• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Colorectal cancer:The epigenetic role of microbiome

    2019-04-22 06:27:12HusseinSabitEmreCevikHuseyinTombuloglu
    World Journal of Clinical Cases 2019年22期

    Hussein Sabit, Emre Cevik, Huseyin Tombuloglu

    Hussein Sabit, Emre Cevik, Huseyin Tombuloglu, Department of Genetics, Institute for Medical Research and Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441,Saudi Arabia

    Abstract

    Key words: Colorectal; Cancer; Colorectal cancer; Epigenetics; Gut; Microbiota

    INTRODUCTION

    Colorectal cancer (CRC) is one of the primary causes of cancer-related deaths globally[1].It occurs as a result of complicated sequences involving mutation accumulation that is either genetic or epigenetic[2].The process of CRC carcinogenesis is a quite slow, starting with minor inflammation followed by adenomatous polyps in the epithelium, and finally adenocarcinoma[3].Given the crucial role of epigenetic changes in developing CRC, 95% of cases are sporadici.e.appear in patients with no family history for the disease.Meanwhile, minor ratio (3%) is attributed to hereditary nonpolyposis CRC, and 2% of cases are caused by other hereditary disorders such as MYH-associated polyposis and familial adenomatous polyposis[2,4].

    Microorganisms occupy almost every part of the human body, armed with a huge number of genes, where it could interact, modulate, or disrupt a wide array of human genes especially in colonic cells[5].Interestingly, the human microbiome encodes for approximately 100-fold more proteins than the human genome itself.This microbiota comprise 1000 to 1500 bacterial species, and the composition of the microbiome is significantly diverse among individuals[6].These species belong to just a few phyla:

    Firmicutes,Bacteroidetes(most prevalent),Proteobacteria,Verrucomicrobia,Actinobacteria,Fusobacteria, andCyanobacteria[7].Although distribution of the microbiota in terms of types and number is common in healthy individuals, it differs significantly in diseased persons.In addition to bacteria that compose the gut microbiome, eukaryotic fungal species have recently been found to co-exist with bacterial species, the major component of the microbiome[8].

    It is well established that gut microbiota play critical roles in the progression of CRC eitherviatheir metabolites or interaction with their host intestinal epithelial cells[9].Imbalance of this microbiota has been associated with several disorders including inflammatory bowel disease and CRC[10].Nonetheless, several studies have related the changes in microbiota to a cause of disease, while others have indicated that these changes are merely a result; however, this issue demands further investigation[11].In this review, we highlight the recent studies that addresses the causal link between gut microbiota and CRC onset and progression.Meanwhile, the epigenetic changes underlying CRC and its microbial root will also be described.

    CRC

    CRC is one of the most prevalent malignant tumors and the third most common cause of cancer-related death worldwide[12].It is the third most common malignancy in males and the second in females, with a lifetime risk of about 6%[13].Being welldeveloped, CRC can metastasize -even after operation- to distant organs such as the liver and lungs, forming secondary CRC[14].The common risk factors underlying CRC involve genetics[15], environmental pollution[16], diet[17], age[18], alcohol consumption[19],smoking[20], obesity[21], and physical inactivity[22], with gut microbiota standing alone as a potent risk factor[23](Figure 1).It is well established that CRC arises due to accumulation of genetic mutations.Large studies showed that approximately 13000 mutations in 67 genes correlate with CRC.Among them, only 12 genes were found to be closely related to CRC[24].Different types of genomic instability predispose patients to CRC including microsatellite instability (MSI), in which frequent insertions and deletions are prevalent, and chromosomal instability (CIN), in which gain or loss of chromosomes prevail[25].CIN is responsible for about 85% of CRC cases, where loss of chromosomal segment/arm includes 15q11-q21, 17p12-13, and18q12-21 and gain of chromosomal segment/arm includes 1q32, 7p, 7q, 8q, 13q, 20p, and 20q[26,27].

    Several genes are directly correlated with CRC.Examples includeAPCin which inactivation leads to triggering the Wnt signaling pathway to initiate colon polyps which can be benign (e.g., hyperplastic polyp), pre-malignant (e.g., tubular adenoma)or malignant (e.g., colorectal adenocarcinoma)[28].Furthermore, transforming growth factor receptor 2TGFBR2is involved in almost 30% of CRC cases.The downstream effector of this genes,i.e.KRASwas found to be activated in 55%-60% of CRC cases.Mismatch repair genes such asMLH1,MSH6,MSH2, andPMS2causing frameshift mutations were found to induceMSI, triggering the development of CRC[29](Figure 2).

    Figure 1 The way gut microbiota induces CRC.

    Epigenetic regulation of gene expression analysis is a validated tool to correlate gene expression changes with cancer development[2,30].Through the last three decades,solid common knowledge has been established to indicate that the perturbation of epigenetic mechanisms leads to cancer initiation and progression[29,31].Identification of CRC epigenetic changes has revealed that almost all CRCs have abnormally methylated genes.Although rare data have been provided to highlight the pattern of specific histone modifications in CRC, certain histone modifications (such as acetylation, methylation, and phosphorylation) have been found to work in harmony with DNA methylation to regulate CRC-related gene expression that is involved in cancer initiation and progression[1,32].Therefore, a deep understanding of epigenetic changes related to CRC pathogenesis might help develop epigenetic-based biomarkers for CRC diagnosis and prognosis, and hence, epigenetic-based therapy[29].

