• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PbF2∶Er 3+,Yb3+熒光粉的制備和多波長響應(yīng)雙向轉(zhuǎn)換發(fā)光機(jī)理

    2019-04-12 02:47:04馬小易王一帆嚴(yán)通廷柏朝暉
    無機(jī)化學(xué)學(xué)報 2019年4期
    關(guān)鍵詞:朝暉材料科學(xué)熒光粉

    馬小易 李 彪 王一帆 胡 盼 嚴(yán)通廷 柏朝暉

    (長春理工大學(xué)材料科學(xué)與工程學(xué)院,長春 130022)

    0 Introduction

    Over the past few decades,lanthanide-doped luminescence materials exhibited promising prospects for application in upconversion lasers[1-2],display technologies[3-4],medical treatment[5-6],anti-counterfeit technologies[7-8]and solar cells[9-10].In particular,the application of up-and down-conversion phosphors to solar cells has attracted the attention of a large number of scientific researchers[11-12].In past study,ultraviolet(UV)and infrared light conversion to visible light were realized by doping of different lanthanide ions in different materials[13-16].Yu et al.[17]prepared Er3+-Yb3+co-doped TiO2-xFxupconversion luminescence powder via hydrothermal method. They applied the upconversion-TiO2-xFxinto dye sensitized solar cell(DSSC)and obtained an overall energy conversion efficiency of 7.08%.Zhang et al.[18]prepared SrAl2O4∶Eu2+,Dy3+powder via a combustion method,spectral characterization showed that it can convert ultraviolet(200~400 nm)to visible luminescence (520 nm).The solar conversion efficiency for a DSSC with SrAl2O4∶Eu2+,Dy3+doping (weight ratio of phosphor powder to TiO2was 7∶100)reached 7.938%.However,research on the fluorescence properties of bidirectional conversion luminescent materials that simultaneously convert ultraviolet and infrared light into visible light have rarely been reported.

    Compared with other matrix materials,such as oxysulfide and NaYF4,lead fluoride (PbF2)have the advantage of excellent fluorescence response under 1 064 and 1 550 nm excitation,and are a fair good host material for bidirectional conversion luminescence[19-20].In this work,we reported a bidirectional conversion PbF2∶Er3+,Yb3+phosphors,which could convert both UV light (378 nm)and infrared light(808,980,1 064 and 1 550 nm)into visible light(blue,green and red).Therefore,the as-prepared phosphors could improve conversion efficiency of solar cells and be widely used in solar cells.The bidirectional conversion PbF2∶Er3+,Yb3+phosphors were synthesized by the high temperature solid-state reaction method.The luminescence properties of the phosphors were analyzed.In addition,the down-conversion (DC)and up-conversion(UC)multi-wavelength sensitive luminescence mechanisms of the samples were discussed in detail.

    1 Experimental

    1.1 Preparation

    PbF2∶Er3+,Yb3+bidirectional conversion phosphors were prepared via the high temperature solid-state reaction method.PbF2(99.99%),Na2SiF6(99.99%)were purchased from Shanghai Sinopharm Chemical Reagent Company.Er2O3(99.99%),YbF3(99.99%)were purchased from Hawei Ruike Chemical Reagent Company,HNO3(65%~68%(w/w)),HF(40%(w/w))and anhydrous ethanol were purchased from Beijing Chemical Company.Firsly,excess diluted HNO3was added into the Er2O3and stirred on a magnetic stirrer until the oxides were completely dissolved.After cooling,poured the mixed solution into a plastic cup and HF was added into the solution to obtain ErF3precipitates,and washed several times.Then,the molar ratio of PbF2∶ErF3∶YbF3was 80∶2∶18 according to the composition of the compound.Reactants were weighed according to a predetermined molar ratio and thoroughly ground in an agate mortar.Finally,the base materials were placed in a crucible covered with NaSiF6,heated to predetermined temperature(650℃)under a fluoride atmosphere provided by the decomposition of NaSiF6and sintered for a certain time(1.5 h)to get the(Pb0.80Er0.02Yb0.18)F2phosphors.

    1.2 Measurements

    The XRD patterns were performed using a Rigaku D/max IIB diffractometer which recorded diffraction angel(2θ)from 20°to 80°,Cu Kα1(λ=0.154 06 nm)was used as the radiation source with an accelerating voltage of 40 kV and a working current of 20 mA.The structure refinement data was collected through using the general structure analysis system(GSAS)software.The emission spectra and the intensity-power curves were measured with UV-Vis spectrophotometry using RF-5301PCcoupled 808,980,1 064 and 1 550 nm laser.All the measurement data were performed at room temperature.

