播放| 97超碰精品成人国产| 国产成人午夜福利电影在线观看| 久久精品aⅴ一区二区三区四区 | xxxhd国产人妻xxx| 少妇猛男粗大的猛烈进出视频| av卡一久久| 黄色毛片三级朝国网站| 亚洲综合色网址| 成人黄色视频免费在线看| 人成视频在线观看免费观看| 2022亚洲国产成人精品| 久久精品国产自在天天线| 欧美日韩精品成人综合77777| 免费在线观看黄色视频的| 69精品国产乱码久久久| 日韩伦理黄色片| 成人国产麻豆网| 一级毛片 在线播放| 最近中文字幕2019免费版| 深夜精品福利| 看免费成人av毛片| 久久女婷五月综合色啪小说| 日韩一本色道免费dvd| 汤姆久久久久久久影院中文字幕| 日本午夜av视频| 久久久久精品久久久久真实原创| av播播在线观看一区| 美女大奶头黄色视频| 亚洲人与动物交配视频| 欧美丝袜亚洲另类| 久久人人爽人人片av| 亚洲五月色婷婷综合| 一边摸一边做爽爽视频免费| 少妇人妻精品综合一区二区| 老司机亚洲免费影院| 亚洲人与动物交配视频| 韩国高清视频一区二区三区| 性色av一级| 女的被弄到高潮叫床怎么办| 亚洲av在线观看美女高潮| 久久久a久久爽久久v久久| 欧美精品高潮呻吟av久久| 一级爰片在线观看| 精品亚洲乱码少妇综合久久| 一级爰片在线观看| 久久久欧美国产精品| 伦精品一区二区三区| 两个人免费观看高清视频| 肉色欧美久久久久久久蜜桃| av又黄又爽大尺度在线免费看| 精品少妇内射三级| av黄色大香蕉| videosex国产| 国产精品无大码| 亚洲精品国产色婷婷电影| 亚洲精品日本国产第一区| 高清在线视频一区二区三区| 亚洲人成77777在线视频| 欧美bdsm另类| 久久人人爽av亚洲精品天堂| 久热久热在线精品观看| 97超碰精品成人国产| 亚洲精品自拍成人| 一边亲一边摸免费视频| 亚洲欧美一区二区三区国产| 巨乳人妻的诱惑在线观看| 久久久久久久久久人人人人人人| 99热国产这里只有精品6| xxxhd国产人妻xxx| 中文字幕制服av| 尾随美女入室| 如日韩欧美国产精品一区二区三区| 免费av中文字幕在线| 王馨瑶露胸无遮挡在线观看| 精品亚洲成a人片在线观看| 五月开心婷婷网| 国产精品无大码| 国产视频首页在线观看| 最近的中文字幕免费完整| 成人综合一区亚洲| 国产永久视频网站| 丰满乱子伦码专区| 人妻少妇偷人精品九色| 亚洲精华国产精华液的使用体验| 一区二区三区精品91| 欧美少妇被猛烈插入视频| 中文乱码字字幕精品一区二区三区| 国产色爽女视频免费观看| 少妇高潮的动态图| 日韩三级伦理在线观看| 美女福利国产在线| 亚洲精品一区蜜桃| 一区二区三区精品91| 久久ye,这里只有精品| 亚洲欧美日韩另类电影网站| 18+在线观看网站| 天天操日日干夜夜撸| 亚洲综合色网址| 女性被躁到高潮视频| 国产色爽女视频免费观看| 九九在线视频观看精品| 亚洲av福利一区| 婷婷色综合www| av在线app专区| 波野结衣二区三区在线| 色婷婷av一区二区三区视频| 亚洲国产色片| 人妻 亚洲 视频| 伊人亚洲综合成人网| 大码成人一级视频| 国产精品久久久久久精品电影小说| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 亚洲内射少妇av| 曰老女人黄片| 80岁老熟妇乱子伦牲交| 男女边摸边吃奶| 国产熟女午夜一区二区三区| 全区人妻精品视频| 少妇的丰满在线观看| 亚洲欧美成人综合另类久久久| 女人精品久久久久毛片| 最新中文字幕久久久久| 色哟哟·www| 人人妻人人添人人爽欧美一区卜| 亚洲精品国产av成人精品| 麻豆乱淫一区二区| 免费黄频网站在线观看国产| 亚洲成av片中文字幕在线观看 | 中文字幕av电影在线播放| 亚洲精品日本国产第一区| 久久精品久久久久久久性| 国产成人精品一,二区| 日韩在线高清观看一区二区三区| 欧美精品一区二区免费开放| 欧美精品一区二区免费开放| 免费久久久久久久精品成人欧美视频 | 中文字幕人妻丝袜制服| 男女下面插进去视频免费观看 | 欧美日韩视频高清一区二区三区二| 欧美日韩国产mv在线观看视频| 99热6这里只有精品| 女的被弄到高潮叫床怎么办| 欧美变态另类bdsm刘玥| 亚洲,欧美精品.