    GUT MICROBIOME

    Function

    In the normal adult person, the gut microbiota comprise approximately 1014bacterial cells that live in commensalism with the host, where they substantially facilitate various aspects in the host health and disease[33].The normal gut microbiota are rich in anaerobic bacteria, which are 100- to 1000-times more than aerobic and facultative anaerobic bacteria, respectively[34].The colon has a reductive environment devoid of oxygen, which allowsBacteroidetesandFirmicutesto be the dominant phyla followed byActinobacteriaandVerrucomicrobia[35].For bacteria, the colon represents a suitable niche as it provides them with elevated pH, nutrients, and low concentration of bile salts and pancreatic secretions.These conditions, indeed, are favored by bacteria to flourish and proliferate[10].Commensal bacteria start colonization of the host during birth and continue to variate in number and type along with the host development[36].It is well established that our gut microbiome is responding to any dietary shift,where switching from polysaccharides-rich diets to that high in animal fat eventually leads to a hasty shift in the gut microbiome[37].Commonly in the gut, the prevailed microbial product is lipopolysaccharide (LPS), produced by Gram-negative bacteria,function to stimulate the innate immunity, thus, protecting against inflammation that leads to cancer[38](Table 1).

    Protective role

    Gut microbiota is crucial for numerous characteristics of host biology[10,39].They enable the host to digest and metabolize indigestible polysaccharides[40].The gut microbiota plays an important role in maintaining gut homeostasis[41].Furthermore, gut microbial community also participates effectively in the normal cellular proliferation.To keep its habitat for millions of years, several gut microbiota essentially protect the host against CRC[42].Reports have indicated that enterotoxigenicBacteroides fragilisis capable of induce apoptosis in CRC cells[42].Generally, diet is metabolized by microbiota into potent oncometabolites and tumor-suppressive metabolites.Whereas,the same microbiota can digest fiber into short-chain fatty acids (SCFAs)[43].It is well known that SCFAs have anti-inflammatory properties and can increase the level of colonic regulatory T cells (Tregs) and protect the host against colitis[43,44].The most common SCFAs produced in the gut are acetate, propionate, and butyrate[45].Butyrate is one of the important sources of energy, where it provides the cells with 5%-15% of its caloric requirements.Faecalibacterium prausnitziiandEubacterium rectaleare the main gut bacterial species that produce butyrate[44,46].Butyrate controls cell proliferation, differentiation, and apoptosis among other functions in colon cells[23,47].It exerts also a preventive role where it ameliorates the harmful effects of N-nitroso compounds, a product that accumulates in the colon upon intake of heat-treated and processed meat[48](Figure 3).It has been indicated thatClostridiumspecies enhances Treg cell abundance by increasing the production of potent anti-inflammatory molecules such as cytokine interleukin 10 (IL-10)[49].Lactic acid bacteria have also shown protective properties against CRCviadifferent mechanisms that include strengthening the mucosal barrier and altering luminal secretions, resulting in underpinning of the host immune system.Ursodeoxycholic acid (UDCA, ursodiol) is a metabolic byproduct of intestinal bacteria, with a chemical structure that resembles deoxycholic acid (DCA)[50].While DCA promotes the initiation of CRC, UDCA function to prevent the disease.It was reported that UDCA inhibits the expression of cyclooxygenase-2 (COX-2) by Ras-dependent and RAS-independent mechanisms in CRC cells[51].UDCA prevents colon cells from the harmful effect of DCAviainhibiting the DCA-induced extracellular signal-regulated kinase and Raf-1 kinase activity and the activation of epidermal growth factor receptor (EGFR)[52].

    Figure 2 Different pathways through which CRC develops.

    Pro-carcinogenic role

    Microbiota-mediated carcinogenesis is a complex process that takes place through changing host cell proliferation, influencing the host cell immune system, and metabolizing dietary factors[53].A plethora of research has suggested that an imbalance in normal intestinal microbiota can trigger inflammatory conditions by producing carcinogenic metabolites that lead to cancer formation, and about 16% of human cancers are triggered by bacteria[36,53].Gut bacteria can attack intestinal epithelial cells to cause inflammation, that in turn, increase the risk of developing CRC[54].For CRC to occur, the microbiota-host interaction must be dysregulated,resulting in disruption of cellular homoeostasis[55].The major component of the gut immune system, Peyer’s patch, is robustly influenced by gut microbiota[56].The host diet can trigger gut microbiota to be involved in the early stages of CRC carcinogenesis[57].Upon metabolism of saturated fatty acid- and sugar-rich diets, gut bacteria produce harmful procarcinogenic products including polyamines hydrogen sulfide, secondary bile acids such as DCA and lithocholic acid (LCA), and reactive oxygen species (ROS), which induce chronic inflammation, and hence elevate the susceptibility of cells to develop CRC[58].DCA is a metabolite of the gut microbiota that induces cancer stemness by regulating the muscarinic 3 receptor/Wnt intracellular signaling pathway[59].It can also trigger the production of Nur77 protein,which is positively correlated with CRC when upregulated[60].Meanwhile, DCA induces CRCviadownregulation of miR-199a-5p that degradesCAC1, the tumor suppressor gene plays a role in CRC[61].LCA (aka 3α-hydroxy-5β-cholan-24-oic acid), a secondary bile acid synthesized by gut microbiota, is verified to a promoter of CRC[62].Gut bacteria produce LCA by utilizing DCA[63].Both LCA and DCA can enhance cancer stemness[64].Furthermore, LCA and DCA activate the EGFR signaling pathway,inducing DNA damage, and causing oxidative stress, apoptosis, mutation, and activation of the protein kinase C pathway[59].