    2 Results and discussion

    2.1 Phase identification and crystal structure

    Fig.1 (a)XRD pattern of the(Pb0.80Er0.02Yb0.18)F2 sample;(b)Rietveld refinement of the XRD pattern of(Pb0.80Er0.02Yb0.18)F2 sample;(c)Crystal structure representation of PbF2

    Fig.1(a)gives XRDpatternof the(Pb0.80Er0.02Yb0.18)F2phosphors.It is seen that all peak positions were consistent with the standard PDF No.06-0251 of cubic PbF2.The XRD results indicated that the synthesized sample was a cubic PbF2structure with the space group of Fm3m(225).The Er3+and Yb3+ions have successfully entered PbF2host lattice by occupying the Pb2+sites;there was no impurity phase,which demonstrated that the synthetic crystal was pure phase.Fig.1(b)displays the refinement pattern of the(Pb0.80Er0.02Yb0.18)F2phosphor.The final refinement converged with indicator of goodness of fitχ2=1.858,with weighted profile factor Rwp=9.63%,and with profile factor Rp=7.76%,Thecomparison between experimental and calculated results illustrated that sample could better crystallize in the cubic.Fig.1(c)gives the crystal structure of PbF2and 8 coordination of Pb2+,which are distributed in face-centered cubic (FCC)crystal structure.

    Table 1 presents the refinement result and structure parameter for (Pb0.80Er0.02Yb0.18)F2phosphors.According to the data acquired by refinement,the occupation ratio of the Er3+/Yb3+ions was 14.08%of the Pb2+position,indicating that the doped Er3+/Yb3+ions could effectively enter the PbF2lattice cell.The lattice parameters are a=b=c=0.585 7 nm,α=β=γ=90°.The crystal structure of resultant sample shifted to high angle in comparison with the peak positions of the standard PbF2crystallographic data (PDF No.06-0251,a=b=c=0.594 nm, α=β=γ=90°),which was mainly causeviabigger radius(Pb2+:0.143 nm)replaced by smaller radius(Er3+:0.117 nm,Yb3+:0.113 nm).

    The Er3+and Yb3+ions entered PbF2lattice to replace Pb2+ions to form ErPband YbPb·and FF,and the F-ions in ErF3and YbF3entered PbF2lattice to replace F-ions to form FF.The excess F-ions entered[F8]interspace in unit cell,forming an interstitial Fi′.Because the valence of both Er3+and Yb3+ions are higher than that of Pb2+ions,charge imbalance is produced.The imbalance of charge between replacement and substituted ions leads to formation of vacant ions or interstitial ions[21-22].The possible reactions when Er3+and Yb3+ions entered into lattice sites of Pb2+ions were displayed below:

    The relative difference between the ionic radius of Er3+and Yb3+ions and the ionic radius of Pb2+ionsis not more than 15%,which improves the tendency of replacement.More importantly,the presence of[F8]interspace in PbF2cell creates favorable conditions for the entry of F-(0.133 nm)into the lattice either in size(the length of[F8]interspace is 0.297 nm)or energy,so that the interstitial ion is in well coordination with interspace position.

    Table 1 Refinement results and structure parameters for(Pb0.80Er 0.02Yb0.18)F2

    2.2 Luminescent properties under excitation of 378 nm

    Fig.2 exhibits the emission and excitation spectrum of the optimal sample.Fig.2a shows the excitation spectrum of the PbF2∶Er3+,Yb3+sample at 550 nm,which could be excited from the UV to the visible region,and highest peak intensity of the excitation spectrum at 378 nm.Therefore,to obtain a higher DC efficiency,the DC luminescence property of PbF2∶Er3+,Yb3+system at 378 nm excitation was studied.Fig.2b presents the DC spectrum of the sample excited at 378 nm.It could be divided into three parts:(1)A blue emission band with an emission peak near 409 nm;(2)Both peaks are located at the green light emission band near 521 and 550 nm;(3)A red-light emission center around 650 nm.The emission peaks at~409,~521,~550 and ~650 nm correspond to the2H9/2→4I15/2,2H11/2→4I15/2,4S3/2→4I15/2and4F9/2→4I15/2transitions,respectively.

    Fig.3 describes the Yb3+-Er3+energy-level diagram of the sample excited at 378 nm.First,the electrons could be pumped from4I15/2to4G11/2by absorbing the energy of near-ultraviolet light at 378 nm,and Er3+ions transfered part of the energy to Yb3+ions,producing Yb3+∶2F5/2→2F7/2transition.Then,because of the narrow energy gap between the4G11/2and2H9/2,the4G11/2energy level in Er3+could easily relax to the2H9/2by non-radiation relaxation.Subsequently,particles in2H9/2returned to4I15/2generating blue luminescence around 409 nm.At this time,Er3+ions at the2H9/2level might relax to the2H11/2,4S3/2,4F9/2levels by the fast multiphoton process[23-24].In the end,Er3+ions decayed from2H11/2,4S3/2and4F9//2to the ground state4I15/2and emitted 521,550 and 650 nm red-green light emission,respectively.