| 欧美精品高潮呻吟av久久| 免费在线观看完整版高清| 亚洲一码二码三码区别大吗| 成人黄色视频免费在线看| 国产男女内射视频| 久久久久久久精品精品| 久久久久网色| 晚上一个人看的免费电影| 一区二区日韩欧美中文字幕 | 成人手机av| 国产精品一区二区在线不卡| 自线自在国产av| 一级毛片黄色毛片免费观看视频| √禁漫天堂资源中文www| 青春草国产在线视频| 亚洲性久久影院| av福利片在线| 欧美日韩av久久| 日韩成人伦理影院| 一区在线观看完整版| 大片免费播放器 马上看| av黄色大香蕉| 亚洲av国产av综合av卡| 又黄又粗又硬又大视频| 18+在线观看网站| 婷婷色综合大香蕉| 一本大道久久a久久精品| tube8黄色片| 人成视频在线观看免费观看| 日本av手机在线免费观看| 久久久久久人人人人人| 狠狠婷婷综合久久久久久88av| 中文精品一卡2卡3卡4更新| 国产 精品1| 欧美+日韩+精品| 国产熟女午夜一区二区三区| 性色avwww在线观看| 精品视频人人做人人爽| 国产精品一国产av| 王馨瑶露胸无遮挡在线观看| 午夜视频国产福利| 国产精品成人在线| 一二三四中文在线观看免费高清| 免费黄频网站在线观看国产| 久久99精品国语久久久| videossex国产| 久久国产精品男人的天堂亚洲 | 精品亚洲成a人片在线观看| 精品人妻偷拍中文字幕| 久久国内精品自在自线图片| 高清视频免费观看一区二区| 激情五月婷婷亚洲| 国产成人欧美| 久久久久精品人妻al黑| 一区二区三区精品91| 又黄又粗又硬又大视频| 涩涩av久久男人的天堂| 日韩av不卡免费在线播放| 久久热在线av| 91成人精品电影| 亚洲激情五月婷婷啪啪| 免费观看性生交大片5| 成年av动漫网址| 肉色欧美久久久久久久蜜桃| 国产精品女同一区二区软件| 丝瓜视频免费看黄片| 狠狠婷婷综合久久久久久88av| 色哟哟·www| 久久99热6这里只有精品| 亚洲精品美女久久久久99蜜臀 | 美国免费a级毛片| 国产色婷婷99| 观看av在线不卡| 少妇猛男粗大的猛烈进出视频| 午夜影院在线不卡| 中文欧美无线码| 精品国产国语对白av| 免费少妇av软件| 亚洲av国产av综合av卡| 久久精品夜色国产| 久久久久精品人妻al黑| 色吧在线观看| 水蜜桃什么品种好| 黄色配什么色好看| 少妇的丰满在线观看| 秋霞在线观看毛片| 国产精品一区二区在线观看99| 在线观看三级黄色| 丰满饥渴人妻一区二区三| 免费av不卡在线播放| 亚洲欧洲日产国产| 欧美成人午夜免费资源| 亚洲,欧美,日韩| 亚洲一码二码三码区别大吗| 亚洲丝袜综合中文字幕| 亚洲精品中文字幕在线视频| 亚洲三级黄色毛片| 久久鲁丝午夜福利片| 亚洲美女黄色视频免费看| 久久国产亚洲av麻豆专区| 欧美日韩亚洲高清精品| 欧美激情国产日韩精品一区| 制服诱惑二区| 观看美女的网站| 97人妻天天添夜夜摸| h视频一区二区三区| 精品熟女少妇av免费看| 99热国产这里只有精品6| 久久综合国产亚洲精品| 少妇 在线观看| 在线观看一区二区三区激情| 男女下面插进去视频免费观看 | 毛片一级片免费看久久久久| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 欧美日韩一区二区视频在线观看视频在线| 精品久久久久久电影网| 亚洲国产精品专区欧美| 永久免费av网站大全| 天天躁夜夜躁狠狠久久av| 97在线视频观看| 欧美精品亚洲一区二区| 久久精品熟女亚洲av麻豆精品| 久久人妻熟女aⅴ| 欧美精品av麻豆av| 九色亚洲精品在线播放| 久久这里有精品视频免费| 纵有疾风起免费观看全集完整版| 亚洲一级一片aⅴ在线观看| 国内精品宾馆在线| 欧美97在线视频| 国产成人精品无人区| 久久久久视频综合| 9191精品国产免费久久| 精品人妻一区二区三区麻豆| 国产有黄有色有爽视频| 两个人看的免费小视频| 国产成人欧美| 久久久久精品人妻al黑| 一区在线观看完整版| 色婷婷久久久亚洲欧美| 久久久国产精品麻豆| 日日摸夜夜添夜夜爱| 久热这里只有精品99| 精品一区二区免费观看| 另类精品久久| 欧美日韩视频精品一区| 亚洲人与动物交配视频| 全区人妻精品视频| 国产精品女同一区二区软件| 蜜桃在线观看..