    Table 1 Gut microbiota are involved in CRC carcinogenesis

    Figure 3 Different functions of butyrate in protecting against CRC.

    Trimethylamine (TMA) is solely synthesized by gut microbiota (in humans) from various dietary nutrients including choline and carnitine (found in red meat)[65].It reacts with flavin monooxygenase to produce trimethylamine-N-oxide (TMAO), a microbial metabolite involved in CRC progression[66].A high incidence rate of CRC was noticed in omnivorous individuals, as they produce more TMAO compared to vegans and vegetarians who show low incidence rate[67].The genetic pathway by which TMAO triggers CRC remains unclear.

    Furthermore, specific gut bacteria such asEnterococcus faecaliswas found to induce COX-2, that generates pro-proliferative signals through prostaglandin E(2) (PGE2)[68].Several Gram-negative bacteria produce LPS that activates TLR4, COX-2, and then PGE2leading to inhibition of programmed cell death and increase cell proliferation[69].Moreover, there is an increased resistance to macrophage killing and MAPK activation in those who have thepks(polyketide synthase) island inE.coliisolated from CRC patients[70].Activated TLR also enhances angiogenesis through MAPK and NF-κB signaling networks[71](Figure 4).

    Other CRC-related bacterial metabolites were highlighted including fragilysin[72].This extracellular 20 kDa zinc-dependent metalloproteinase metabolite, produced byB.fragilis, could hydrolyze the extracellular domain of E-cadherin and activate the βcatenin nuclear signaling, leading to induction of CRC[73].Meanwhile fragilysin can damage the tight junction of the intestines, increases intestinal permeability[74].Colibactin is a bacterial-derived genotoxin first reported in 2006 by Nougayrede and colleagues.It is a hybrid polyketide-non ribosomal peptide produced through an intricate biosynthetic mechanism and encoded by thepkspathogenicity island[75].E.colistrains harboring thispksisland were found to be associated with CRC[76].Moreover, colibactin, a kind of bacterial toxin synthetized by thepksgenomic island can trigger chromosomic instability and DNA damage that might lead eventually to CRC[77].

    GUT MICROBIOTA AND EPIGENETIC MODIFICATION

    Figure 4 Different gut microbiota generate different oncometabolites.

    Several epigenetic changes are common in CRC including DNA methylation, histone modification, and miRNA-mediated post-transcriptional regulation[28,78].Abnormal epigenetic modifications (AKA epimutations) occur in the promoter regions of tumorsuppressor genes and proto-oncogenes.These epimutations were reported in several malignancies including CRC, where many genes such asMLH1,LKB1,APC,p16INK4a, andGATA4represent common targets[2,40,79].Microbial community in our guts are armed with an arsenal of genes that produces millions of proteins, let alone their outpouring of metabolites[67,80].This microbiota produces low-molecular-weight substances that interact within the human cells with different targets to trigger genomic and epigenomic changes[81].Research teams everywhere highlight the association between gut microbiota and human diseases; thus, all these diseases should be revisited once again to elucidate the actual role played by microbial community.Being very stable, DNA might not be affected by microbial metabolites,and this is pointing to a more fragile component in our cells; epigenome.

    DNA methylation

    Linking diseases to epigenetic changes was first addressed in 1983[82].Based on that first note, numerous researches indicated that cancer cells undergo global hypomethylation along with site-specific hypermethylation in the promotors of cancer-related genes[83].A bunch of reports have indicated that the microbial metabolites can modulate epigenetic landscape of the host gut’s cellsviamodifying the methylation pattern of cancer-related genes, as they represent a validated source of microbial-induced epigenetic change.Thus, the deep understanding of how epigenetic modifications influenced by the gut microbiota take place could offer possible therapeutic targets to prevent and treat CRC[10,80].