    Fig.2 Emission and excitation spectra of(Pb0.80Er0.02Yb0.18)F2 sample

    Fig.3 Er3+-Yb3+energy level diagram excited at 378 nm

    The cross relaxation (CR1)process results in particles significant reduction at the Er3+ion4S3/2level.Consequently,the emission intensity at 550 nm reduced.The CR2processleadstoasignificant increase in the population of the4F9/2level of Er3+ions.As a result,the 650 nm luminescence intensity was relatively enhanced.

    2.3 Upconversion spectral analysis

    Fig.4 depicts a series of UC emission spectra of optimal sample excited by different wavelength infrared light.Under excitation of 1 064,980 and 808 nm lasers respectively,the spectra were presented an intense green emission at 540~550 nm as the result of the4S3/2→4I15/2transition of Er3+ions,the weak green emission at 521 nm derived from the2H11/2→4I15/2transition while the weak red emission at 650~665 nm originated from the4F9/2→4I15/2transition.Compared with other luminescence emission spectra,the phosphor presented an intense red emission under 1 550 nm excitation.

    Fig.4 Emission spectra of the(Pb0.80Er0.02Yb0.18)F2 excited at different wavelengths

    2.3.1 Luminescent mechanism analysis under 1 064 nm excitation

    It is known that the emission spectrum of the trivalent rear earth (RE)ions doped UC material varies with excitation power[25].To identify the relative mechanism of the three UC emissions of Er3+ions excited at 1 064 nm at room temperature for the(Pb0.80Er0.02Yb0.18)F2sample.The dependence of emission intensities versus pump power is presented in Fig.5.The result is illustrated in the intensity-power plots,and the values of slopesfor the~521 nm (green),~550 nm(green)and~650 nm(red)were approximately to 2,indicating that the two-photon process was mainly responsible for the observed UC emission under 1 064 nm excitation.

    Fig.5 Intensity-power plots of the green and red emissions versus excitation power at 1064 nm

    Fig.6 illustrates the simplified Er3+-Yb3+energy level diagram of sample under excitation of 1 064 nm.Er3+ion acted as an activator and was the luminescent center of the sample.It is observed that the2F5/2state of Yb3+ions was very close to the4I11/2state of Er3+ions,therefore,an effective energy transmission process could take place between Er3+and Yb3+ions.Firstly,the2F5/2state of Yb3+ions could be populated through absorbing 1 064 nm infrared light.And the Er3+ion transited from4I15/2to4I11/2level by ground state absorption(GSA)and energy transfer(ET1)from Yb3+ions.Then,the electrons could be pumped from4I11/2state of Er3+ions to4F7/2state through ET2process:

    Fig.6 Er3+-Yb3+energy level diagram excited at 1 064 nm

    Furthermore,Er3+ions at the4F7/2level might relax to the2H11/2and4S3/2levels by the fast-multiphoton process.Subsequently,Er3+ions at the2H11/2and4S3/2energy level returned to the ground state4I15/2while emitting green light at 521 and 550 nm,respectively.In addition,Er3+ionsat the4I11/2level possibly underwent a non-radiative transition to reach the4I13/2levels,and the Er3+ion transited from the excited state4I13/2to4F9/2level by excited state absorption(ESA)and ET3:

    Finally,the electron at the4F9/2level returns to4I15/2ground state and emitted weak red fluorescence at 650 nm.Furthermore,the CR1and CR2processamong Er3+ions enhanced the UC luminescence efficiency of the sample[26]:

    2.3.2 Luminescent mechanism analysis under 1 550 nm excitation

    Fig.7 depicts the measured power dependence of the three UC emissions of Er3+ions excited by 1 550 nm at room temperature for the(Pb0.80Er0.02Yb0.18)F2sample.The result is illustrated in the intensity-power plots,the green and red emissions exhibited a subcubic(2.675,2.60 and 2.873)power-law behavior for the excitation at 1 550 nm,which indicated that three pumping photons around 1 550 nm participate in the UCexcitation process.

    Fig.8 presents the energy-level diagram of the sample excited by 1 550 nm.Yb3+ions could not absorb 1 550 nm infrared light,hence the UC luminescence should depend on the absorption process of Er3+ions and theenergy transfer up-conversion(ETU)process among Er3+ions.When excited by 1 550 nm infrared light,Er3+ions were promoted from the ground state4I15/2to the first excited state4I13/2by GSA.Subsequently,the Er3+ion transited from the excited state4I13/2to4I9/2level by ESA1and ETU1[27-28]:

    Fig.7 Intensity-power plots of the green and red emissions versus excitation power at 1 550 nm

    Fig.8 Er3+-Yb3+energy level diagram excited at 1 550 nm

    Then,the electrons at4I9/2state could transit to2H11/2state through ESA2and transit to4I11/2level by the no-radiation relaxation process,and through the ETU2process transitions to the higher excited state2H11/2:

    Finally,the Er3+ions at the2H11/2state relaxed to the4S3/2and4F9/2level by the fast-multiphoton process.The radiation decayed from the2H11/2,4S3/2and4F9/2states to the ground state and generated UC luminescence at 521,540~550 nm and 650~665 nm,respectively.