| av片东京热男人的天堂| 晚上一个人看的免费电影| 永久网站在线| 国产成人a∨麻豆精品| 新久久久久国产一级毛片| 香蕉丝袜av| 久久99热这里只频精品6学生| 国产免费又黄又爽又色| 国产精品秋霞免费鲁丝片| 激情视频va一区二区三区| 国产精品久久久久久久电影| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 精品一区在线观看国产| 日本欧美视频一区| 成人国产麻豆网| 国产精品一二三区在线看| 精品熟女少妇av免费看| 少妇猛男粗大的猛烈进出视频| 18禁国产床啪视频网站| 久久久国产一区二区| 国产爽快片一区二区三区| 这个男人来自地球电影免费观看 | 男的添女的下面高潮视频| 中文字幕av电影在线播放| 伊人久久国产一区二区| 欧美最新免费一区二区三区| 亚洲一码二码三码区别大吗| 精品熟女少妇av免费看| 日韩av免费高清视频| www日本在线高清视频| 亚洲少妇的诱惑av| 成人亚洲精品一区在线观看| 国产成人精品久久久久久| 91久久精品国产一区二区三区| 亚洲欧美中文字幕日韩二区| 欧美97在线视频| 永久免费av网站大全| 欧美国产精品一级二级三级| 精品少妇内射三级| 久久久久久久亚洲中文字幕| 国产永久视频网站| 国国产精品蜜臀av免费| av电影中文网址| 日韩精品免费视频一区二区三区 | 国产av码专区亚洲av| 欧美日韩视频精品一区| 青春草亚洲视频在线观看| 丰满饥渴人妻一区二区三| 美女中出高潮动态图| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲欧美精品永久| 少妇 在线观看| 亚洲国产日韩一区二区| 亚洲内射少妇av| 性色av一级| 亚洲av电影在线进入| 欧美日韩视频高清一区二区三区二| 精品人妻在线不人妻| 日本av免费视频播放| 亚洲国产成人一精品久久久| 超色免费av| 丝袜脚勾引网站| 久久女婷五月综合色啪小说| 热99国产精品久久久久久7| 久久久久久久久久久免费av| 日本av手机在线免费观看| kizo精华| 国产亚洲午夜精品一区二区久久| 亚洲性久久影院| 久久久精品94久久精品| 又黄又爽又刺激的免费视频.| 国产国语露脸激情在线看| 亚洲欧美中文字幕日韩二区| 这个男人来自地球电影免费观看 | 人成视频在线观看免费观看| av国产久精品久网站免费入址| 天堂中文最新版在线下载| 午夜91福利影院| 亚洲国产毛片av蜜桃av| 成人毛片a级毛片在线播放| 日韩视频在线欧美| 蜜桃在线观看..| 最新的欧美精品一区二区| 综合色丁香网| 国产日韩欧美亚洲二区| 一级毛片黄色毛片免费观看视频| 欧美精品国产亚洲| 国产乱来视频区| 老司机影院毛片| 精品久久国产蜜桃| 性色av一级| 99视频精品全部免费 在线| av免费在线看不卡| 在线免费观看不下载黄p国产| 久久久久久久久久成人| 免费久久久久久久精品成人欧美视频 | 91国产中文字幕| 最后的刺客免费高清国语| h视频一区二区三区| 搡女人真爽免费视频火全软件| 2021少妇久久久久久久久久久| 日韩成人伦理影院| 熟女电影av网| 免费观看无遮挡的男女| 日韩视频在线欧美| 波野结衣二区三区在线| 国产伦理片在线播放av一区| 边亲边吃奶的免费视频| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 亚洲欧美成人精品一区二区| av福利片在线| 国产国拍精品亚洲av在线观看| 午夜福利视频在线观看免费| 国产精品不卡视频一区二区| 啦啦啦在线观看免费高清www| 国产在线一区二区三区精| 一区二区av电影网| 99久久人妻综合| 国产精品无大码| 少妇 在线观看| 只有这里有精品99| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| av有码第一页| 国产精品国产三级国产av玫瑰| 超碰97精品在线观看| 国产精品久久久久久久电影| xxx大片免费视频| 韩国精品一区二区三区 | 亚洲精品,欧美精品| 熟女人妻精品中文字幕| 最近中文字幕2019免费版| 