    In DNA methylation, DNMTs add methyl group (CH3) to the fifth carbon atom in the cytosine residue using the intracellular methyl substrateS-Adenosyl methionine(SAM) as a methyl donor to convert the normal cytosine into 5-methylcytosine (5-mC)[84].Meanwhile, ten-eleven translocation enzyme can reverse this processviathe oxygenation of 5-mC to produce 5-hydroxymethylcytosine[85].It is well known that folate is the main source of SAM, and this vitamin could be produced byBifidobacteriumandLactobacillus, common probiotic bacteria[86].Folate is required for DNA methylation (5-methyltetrahydrofolate) or DNA synthesis (5-formyltetrahydrofolate and 5, 10-methenyltetrahydrofolate)[87].A study indicated that volunteers administeredBifidobacteriumshowed a high concentration of folate in their feces, meaning that these probiotic bacteria were capable to generate it and hence,affect DNA methylation pattern[88].On the other hand, deficiency of folate synthesis might contribute to DNA hypomethylation, which is an established phenomenon in CRC[89].Meanwhile, pathogenic bacteria such asHelicobacter pylorithat infects the stomach and causes gastritis or gastric ulcers or in severe infection gastric cancer can induce several epigenetic changes[90].A comparison between gastric biopsies excised from patients with gastritis (upon infection withHelicobacter pylori) and healthy individuals showed that chronic gastritis was associated with promoter hypermethylation ofE-cadherin(CDH1),MGMT,WIF1, andMLH1[91].Although studies that address the relationship between the microbiome and epigenetic changes in CRC are rare, a population-based study reported thatFusobacterium nucleatumwas associated with genomic hypermutation independent ofCIMPandBRAFmutations[92].Other study indicated thatFusobacteriumwas correlated with theCIMPphenotype, wild-typeTP53,hMLH1methylation, genomic hypermutation, andCHD7/8mutation[93].These studies strongly suggest the contribution ofF.nucleatumto the epigenetic changes.

    Histone modification

    In addition to DNA methylation changes, histone modification patterns are also altered in human cancers[84,94].Some bacterial metabolites such as short chain fatty acids (butyrate and acetate) can induce epigenetic changes in colonic cells[23,45].Butyrate, a byproduct of the fermentation process of undigested dietary carbohydrates and proteins carried out byFirmicutes, has been shown to regulate over 4000 genes including many involved in apoptosis and cell cycle regulation[95].It is known also to inhibit histone deacetylases and induce hyperacetylation of histones,that lead to changes in the expression of critical cell cycle regulatory genes such asCCND3andCDKN1Ain intestinal cells.Butyrate triggers epithelial generation of ROS and function also to suppress NF-kB, the protein complex controls DNA transcription[44,96].Furthermore,Bacteroides thetaiotaomicronstimuli the inflammatory signaling by inhibiting NF-κB pathway through binding to IkB (inhibitor ofκB),inhibitory component of the NF-κB pathway[97].It was reported that infection withListeria monocytogenes(L.monocytogenes) can cause deacetylation of histone H3K18 in many genes in colonic cells such asSMAD1,IRF2,SMARCA2andCXCL12[98].L.monocytogenesexecute the deacetylation process by translocating NAD-dependent deacetylase sirtuin 2 to the host nucleus.By doing so,L.monocytogenesepigenetically regulates cell cycle-related genes and modulate the host immune response to enable its invasion[99].

    MICRORNAS (MiRNAs) AND CRC

    MiRNAs are a class of small single-stranded non-coding RNA molecules that are evolutionarily conserved and encoded by nearly 1% of the genome in most species[100].MiRNAs were found to be involved in initiation, progression, and metastasis of CRC,where it regulate of various cancer-related gene expression at the post-transcriptional level[101].Deregulated miRNAs identified in different types of cancers might put us a step forward towards understanding the tumor microenvironment, which necessitate deep investigation of their actual role in cancer progression and spreading[102].Numerous miRNAs were found to be associated with CRC, such as miR-21, Let-7,miR-145, miR-221, miR-17-19 cluster, and miR-143[103].Table 2 highlights some of miRNAs related to CRC development, progression, and metastasis.Studies addressed the expression levels of different miRNA in CRC, reported that miR-31, miR-20, miR-25, miR-223, miR-133b, miR-92, miR-93, miR-135a, miR-203, miR-183, and miR-17 were upregulated in CRC, while miR-26b, miR-192, miR-145, let-7a, miR-143, miR-215,miR-16, and miR-191 were downregulated in patients with CRC[13,104].Some miRNAs were suggested to serve as diagnostic markers for CRC, including miR-133a, miR-145,miR-484-5p, miR-139, miR-143, and miR-106a[105], while another study indicated different set of miRNAs that could be used as biomarkers, including miR-125b, miR-125a, miR-143miR-30a-3p, and miR-145[106].However, this variation in miRNA list might be attributed to the samples used in the identification process (cell line, tissue,blood or stool) and to the techniques employed.Reports also highlight the role of human diet in modulating the expression of miRNA[107].For example, butyrate was found to regulate the expression of Let-7, miR-18-106a, miR-25-106b, and miR-17-92a in CRC[96].The later miRNA cluster (miR-17-92a) was found to be associated with c-Myc to inhibit the activity of PTEN and promotes PI3K-Akt-mTOR axis raising the cell survival in early stage adenoma in CRC[108].

    CONCLUSION

    Gut microbiota is an enhancer to our second brain; the intestine.With millions of proteins expressed by the microbiota’s arsenal, human could make use of various kinds of dietary ingredients, that otherwise will be rubbish-in/rubbish-out.Although genetic factors and age play a role in the pathogenesis of CRC, still gut microbiota has the lion’s share in this complicated process.Armed with an enormous number of identified and yet-to-be-identified metabolites, this population of bacteria can modify the gut’s cells methylation pattern and histone structure causing inflammation, that lead eventually to cancer.It is quite important to keep these microorganisms under focus by deeply investigate their intricate communications with our cells.By doing so,we would be able to avoid at least life-threatening diseases such as CRC[1].