    Compared with other luminescence emission spectra,the red emission of the sample under 1 550 nm excitation was increased.The increase of the red component in the sample was mainly due to the ETU3between the Er3+ion at the4I13/2and4I11/2level[29-30],resulting in an increase of Er3+ions at the4F9/2level.

    2.3.3 Luminescent mechanism analysis under 980 nm excitation

    The dependence excited by 980 nm is illustrated in the intensity-power plots in Fig.9.The green and red emissions exhibited a sub-square power-law behavior for the excitation at 980 nm,the values of slopes for the ~521 nm green emission,~550 nm green emission and~650 nm red emission are 1.857,1.920 and 1.831,respectively.It is suggested that two pumping photons around 980 nm participate in the UCexcitation process.

    Fig.9 Intensity-power plots of the green and red emissions versus excitation power at 980 nm

    Fig.10 Er3+-Yb3+energy level diagram excited at 980 nm

    Fig.10 describes the simplified Yb3+-Er3+energylevel diagram of the sample under excitation of 980 nm.First,when the sample was irradiated by 980 nm laser,Yb3+ions transited from theground state2F7/2to2F5/2level.Then,the Er3+ion transited from the ground state to4I11/2was through either GSA or ET1process between Yb3+and Er3+ions:

    Similarly,the Er3+ion transited from the excited state4I11/2to4F7/2level by ESA1,CR1,ET2:

    In addition,Er3+ions at the4F7/2level relaxed to the2H11/2and4S3/2levelsby thefast-multiphoton process.Then,the radiation decayed from the2H11/2and4S3/2levels to the4I15/2ground state and generated green UC emission at 521 and 550 nm,respectively.Red UC emission mainly came from the population of4F9/2level of Er3+ions[31-32].The Er3+ions at4I11/2relaxed to the4I13/2by the fast-multiphoton processand then transit to4F9/2level by ESA2,CR2,CR3and ET3:

    Finally,the electronic at4F9/2level decayed to4I15/2ground state and emitted red fluorescence at 650 nm.In summary,the red UC luminescence intensity was not as strong as the green emission,which was due to the large energy gap between the4S3/2and4F9/2energy levels,making it difficult to relax without radiation.

    2.3.4 Luminescent mechanism analysis under 808 nm excitation

    Fig.11 presents the energy-level diagram of the sampleexcited at808 nm.Firstly,Er3+ionsarepromoted from4I15/2to4I9/2by absorb an 808 nm photon(GSA).Since4I9/2,4I11/2and4I13/2belonged to different spectral branches of the same spectral term,Er3+ions at the4F9/2level relaxed to the4I11/2and4I13/2levels by noradiation transitions process.Subsequently,the Er3+ions at4I13/2could absorb an 808 nm photon to transit to4F7/2and4S3/2level(ESA1,ESA2).Then,the radiation decayed from the4S3/2levels to the4I15/2and generated green UC emission 550 nm.In addition,the CR2phenomenon caused energy transfer between ions at the4I11/2level,Er3+ions at the4F7/2level might relax to2H11/2by the fast-multiphoton process,the radiation decayed from the2H11/2levels to the4I15/2generateed weak green UC emission at 521 nm.Finally,another CR1between4I11/2and4I13/2level resulted in a large accumulation of ions at the4F9/2level,the electronic at4F9/2level decayed to4I15/2and emitted red fluorescence at 650 nm[33].

    Fig.11 Er3+-Yb3+energy level diagram excited at 808 nm

    3 Conclusions

    In summary,we report on the bidirectional conversion properties of Er3+-Yb3+co-doped PbF2prepared by high temperature solid-state reaction method,which may be used for enhancement of the conversion efficiency of solar cells. XRD and structure refinement data showed the Er3+/Yb3+occupied solely Pb2+sites in the crystal host.Through analysis the DC and UC multi-wavelength sensitive luminescence mechanisms of the phosphor,it is found that the resultant phosphor could simultaneously convert both UV light(378 nm)and infrared light(808,980,1 064 and 1 550 nm)into visible light(blue,green and red)which could improve conversion efficiency of solar cells.

    Acknowledgments:This project is financially supported by the National Natural Science Foundation of China(Grant No.51602027 and 61307118),the Education Project of Jilin Provincial Department,China(Grant No.JJKH20170607KJ).

    Compliance with ethical standards:Conflict of interest:The authors declare that they have no conflict of interest.