成人漫画全彩无遮挡| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 国产精品久久久久久久久免| 母亲3免费完整高清在线观看 | 九九在线视频观看精品| 久久影院123| 日韩电影二区| av免费在线看不卡| 欧美 日韩 精品 国产| 亚洲精品视频女| 日本欧美国产在线视频| 尾随美女入室| 亚洲成国产人片在线观看| 一边摸一边做爽爽视频免费| 国产av码专区亚洲av| 亚洲欧美日韩卡通动漫| 一区二区日韩欧美中文字幕 | 日日撸夜夜添| 在线免费观看不下载黄p国产| 国产av码专区亚洲av| 啦啦啦中文免费视频观看日本| 中文字幕制服av| 欧美精品一区二区大全| 久久精品国产综合久久久 | 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| 亚洲人成网站在线观看播放| www.色视频.com| 久久97久久精品| 丝袜喷水一区| 欧美日韩视频精品一区| 日韩免费高清中文字幕av| www.av在线官网国产| 日韩一本色道免费dvd| 校园人妻丝袜中文字幕| 久久毛片免费看一区二区三区| 亚洲伊人久久精品综合| 久久人人爽人人片av| 色网站视频免费| 亚洲内射少妇av| 国产一级毛片在线| 欧美精品一区二区大全| 免费大片18禁| 国产又爽黄色视频| 亚洲美女黄色视频免费看| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 精品熟女少妇av免费看| 一区二区av电影网| 亚洲精品成人av观看孕妇| 国产免费现黄频在线看| 中文精品一卡2卡3卡4更新| 2021少妇久久久久久久久久久| 久久婷婷青草| 少妇人妻久久综合中文| 久久99热6这里只有精品| 99国产综合亚洲精品| 校园人妻丝袜中文字幕| 在线观看免费视频网站a站| 国产极品粉嫩免费观看在线| 51国产日韩欧美| 黑丝袜美女国产一区| 久久精品久久精品一区二区三区| 97超碰精品成人国产| 九色成人免费人妻av| 国产无遮挡羞羞视频在线观看| 久久久国产精品麻豆| 国产精品国产av在线观看| 又大又黄又爽视频免费| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲av涩爱| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| 香蕉丝袜av| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 免费在线观看黄色视频的| 97精品久久久久久久久久精品| av.在线天堂| 久久人人爽av亚洲精品天堂| 国产免费又黄又爽又色| 国产一区二区在线观看日韩| 好男人视频免费观看在线| 国产一区二区三区综合在线观看 | 日韩视频在线欧美| 欧美人与性动交α欧美精品济南到 | 久久久久精品性色| 91aial.com中文字幕在线观看| 中文字幕制服av| 亚洲伊人久久精品综合| 日本91视频免费播放| 国产精品欧美亚洲77777| 亚洲,欧美,日韩| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 黄色视频在线播放观看不卡| 免费播放大片免费观看视频在线观看| 免费少妇av软件| 黑人高潮一二区| 国产精品人妻久久久久久| 国产精品一区二区在线不卡| 大香蕉久久网| 在线免费观看不下载黄p国产| 日本午夜av视频| 亚洲国产毛片av蜜桃av| 一本色道久久久久久精品综合| 亚洲精品久久成人aⅴ小说| 卡戴珊不雅视频在线播放| 亚洲成av片中文字幕在线观看 | 在线观看三级黄色| 成年女人在线观看亚洲视频| 久久午夜综合久久蜜桃| 在线天堂中文资源库| 一级黄片播放器| 久久精品久久久久久噜噜老黄| 国产精品久久久av美女十八| 制服人妻中文乱码| 美女脱内裤让男人舔精品视频| 国产无遮挡羞羞视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品一区二区在线观看99| 另类精品久久| 国国产精品蜜臀av免费| 久久久久久久久久久免费av| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区视频在线|