    Table 2 A list of representative miRNAs identified in tumor tissues that are of prognostic value in CRC patients

    每晚都被弄得嗷嗷叫到高潮| 国产无遮挡羞羞视频在线观看| 欧美日韩精品网址| 国产老妇伦熟女老妇高清| 飞空精品影院首页| 99re6热这里在线精品视频| 69av精品久久久久久 | 亚洲专区中文字幕在线| 亚洲成av片中文字幕在线观看| 一级片免费观看大全| 精品国产乱码久久久久久小说| 国产日韩一区二区三区精品不卡| 成年人午夜在线观看视频| 自线自在国产av| 十八禁网站免费在线| 欧美精品人与动牲交sv欧美| 国产亚洲午夜精品一区二区久久| 欧美国产精品va在线观看不卡| 久久久久久人人人人人| 国产精品.久久久| 中文字幕av电影在线播放| 亚洲av成人一区二区三| 在线观看人妻少妇| 国产精品自产拍在线观看55亚洲 | 脱女人内裤的视频| 久热爱精品视频在线9| 免费少妇av软件| 免费高清在线观看日韩| 国产单亲对白刺激| 亚洲国产欧美网| 午夜精品国产一区二区电影| 黄片小视频在线播放| 亚洲精品自拍成人| 色综合欧美亚洲国产小说| 国产在视频线精品| 亚洲国产看品久久| 视频在线观看一区二区三区| 国产在线精品亚洲第一网站| 国产无遮挡羞羞视频在线观看| 午夜福利,免费看| 超色免费av| 91大片在线观看| 久久国产精品影院| 欧美变态另类bdsm刘玥| 国产色视频综合| 久久久久久久久免费视频了| 国产精品久久久久久精品古装| 精品乱码久久久久久99久播| av福利片在线| 香蕉久久夜色| 亚洲精品久久成人aⅴ小说| 亚洲av第一区精品v没综合| 亚洲成国产人片在线观看| 一本综合久久免费| av在线播放免费不卡| 满18在线观看网站| 国产精品免费大片| 日本黄色视频三级网站网址 | 亚洲国产毛片av蜜桃av| 日本撒尿小便嘘嘘汇集6| 在线观看免费日韩欧美大片| 亚洲天堂av无毛| aaaaa片日本免费| 国产在线精品亚洲第一网站| 亚洲欧美精品综合一区二区三区| 中文字幕制服av| 国产日韩欧美亚洲二区| 午夜福利欧美成人| 热99久久久久精品小说推荐| 性高湖久久久久久久久免费观看| 久久精品aⅴ一区二区三区四区| 欧美变态另类bdsm刘玥| 亚洲精品美女久久久久99蜜臀| 中文字幕人妻丝袜制服| a级毛片在线看网站| 亚洲伊人久久精品综合| 黄色丝袜av网址大全| 精品卡一卡二卡四卡免费| 九色亚洲精品在线播放| 韩国精品一区二区三区| 精品一品国产午夜福利视频| 性高湖久久久久久久久免费观看| 色精品久久人妻99蜜桃| 精品国产一区二区久久| 正在播放国产对白刺激| 9热在线视频观看99| 欧美黑人精品巨大| 一边摸一边抽搐一进一小说 | 久久午夜综合久久蜜桃| 人人妻,人人澡人人爽秒播| 男女午夜视频在线观看| 悠悠久久av| 国产成人免费观看mmmm| 亚洲成a人片在线一区二区| 中文字幕色久视频| 黑人欧美特级aaaaaa片| av国产精品久久久久影院| 久久精品国产综合久久久| 变态另类成人亚洲欧美熟女 | 丝袜喷水一区| 99国产精品免费福利视频| 日韩熟女老妇一区二区性免费视频| 侵犯人妻中文字幕一二三四区| 国产成人欧美| 久久久国产欧美日韩av| 男女床上黄色一级片免费看| 性色av乱码一区二区三区2| 中文字幕人妻熟女乱码| 黑人猛操日本美女一级片| 一本综合久久免费| 三上悠亚av全集在线观看| 国产精品久久久人人做人人爽| 精品国产一区二区三区久久久樱花| 久久精品亚洲av国产电影网| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产亚洲av麻豆专区| 国产精品一区二区精品视频观看| 精品人妻1区二区| 国产在线视频一区二区| 丝袜人妻中文字幕| 伦理电影免费视频| 日韩免费av在线播放| 老司机影院毛片| 精品午夜福利视频在线观看一区 | 久久久欧美国产精品| 夜夜爽天天搞| 18禁黄网站禁片午夜丰满| bbb黄色大片| 欧美精品av麻豆av| 五月天丁香电影| 日韩欧美一区视频在线观看| kizo精华| 99国产综合亚洲精品| 成年人黄色毛片网站| 成人国产av品久久久| 午夜福利视频在线观看免费| 日本黄色日本黄色录像| 亚洲精品中文字幕一二三四区 | 国产无遮挡羞羞视频在线观看| 久久精品aⅴ一区二区三区四区| 欧美日韩亚洲综合一区二区三区_| tocl精华| 中文字幕最新亚洲高清| 国产精品久久久久久精品电影小说| 精品亚洲乱码少妇综合久久| 久久中文看片网| 纵有疾风起免费观看全集完整版| 免费在线观看黄色视频的| 国产亚洲午夜精品一区二区久久| 一级毛片精品| 侵犯人妻中文字幕一二三四区| 天天躁狠狠躁夜夜躁狠狠躁| 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕| www.