    猜你喜歡
    朝暉材料科學(xué)熒光粉
    中海油化工與新材料科學(xué)研究院
    CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT*
    材料科學(xué)與工程學(xué)科
    寬帶激發(fā)BaBi2(MoO4)4:Eu3+熒光粉的制備與發(fā)光性能
    三只蚊子
    福建工程學(xué)院材料科學(xué)與工程學(xué)科
    《材料科學(xué)與工藝》2017年優(yōu)秀審稿專家
    硼酸、Li+摻雜對YAG:Ce3+熒光粉的影響
    XPS在YAG∶Ce3+熒光粉中Ce3+半定量分析方面的應(yīng)用
    唆拜(外一首)
    文藝論壇(2015年23期)2015-03-04 07:57:15
    国产不卡一卡二| 老司机福利观看| 亚洲三级黄色毛片| 国产熟女欧美一区二区| 日日撸夜夜添| 亚洲五月天丁香| 夜夜夜夜夜久久久久| 天堂av国产一区二区熟女人妻| 国产精品久久久久久久电影| 久久久久久久久久黄片| 在线观看午夜福利视频| 久久精品国产鲁丝片午夜精品| 黄色一级大片看看| 一区福利在线观看| 两个人视频免费观看高清| 青春草国产在线视频 | 国产成人精品久久久久久| 日韩制服骚丝袜av| 两个人视频免费观看高清| 成人鲁丝片一二三区免费| 国产在线男女| 日本五十路高清| 成年女人永久免费观看视频| 51国产日韩欧美| 久久久a久久爽久久v久久| 三级男女做爰猛烈吃奶摸视频| 国产不卡一卡二| 狠狠狠狠99中文字幕| 国产精品一二三区在线看| 午夜视频国产福利| 欧美+亚洲+日韩+国产| 久久精品影院6| 99久久精品国产国产毛片| 中文字幕人妻熟人妻熟丝袜美| 国语自产精品视频在线第100页| 亚洲成人中文字幕在线播放| 在线观看美女被高潮喷水网站| 少妇人妻精品综合一区二区 | 美女国产视频在线观看| 久久九九热精品免费| 99久久成人亚洲精品观看| 少妇高潮的动态图| 久久久久久伊人网av| 亚洲婷婷狠狠爱综合网| 色尼玛亚洲综合影院| 色综合色国产| 色吧在线观看| 插阴视频在线观看视频| 中文字幕久久专区| 亚洲精品乱码久久久久久按摩| 亚洲国产欧洲综合997久久,| 欧美xxxx性猛交bbbb| 日韩一区二区视频免费看| 两个人的视频大全免费| 国产黄a三级三级三级人| 久久久国产成人免费| 天堂网av新在线| 久久精品91蜜桃| 99热只有精品国产| 最近2019中文字幕mv第一页| 麻豆成人av视频| 村上凉子中文字幕在线| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 国产高潮美女av| 国产一区亚洲一区在线观看| 狂野欧美白嫩少妇大欣赏| 国产激情偷乱视频一区二区| 22中文网久久字幕| 精品久久国产蜜桃| 美女 人体艺术 gogo| 国产在线男女| 欧美日韩精品成人综合77777| 两个人视频免费观看高清| 中文字幕免费在线视频6| 久久久久国产网址| 久久中文看片网| 高清毛片免费观看视频网站| 美女被艹到高潮喷水动态| 免费看光身美女| 日韩欧美精品v在线| 日韩成人av中文字幕在线观看| 免费看日本二区| 国产探花极品一区二区| 国产成人91sexporn| 国产成人影院久久av| 丝袜喷水一区| 日本黄大片高清| 哪里可以看免费的av片| 成年免费大片在线观看| 国产精品99久久久久久久久| 日韩欧美一区二区三区在线观看| 久久久久网色| av在线亚洲专区| 婷婷色综合大香蕉| 久久午夜福利片| 国产av一区在线观看免费| 99视频精品全部免费 在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产免费男女视频| 99热网站在线观看| 人妻少妇偷人精品九色| 国产成人freesex在线| 男人舔女人下体高潮全视频| 久久九九热精品免费| 国产欧美日韩精品一区二区| 亚洲精品日韩av片在线观看| 日日摸夜夜添夜夜爱| 久久精品国产鲁丝片午夜精品| 国产亚洲精品久久久久久毛片| 爱豆传媒免费全集在线观看| 麻豆乱淫一区二区| 一个人看的www免费观看视频| 精品一区二区免费观看| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看| 九九久久精品国产亚洲av麻豆| 高清毛片免费观看视频网站| 久久这里有精品视频免费| 国产亚洲5aaaaa淫片| 观看美女的网站| 午夜福利成人在线免费观看| 身体一侧抽搐| 久久久久久久午夜电影| 国产精品久久久久久久久免| 成年女人看的毛片在线观看| 一级二级三级毛片免费看| 晚上一个人看的免费电影| 亚洲av二区三区四区| 