• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydrogen bonding networks controllable by the substitution position of tetrathiafulvalene on the pyridine ring

    2019-04-11 02:40:04JingXuYiboLiLejiWngXioyngZhuXunwenXioYnfngGengKeDengQingdoZeng
    Chinese Chemical Letters 2019年3期

    Jing Xu,Yibo Li,Leji Wng,Xioyng Zhu,Xunwen Xio,*,Ynfng Geng,*,Ke Deng,*,Qingdo Zeng,*

    a CAS Key Laboratory of Standardization and Measurement for Nanotechnology,CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology(NCNST),Beijing 100190,China

    b Key Laboratory of Organo-pharmaceutical,Chemistry Institution,Gannan Normal University,Ganzhou 341000,China

    c College of Chemical Engineering,Ningbo University of Technology,Ningbo 315211,China

    Keywords:

    ABSTRACT

    Tetrathiafulvalene(TTF),as a classical building unit,has attracted considerable attention,especially its functional derivatives.Hydrogen bonding(H-bonding)networks are a class of traditional and stable nanostructures,which play an important role in two-dimensional self-assembly and multi-component co-assembly.In this paper,we studied the regulation of H--bonding networks by functional groups in TTF derivatives.The results indicate that the position of pyridine on TTF not only affects their self-assembly structures in different solvents,but also controls the H--bonding networks through different mechanisms.Both para-TTF and meta-TTF molecules show different co-assembled structures with solvents depending on whether or not the presence of carboxylic acid group.On the pre-prepared H-bonding networks formed by famous 1,3,5-tris(10-carboxydecyloxy)-benzene(TCDB)molecule,both para-TTF and meta-TTF disturbed the original network structures with different degree of TCDB deformation.The formed new H-bonding networks with or without TTF derivatives participation are mainly attributed to the position of pyridine in TTF-based molecules.These results would be important for design of exceptional and functional nanostructures starting with the design of building block.

    Tetrathiafulvalene(TTF)and its derivatives have paid much attention due to the strong electron-donating ability which could be used as building blocks to construct new functional materials[1,2].The unique planar conjugated structure,good electronic property and reversible redox property make such organic materials widely used in photoelectric switches,molecular devices,and sensors [3-6].By modifying the TTF core,TTF derivatives with different functional groups and structures can be obtained.In addition to the S···S interaction between sulfur atoms of TTF core in short range,hydrogen bonding and π-π interactions also have the chance to interact with each other,so that these compounds can self-assemble to form ordered structures.

    Among them,the TTF derivatives with pyridine substituent groups have been widely studied[7-9].The pyridine group can be directly attached to the TTF core without any spacer part to increase the electronic coupling between the TTF moiety and the pyridine group.The pyridine group can also well combine with the proton to form hydrogen bonding,which provides a favorable condition for the construction of supramolecular structure.Besides,the N atoms on pyridine group are potential coordination units which can be widely used in nonlinear optics,probes and molecular sensing materials[10-12].The TTF derivative containing pyridine group as an electron donor can be used to study the intramolecular charge transfer.And they can form a complex with the transition metal to form potential electromagnetic materials[13,14].Therefore,it is of great importance to study their arrangement,morphology,molecular orientation and local structural defects on the surface of conductive substrate.These factors may affect the rate of charge transfer and even change the transfer mode of the carrier [15,16].The self-assembly of TTF derivatives at the liquid/solid interface has been studied through scanning tunneling microscope(STM)characterization.For example,the self-assembled structures of a series of TTF derivatives with different substituent groups,numbers of alkyl chains and lengths of alkyl chain have also been studied [17].It can be seen that the TTF derivatives with long alkyl chain easily form long linear and regular self-assembly structure due to the strong van der Waals interaction between alkyl chains and between long alkyl chains and highly oriented pyrolytic graphite(HOPG)substrates.The solvent could affect the lattice parameters of self-assemblies of TTF derivatives with longer alkyl chain,while has little effect on the self-assemblies of TTF derivatives with shorter alkyl chain [17].The self-assembled image of TTF derivative molecules without long alkyl chains cannot be clearly observed by STM [18].The behavior of the TTF core in the selfassembly structure is still worth further exploring.