熟女人妻精品国产| 在线观看舔阴道视频| 久久久久久人人人人人| 久久中文看片网| 这个男人来自地球电影免费观看| 亚洲精品乱久久久久久| 热re99久久国产66热| 久久久久久免费高清国产稀缺| 国产免费av片在线观看野外av| 18禁美女被吸乳视频| 99久久国产精品久久久| 高潮久久久久久久久久久不卡| 亚洲专区国产一区二区| 国产xxxxx性猛交| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费午夜福利视频| 精品一区二区三区av网在线观看 | 午夜福利一区二区在线看| 狠狠婷婷综合久久久久久88av| 亚洲国产av影院在线观看| 久久人妻av系列| www日本在线高清视频| 亚洲伊人色综图| 国产三级黄色录像| 免费观看a级毛片全部| xxxhd国产人妻xxx| 不卡一级毛片| 天堂动漫精品| 久久精品亚洲av国产电影网| 最新美女视频免费是黄的| 午夜激情av网站| 久久亚洲精品不卡| 纵有疾风起免费观看全集完整版| 色综合欧美亚洲国产小说| 免费在线观看视频国产中文字幕亚洲| 国产日韩欧美亚洲二区| 日韩熟女老妇一区二区性免费视频| 午夜福利在线免费观看网站| 99精品久久久久人妻精品| 午夜老司机福利片| 精品一区二区三区av网在线观看 | 大香蕉久久网| 美女主播在线视频| 亚洲 欧美一区二区三区| 黄网站色视频无遮挡免费观看| 久久毛片免费看一区二区三区| 交换朋友夫妻互换小说| 久久久久国产一级毛片高清牌| 天天躁日日躁夜夜躁夜夜| 国产深夜福利视频在线观看| 国产亚洲欧美在线一区二区| 精品熟女少妇八av免费久了| 黄色毛片三级朝国网站| 天天躁夜夜躁狠狠躁躁| 大香蕉久久网| 一区二区av电影网| 国产成人精品久久二区二区免费| 欧美+亚洲+日韩+国产| 国产午夜精品久久久久久| 欧美日韩视频精品一区| 黄片播放在线免费| 999久久久精品免费观看国产| 免费一级毛片在线播放高清视频 | 日日爽夜夜爽网站| 国产精品久久久久成人av| 新久久久久国产一级毛片| 99国产综合亚洲精品| 99热网站在线观看| 一本综合久久免费| 精品亚洲成a人片在线观看| 国产三级黄色录像| 免费在线观看黄色视频的| 国产成人免费无遮挡视频| 999久久久国产精品视频| 久久精品人人爽人人爽视色| 精品久久久久久电影网| 一本大道久久a久久精品| 99re在线观看精品视频| 亚洲欧美一区二区三区黑人| 久久精品国产a三级三级三级| 精品福利永久在线观看| netflix在线观看网站| 国产一卡二卡三卡精品| 成人三级做爰电影| 免费黄频网站在线观看国产| 热99re8久久精品国产| 在线观看免费视频日本深夜| 精品免费久久久久久久清纯 | 久久久久网色| 精品久久久久久久毛片微露脸| 久久影院123| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 侵犯人妻中文字幕一二三四区| 国产精品av久久久久免费| 丰满迷人的少妇在线观看| 男女午夜视频在线观看| 91国产中文字幕| 亚洲精品国产色婷婷电影| 国产无遮挡羞羞视频在线观看| 狠狠狠狠99中文字幕| 国产av国产精品国产| 久热这里只有精品99| 两人在一起打扑克的视频| 在线观看www视频免费| 男女之事视频高清在线观看| 亚洲午夜理论影院| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 嫩草影视91久久| 91国产中文字幕| a级毛片黄视频| 免费高清在线观看日韩| 国产精品电影一区二区三区 | 亚洲一码二码三码区别大吗| 搡老熟女国产l中国老女人| 国产精品二区激情视频| 免费av中文字幕在线| 久久久久久久国产电影| 欧美人与性动交α欧美精品济南到| 亚洲精品一卡2卡三卡4卡5卡| 精品国产乱码久久久久久男人| 一级毛片女人18水好多| 免费在线观看完整版高清| av网站在线播放免费| 丝瓜视频免费看黄片| 青草久久国产| 亚洲精品成人av观看孕妇| 亚洲欧美一区二区三区黑人| 欧美人与性动交α欧美软件| 丝袜美腿诱惑在线| 精品高清国产在线一区| 国产精品.