亚洲一级一片aⅴ在线观看| 久久久国产成人免费| 亚洲欧美成人精品一区二区| 草草在线视频免费看| 一本久久精品| 国产精品野战在线观看| 色噜噜av男人的天堂激情| videossex国产| 成人综合一区亚洲| 久久99蜜桃精品久久| 99国产精品一区二区蜜桃av| 精品国内亚洲2022精品成人| av免费观看日本| 欧美成人a在线观看| 久久人妻av系列| 国产三级中文精品| 色5月婷婷丁香| www日本黄色视频网| 岛国在线免费视频观看| 国产大屁股一区二区在线视频| 国产免费一级a男人的天堂| 国产视频首页在线观看| 中文字幕制服av| 亚洲电影在线观看av| 亚洲精品国产成人久久av| 亚洲欧美精品综合久久99| 欧美日韩综合久久久久久| 黑人高潮一二区| 亚洲人与动物交配视频| 天天一区二区日本电影三级| 一进一出抽搐gif免费好疼| a级毛片a级免费在线| 一级毛片我不卡| 成年免费大片在线观看| 日本-黄色视频高清免费观看| 欧美一区二区国产精品久久精品| 久久精品国产鲁丝片午夜精品| 12—13女人毛片做爰片一| 久久综合国产亚洲精品| 中文字幕久久专区| 哪个播放器可以免费观看大片| 一区二区三区免费毛片| 欧美日本视频| 久久久久久久久久黄片| 女的被弄到高潮叫床怎么办| 一区二区三区高清视频在线| 日韩av在线大香蕉| 国产成人午夜福利电影在线观看| 亚洲av男天堂| 久久99热6这里只有精品| h日本视频在线播放| 久久人人爽人人爽人人片va| 久久久国产成人精品二区| 亚洲成人av在线免费| 国产成人福利小说| 成人亚洲精品av一区二区| 永久网站在线| 欧美激情在线99| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 最近2019中文字幕mv第一页| 插逼视频在线观看| 超碰av人人做人人爽久久| 国产在视频线在精品| 日韩一本色道免费dvd| 岛国在线免费视频观看| 国产精品人妻久久久久久| 日韩中字成人| 51国产日韩欧美| 久久久久久久久久久免费av| 中国国产av一级| 精品日产1卡2卡| 永久网站在线| 欧美在线一区亚洲| 国产伦理片在线播放av一区 | 久久久久网色| 人人妻人人澡人人爽人人夜夜 | 91午夜精品亚洲一区二区三区| 嫩草影院新地址| 日韩大尺度精品在线看网址| 精品国产三级普通话版| 午夜激情欧美在线| 色哟哟哟哟哟哟| 日本av手机在线免费观看| 国产高清三级在线| avwww免费| 可以在线观看的亚洲视频| 国产黄片美女视频| 欧美日韩乱码在线| 看黄色毛片网站| 亚洲美女视频黄频| 中出人妻视频一区二区| 亚洲精品乱码久久久久久按摩| 久久午夜福利片| 日韩在线高清观看一区二区三区| 国产av不卡久久| 国产精品蜜桃在线观看 | 能在线免费看毛片的网站| 国产午夜精品一二区理论片| 亚洲av免费在线观看| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 国产成人a∨麻豆精品| 午夜视频国产福利| 亚洲av成人av| 99久久成人亚洲精品观看| 自拍偷自拍亚洲精品老妇| 毛片女人毛片| 网址你懂的国产日韩在线| 久久久精品94久久精品| 天堂网av新在线| 男人舔女人下体高潮全视频| 欧美3d第一页| 国产乱人视频| 一本一本综合久久| 日本成人三级电影网站| 两个人视频免费观看高清| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| 人妻系列 视频| 全区人妻精品视频| 午夜福利在线观看吧| 国产成人一区二区在线| 成年女人永久免费观看视频| 久久久精品大字幕| 久久中文看片网| 99久国产av精品| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 黄色日韩在线| 欧美激情在线99| 欧美高清成人免费视频www| 我的女老师完整版在线观看| 中文字幕免费在线视频6| 亚洲精品久久久久久婷婷小说 | 麻豆av噜噜一区二区三区| 寂寞人妻少妇视频99o| 久久6这里有精品| 免费av观看视频| 久久久久久久久久黄片| 一本精品99久久精品77| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| 麻豆乱淫一区二区| 男的添女的下面高潮视频| 一本久久精品| 女同久久另类99精品国产91| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 精品久久国产蜜桃| 免费人成在线观看视频色| 久久精品国产清高在天天线| 精品久久久久久成人av| 国产不卡一卡二| 亚洲成a人片在线一区二区| 12—13女人毛片做爰片一| 18禁裸乳无遮挡免费网站照片| 免费看光身美女| 综合色av麻豆| 99久久精品一区二区三区| 91麻豆精品激情在线观看国产| 老司机福利观看| 最好的美女福利视频网| 少妇熟女欧美另类| 亚洲激情五月婷婷啪啪| 成人av在线播放网站| 在线观看66精品国产| 亚洲av第一区精品v没综合| 中文字幕av在线有码专区| 黑人高潮一二区| 色尼玛亚洲综合影院| 亚洲成人中文字幕在线播放| 美女高潮的动态| 又粗又爽又猛毛片免费看| 免费观看的影片在线观看| 久久久久久久久久久免费av| 久久韩国三级中文字幕| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 国语自产精品视频在线第100页| 一个人免费在线观看电影| 亚洲人成网站在线观看播放| 亚洲无线在线观看| 国产成人午夜福利电影在线观看| 成人特级av手机在线观看| 丝袜喷水一区| 亚洲精品色激情综合| 天堂影院成人在线观看| 色吧在线观看| 国产精品麻豆人妻色哟哟久久 | 91av网一区二区| 韩国av在线不卡| 一区二区三区高清视频在线| 国产精品一区www在线观看| 亚洲电影在线观看av| 97热精品久久久久久| 不卡视频在线观看欧美| 亚洲av第一区精品v没综合| 国产午夜精品论理片| 日韩强制内射视频| 亚洲精华国产精华液的使用体验 | 国产乱人视频| 亚洲五月天丁香| 国产精品国产高清国产av| 观看美女的网站| 尾随美女入室| 国产精品一及| 亚洲av成人精品一区久久| 91麻豆精品激情在线观看国产| 亚洲精品乱码久久久v下载方式| 少妇被粗大猛烈的视频| 九九爱精品视频在线观看| 久久精品国产自在天天线| 91精品国产九色| 深夜a级毛片| 麻豆乱淫一区二区| 91aial.com中文字幕在线观看| 99热全是精品| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 欧美一区二区精品小视频在线| 国产淫片久久久久久久久| 亚洲国产高清在线一区二区三| 亚洲婷婷狠狠爱综合网| 高清午夜精品一区二区三区 | 久久精品人妻少妇| 少妇人妻精品综合一区二区 | 亚洲四区av| 高清午夜精品一区二区三区 | 波多野结衣高清无吗| 可以在线观看的亚洲视频| 久久久久久九九精品二区国产| 精品一区二区三区视频在线| 中文字幕av成人在线电影| 亚洲人与动物交配视频| 亚洲真实伦在线观看| 久久久久性生活片| 国产午夜精品久久久久久一区二区三区| 久久人人爽人人片av| 国产极品天堂在线| 干丝袜人妻中文字幕| 欧美日韩在线观看h| 美女高潮的动态| 国产午夜精品久久久久久一区二区三区| 色视频www国产| 国产极品天堂在线| 亚洲精品456在线播放app| 日本色播在线视频| 免费黄网站久久成人精品| 少妇被粗大猛烈的视频| 99久久成人亚洲精品观看| 亚洲av.av天堂| 丝袜喷水一区| 麻豆国产97在线/欧美| 精品国内亚洲2022精品成人| 亚洲精品国产成人久久av| 国产亚洲精品av在线| 久久综合国产亚洲精品| 色综合色国产| 性色avwww在线观看| 九九在线视频观看精品| 国内精品宾馆在线| 日韩一本色道免费dvd| 精品无人区乱码1区二区| 日本五十路高清| 女人被狂操c到高潮| 亚洲精品成人久久久久久| 午夜福利成人在线免费观看| 美女国产视频在线观看| 亚洲三级黄色毛片| 国产一区二区激情短视频| 小蜜桃在线观看免费完整版高清| 我要看日韩黄色一级片| 黄色配什么色好看| 午夜老司机福利剧场| 熟女电影av网| 可以在线观看的亚洲视频| 日日啪夜夜撸| 中文字幕制服av| 日韩制服骚丝袜av| 日韩视频在线欧美| 中国国产av一级| 伊人久久精品亚洲午夜| 欧美成人一区二区免费高清观看| 永久网站在线| 在线免费观看不下载黄p国产| 国产三级在线视频| 亚洲人成网站在线播| 久久99热这里只有精品18| 国产综合懂色| 一边亲一边摸免费视频| 91精品一卡2卡3卡4卡| 日本免费a在线| 大香蕉久久网| 国产亚洲精品久久久com| 1000部很黄的大片| 夜夜夜夜夜久久久久| 3wmmmm亚洲av在线观看| 国产亚洲av片在线观看秒播厂 | 国产女主播在线喷水免费视频网站 | 亚洲真实伦在线观看| 国产v大片淫在线免费观看| 国产精品av视频在线免费观看| 国产乱人偷精品视频| 99热只有精品国产| 久久久久久久久中文| 18禁在线播放成人免费| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 91久久精品电影网| 亚洲成a人片在线一区二区| 欧美日韩精品成人综合77777| 国产精品永久免费网站| 长腿黑丝高跟| 亚洲,欧美,日韩| 少妇猛男粗大的猛烈进出视频 | 国产69精品久久久久777片| 精品久久久久久久久亚洲| 99久久人妻综合| 国产精品国产三级国产av玫瑰| 精品国内亚洲2022精品成人| 国产精品女同一区二区软件| 夫妻性生交免费视频一级片| 久久久国产成人免费| 只有这里有精品99| 高清毛片免费看| 五月玫瑰六月丁香| 中国美白少妇内射xxxbb| 色播亚洲综合网| 国产亚洲精品久久久久久毛片| 成人av在线播放网站| 亚洲自拍偷在线| 99久久人妻综合| 久久精品影院6| 国产伦理片在线播放av一区 | 国产免费男女视频| 两个人的视频大全免费| 国产日本99.