久久久| 青青草视频在线视频观看| 久热这里只有精品99| 成年女人毛片免费观看观看9 | 国产xxxxx性猛交| 精品久久久久久电影网| 丝瓜视频免费看黄片| 国产av又大| 亚洲专区国产一区二区| 高清黄色对白视频在线免费看| 9191精品国产免费久久| 精品久久久久久久毛片微露脸| xxxhd国产人妻xxx| 老汉色av国产亚洲站长工具| 91大片在线观看| 在线观看免费视频网站a站| 国产97色在线日韩免费| 精品亚洲乱码少妇综合久久| 极品人妻少妇av视频| 黄色 视频免费看| 超色免费av| 九色亚洲精品在线播放| 在线看a的网站| 一本综合久久免费| 国产精品av久久久久免费| 在线观看免费高清a一片| 在线永久观看黄色视频| 国产精品秋霞免费鲁丝片| netflix在线观看网站| 精品少妇久久久久久888优播| 精品国产亚洲在线| 欧美日本中文国产一区发布| 99精品久久久久人妻精品| 黑人操中国人逼视频| 男女无遮挡免费网站观看| 精品福利永久在线观看| 午夜免费鲁丝| 国产成人系列免费观看| 在线观看免费日韩欧美大片| 丝袜美足系列| 国产精品久久久人人做人人爽| 最黄视频免费看| 岛国在线观看网站| 美女高潮喷水抽搐中文字幕| 国产一区二区在线观看av| 美女国产高潮福利片在线看| 天堂动漫精品| 可以免费在线观看a视频的电影网站| 国产视频一区二区在线看| 色94色欧美一区二区| 免费av中文字幕在线| 91字幕亚洲| 国产黄色免费在线视频| 精品少妇一区二区三区视频日本电影| 性色av乱码一区二区三区2| 丰满少妇做爰视频| 免费女性裸体啪啪无遮挡网站| 欧美乱码精品一区二区三区| 欧美激情高清一区二区三区| 超碰成人久久| cao死你这个sao货| 久热爱精品视频在线9| 亚洲国产欧美一区二区综合| 女同久久另类99精品国产91| 国产成人精品在线电影| 一级片'在线观看视频| 国产精品 欧美亚洲| 一级毛片精品| 免费少妇av软件| 18在线观看网站| 国精品久久久久久国模美| 亚洲成人免费av在线播放| 电影成人av| 国产1区2区3区精品| 日韩精品免费视频一区二区三区| 欧美日韩成人在线一区二区| 欧美日韩国产mv在线观看视频| 日韩精品免费视频一区二区三区| 99精品久久久久人妻精品| 老司机亚洲免费影院| 成年人免费黄色播放视频| 日本撒尿小便嘘嘘汇集6| 精品少妇一区二区三区视频日本电影| 亚洲熟妇熟女久久| 夜夜夜夜夜久久久久| 午夜两性在线视频| 国产有黄有色有爽视频| 制服人妻中文乱码| 亚洲美女黄片视频| 大香蕉久久成人网| 热99国产精品久久久久久7| 国产欧美日韩精品亚洲av| 女人精品久久久久毛片| 999久久久精品免费观看国产| 精品免费久久久久久久清纯 | 国产精品 欧美亚洲| 十八禁高潮呻吟视频| 色精品久久人妻99蜜桃| 精品一区二区三区av网在线观看 | 成人亚洲精品一区在线观看| 丰满人妻熟妇乱又伦精品不卡| 精品人妻1区二区| 成人手机av| 亚洲色图av天堂| 久久婷婷成人综合色麻豆| www.999成人在线观看| 欧美成人免费av一区二区三区 | 国产成人av激情在线播放| 欧美精品高潮呻吟av久久| 久久香蕉激情| 国产精品免费视频内射| 午夜福利在线免费观看网站| 成人18禁高潮啪啪吃奶动态图| 免费黄频网站在线观看国产| 99香蕉大伊视频| 一级黄色大片毛片| 国产伦人伦偷精品视频| 中文字幕av电影在线播放| 久久毛片免费看一区二区三区| 日韩大片免费观看网站| 免费在线观看影片大全网站| 免费看十八禁软件| 成人永久免费在线观看视频 | 久久国产精品影院| 亚洲熟女精品中文字幕| 亚洲全国av大片| av片东京热男人的天堂| 国产精品久久久av美女十八| 国产精品欧美亚洲77777| 18禁国产床啪视频网站| 中文字幕av电影在线播放| 精品久久久久久久毛片微露脸| 午夜福利影视在线免费观看| 国产成人精品无人区| 亚洲专区国产一区二区| 免费观看a级毛片全部| 亚洲专区中文字幕在线| 可以免费在线观看a视频的电影网站| av在线播放免费不卡| 欧美精品av麻豆av| 亚洲精品粉嫩美女一区| 美国免费a级毛片| 一夜夜www| 国产在视频线精品| 亚洲av日韩在线播放| 欧美性长视频在线观看| 狠狠狠狠99中文字幕| 国产老妇伦熟女老妇高清| 久久久久久久精品吃奶| 黄色成人免费大全| 汤姆久久久久久久影院中文字幕| 建设人人有责人人尽责人人享有的| 黄片大片在线免费观看| 精品一区二区三区视频在线观看免费 | 亚洲av成人不卡在线观看播放网| 1024视频免费在线观看| netflix在线观看网站| 欧美黄色片欧美黄色片| 超色免费av| 天天躁日日躁夜夜躁夜夜| 日本黄色日本黄色录像| 正在播放国产对白刺激| 国产精品香港三级国产av潘金莲| 国产一区二区在线观看av| 老汉色∧v一级毛片| 视频在线观看一区二区三区| 国产在视频线精品| 美女高潮到喷水免费观看| 黄片播放在线免费| 在线永久观看黄色视频| 熟女少妇亚洲综合色aaa.| 免费黄频网站在线观看国产| 亚洲国产av新网站| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 亚洲专区字幕在线| 成在线人永久免费视频| 国产1区2区3区精品| 亚洲久久久国产精品| 国产人伦9x9x在线观看| 久热这里只有精品99| 成人三级做爰电影| 波多野结衣av一区二区av| 两人在一起打扑克的视频| 国产在线一区二区三区精| 国产精品美女特级片免费视频播放器 | www日本在线高清视频| 天天添夜夜摸| 色综合婷婷激情| 成人免费观看视频高清| 看免费av毛片| 一二三四社区在线视频社区8| 午夜免费鲁丝| 国产在线视频一区二区| 黄色怎么调成土黄色| 一本一本久久a久久精品综合妖精| 亚洲精品国产一区二区精华液| 搡老岳熟女国产| 成年女人毛片免费观看观看9 | 精品少妇一区二区三区视频日本电影| 最近最新免费中文字幕在线| 手机成人av网站| 久久免费观看电影| 一二三四在线观看免费中文在| 色精品久久人妻99蜜桃| 午夜激情av网站| 大型av网站在线播放| 国产老妇伦熟女老妇高清| 国产免费福利视频在线观看| 热99国产精品久久久久久7| 日韩欧美免费精品| 日韩免费高清中文字幕av| 久久人妻福利社区极品人妻图片| 午夜福利影视在线免费观看| 国产有黄有色有爽视频| 成人永久免费在线观看视频 | 超碰成人久久| 在线看a的网站| 一边摸一边抽搐一进一出视频| 99国产精品一区二区蜜桃av | 一区二区三区激情视频| 这个男人来自地球电影免费观看| 麻豆成人av在线观看| 中亚洲国语对白在线视频| 老司机在亚洲福利影院| 亚洲一码二码三码区别大吗| 色婷婷久久久亚洲欧美| 久久99一区二区三区| a级毛片黄视频| 人成视频在线观看免费观看| 老司机在亚洲福利影院| 久久精品91无色码中文字幕| 午夜激情av网站| 又大又爽又粗| 下体分泌物呈黄色| 最新的欧美精品一区二区| 人人澡人人妻人| 国产午夜精品久久久久久| 啦啦啦在线免费观看视频4| 日本黄色日本黄色录像| 国产精品电影一区二区三区 | 狠狠婷婷综合久久久久久88av| 亚洲自偷自拍图片 自拍| 亚洲欧美一区二区三区黑人| 老司机亚洲免费影院| 久久久久久久精品吃奶| 黄色成人免费大全| 黄片大片在线免费观看| 美女视频免费永久观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 大型黄色视频在线免费观看| 日本vs欧美在线观看视频| 精品亚洲乱码少妇综合久久| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| 可以免费在线观看a视频的电影网站| 午夜福利视频在线观看免费| 国产单亲对白刺激| 99re在线观看精品视频| 夫妻午夜视频| 国产不卡av网站在线观看| 国产在线精品亚洲第一网站| 久久性视频一级片| 欧美日韩精品网址| 女人久久www免费人成看片| 色播在线永久视频| 免费高清在线观看日韩| 成人永久免费在线观看视频 | av不卡在线播放| 啪啪无遮挡十八禁网站| 精品少妇一区二区三区视频日本电影| 亚洲五月婷婷丁香| 免费在线观看影片大全网站| 国产欧美日韩综合在线一区二区| 天天躁夜夜躁狠狠躁躁| 99热网站在线观看| 精品国产一区二区三区四区第35| svipshipincom国产片| 免费在线观看完整版高清| 国产精品电影一区二区三区 | 日韩大码丰满熟妇| 每晚都被弄得嗷嗷叫到高潮| 极品人妻少妇av视频| 巨乳人妻的诱惑在线观看| 成人18禁在线播放| 99re6热这里在线精品视频| 国产成人免费无遮挡视频| 99国产综合亚洲精品| 久久久久网色| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 操美女的视频在线观看| 国产真人三级小视频在线观看| 成人影院久久| videosex国产| 日韩免费高清中文字幕av| 欧美在线一区亚洲| 水蜜桃什么品种好| 久久天躁狠狠躁夜夜2o2o| 777久久人妻少妇嫩草av网站| 天天操日日干夜夜撸| 欧美日韩av久久| 午夜福利在线观看吧| 国产视频一区二区在线看| 亚洲五月婷婷丁香| 久久婷婷成人综合色麻豆| 欧美日韩一级在线毛片| 伊人久久大香线蕉亚洲五| 精品久久久久久电影网| 国产日韩欧美亚洲二区| 9色porny在线观看| 在线天堂中文资源库| 搡老熟女国产l中国老女人| 人成视频在线观看免费观看| 国产精品亚洲一级av第二区| 欧美精品一区二区免费开放| 老熟妇仑乱视频hdxx| 日韩一卡2卡3卡4卡2021年| 精品视频人人做人人爽| 久久人人爽av亚洲精品天堂| 五月开心婷婷网| 五月天丁香电影| 在线观看免费日韩欧美大片| 99久久人妻综合| 国产激情久久老熟女| 精品人妻熟女毛片av久久网站| 国产亚洲精品一区二区www | 久久久国产成人免费| 少妇精品久久久久久久|