免费观看| 美女大奶头视频| 亚洲第一电影网av| 亚洲精品粉嫩美女一区| 免费看光身美女| 亚洲va在线va天堂va国产| 日韩欧美 国产精品| 久久久久性生活片| 久久99热这里只有精品18| 亚洲三级黄色毛片| 日本免费a在线| 精品不卡国产一区二区三区| 亚洲成人久久爱视频| 成人三级黄色视频| 色尼玛亚洲综合影院| 一边亲一边摸免费视频| 国产成人freesex在线| 久久久久九九精品影院| 亚洲精品自拍成人| 99热这里只有精品一区| 国产成人福利小说| www.av在线官网国产| 久久九九热精品免费| av在线观看视频网站免费| 亚洲图色成人| 亚洲精品粉嫩美女一区| 看免费成人av毛片| 亚洲最大成人手机在线| 日产精品乱码卡一卡2卡三| 亚洲精品乱码久久久v下载方式| 久久人人爽人人爽人人片va| 日本熟妇午夜| 国内精品宾馆在线| 成人三级黄色视频| 国产日韩欧美在线精品| 国产黄色小视频在线观看| 在线天堂最新版资源| 少妇人妻精品综合一区二区 | 免费看av在线观看网站| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产精品合色在线| 亚洲四区av| 欧美日韩在线观看h| 国产综合懂色| 偷拍熟女少妇极品色| 欧美区成人在线视频| 一级黄片播放器| 久久亚洲精品不卡| 午夜视频国产福利| 亚洲五月天丁香| 久久精品人妻少妇| 国产精品永久免费网站| 91久久精品国产一区二区三区| 网址你懂的国产日韩在线| 久99久视频精品免费| 国产免费男女视频| 男人和女人高潮做爰伦理| 2021天堂中文幕一二区在线观| 99久久成人亚洲精品观看| 亚洲最大成人av| 欧美最新免费一区二区三区| 秋霞在线观看毛片| 国产私拍福利视频在线观看| 久久久久免费精品人妻一区二区| 99riav亚洲国产免费| 国产亚洲5aaaaa淫片| 一本精品99久久精品77| 美女xxoo啪啪120秒动态图| 全区人妻精品视频| 女人被狂操c到高潮| 黑人高潮一二区| 国产精品人妻久久久久久| 97热精品久久久久久| 国产极品天堂在线| 久久久a久久爽久久v久久| 免费大片18禁| 色哟哟哟哟哟哟| 女的被弄到高潮叫床怎么办| 色哟哟·www| 国产毛片a区久久久久| 人妻少妇偷人精品九色| 国产伦精品一区二区三区视频9| 国产av麻豆久久久久久久| 免费人成视频x8x8入口观看| 亚洲精品乱码久久久久久按摩| 在线播放国产精品三级| 99九九线精品视频在线观看视频| 欧美三级亚洲精品| 国产v大片淫在线免费观看| 一边亲一边摸免费视频| 一个人看的www免费观看视频| 少妇人妻精品综合一区二区 | 欧美另类亚洲清纯唯美| 久久久精品94久久精品| 小说图片视频综合网站| 国产日本99.免费观看| 日韩欧美三级三区| 日韩,欧美,国产一区二区三区 | 一级毛片aaaaaa免费看小| 卡戴珊不雅视频在线播放| 国内少妇人妻偷人精品xxx网站| 国产91av在线免费观看| 少妇的逼好多水| 婷婷精品国产亚洲av| 日韩一区二区三区影片| 日韩欧美三级三区| 国内精品一区二区在线观看| 国产麻豆成人av免费视频| www.色视频.com| 麻豆成人av视频| 久久久国产成人免费| 搡女人真爽免费视频火全软件| 亚洲成av人片在线播放无| 午夜福利视频1000在线观看| av国产免费在线观看| 久久这里有精品视频免费| 一边摸一边抽搐一进一小说| 亚洲欧美日韩无卡精品| 国产欧美日韩精品一区二区| 国模一区二区三区四区视频| 亚洲欧美日韩无卡精品| av专区在线播放| 一级毛片我不卡| 97人妻精品一区二区三区麻豆| 啦啦啦韩国在线观看视频| videossex国产| 国产 一区精品| 欧美潮喷喷水| 国模一区二区三区四区视频| 亚洲国产精品sss在线观看| 国产精品野战在线观看| 国产成人影院久久av| 精品久久久久久久久亚洲| 中文字幕av在线有码专区| 禁无遮挡网站| 色噜噜av男人的天堂激情| 亚洲成av人片在线播放无| 男人和女人高潮做爰伦理| 亚洲欧美成人综合另类久久久 | 国产 一区精品| 精品久久久久久久人妻蜜臀av| 最近手机中文字幕大全| 婷婷色综合大香蕉| 欧美高清成人免费视频www| 老司机影院成人| 色综合亚洲欧美另类图片|