    We previously found that 4-pyridyl-(ethylenedithio)TTF(EDTTF)could co-assemble into a brand hexagonal network with 1,3,5-tris(10-carboxydecyloxy)-benzene(TCDB)at the 1-phenyloctane(PO)/HOPG interface under ambient condition[19].But,the self-assembly driving force is very weak in that coassembly system,as a result,the nanoporous network would transform into a more stable line structure.In order to obtained a stable grid structure using the small TTF derivative,two TTF derivatives para-TTF and meta-TTF both incorporating two pyridine groups but different positions of N in pyridine were designed,as shown in Scheme 1.In contrast to the EDTTF molecule with only one pyridine group attached to the TTF core,two pyridine groups in para-TTF and meta-TTF would provide a favorable method to construct supramolecular structure because of the enhanced self-assembly driving force.The results showed that para-TTF itself could assemble into an unique network at the PO/HOPG interface,while meta-TTF could not form a network.At the heptanoic acid(HA)/HOPG interface,the para-TTF and meta-TTF molecules organized into regular linear assembly.In addition,the para-TTF adsorbed atop the alkyl chains of TCDB,and meta-TTF co-assembled into an independent hexagonal network,which could be holding for long time.

    The molecular structures of TCDB and solvent such as PO and HA are shown in Fig.S1(Supporting information).The materials used in this work,the preparation and investigation method are presented in supporting information.Firstly,the self-assembly of para-TTF or meta-TTF on HOPG surface have been studied.The large-scale para-TTF nanostructure is shown in Fig.1a.As shown in Fig.S2a(Supporting information),the cross-sectional profile corresponding to the black solid line in Fig.1a indicates that para-TTF lays on the surface to form monolayer.The length of each bright point is approximately 1.52 nm,which is in accordance with the size of one para-TTF molecule.In combination with the size and electron density information of the bright spots,it can be deduced that each bright spot should correspond to one para-TTF molecule.Two kinds of patterns denoted as domain A and domain B coexist.In the closely packed domains A,para-TTF arranged very close with compacted linear pattern.In domains B,there is a clear gap between two para-TTF aligned rows is filled with PO molecules.And high-resolution self-assembly structure of domains A and B is shown in Fig.S2b and c(Supporting information),respectively.The distance between two adjacent para-TTF molecules is estimated to be 0.2 nm,which is in accord with the N···H distance proving that the contacts can indeed be hydrogen bond.Therefore,para-TTF connects with adjacent para-TTF via a pair of C=N···H--C hydrogen bonding through two pyridine groups marked with red circle in domains A.In domain B,the hydrogen bonding between neighboring para-TTF molecules is absent.The benzene ring of solvent PO incorporates interaction with the pyridine of para-TTF molecule and forms one hydrogen bonding as circled region in Fig.1c.Furthermore,van der Waals interactions between the adjacent PO molecules should enhance the stability of the molecular packing in domain B.

    Scheme 1.Chemical structures of TTF-based molecules para-TTF and meta-TTF.

    The molecule para-TTF/PO formed two kinds of structures in domain A and domain B,inwhich PO is absent and present in the coassembly with para-TTF,respectively.The total energy per unit area of domain A and domain B is -0.235 kcal mol-1?-2and -0.348 kcal mol-1?-2,respectively,and indicating that the domain B is the most energetically favorable pattern.Unexpectedly,meta-TTF itself could not assemble into a network at the PO/HOPG interface.Comparedwith para-TTF molecule,the change of Natom position in pyridineofmeta-TTFmoleculecausesthechangeofsterichindrance between molecules.And these weak molecular interactions are quitesmallandtheirassemblystructurecannotexiststably.Itmight be easier to move meta-TTF molecules because N atoms are on both sides of the meta-TTF molecule,so the assembly of meta-TTF molecules is not as simple as we think.

    These two molecules were used to adjust the TCDB H--bonding networks.The TCDB molecule was firstly characterized by STM at the PO/HOPG interface and the traditional TCDB molecular template with rectangular nano cavity was obtained.Next,the PO solution containing the para-TTF molecule is added to the HOPG surface bearing the TCDB meshes.Fig.2 shows a large scale STM image of the para-TTF/TCDB system with many domains of selfassembled structures exsiting.The region pointed by the yellow arrow is the traditional assembly structure of TCDB.The region A corresponds to the para-TTF/TCDB co-assembly structure controlled by the TCDB template.The region B corresponds to the confusion structures.It should be noted that the regular selfassembly structure of para-TTF itself is broken with the coexistence of para-TTF and TCDB molecules.Fig.2b is a high resolution STM image corresponding to the region A.The length of TTF molecule is exactly the same as that of the alkyl chains of TCDB molecule.Fig.S3a(Supporting information)is a profile of the structure corresponding to a straight line in Fig.2a,indicating that the structure of the para-TTF/TCDB co-assembly is obviously higher than that of the TCDB self-assembly structure.The alkyl chain of TCDB can provide TTF site for adsorption,and the carboxyl group at the end of alkyl chain also has the chance to form hydrogen bonding with guest molecules.

    Fig.2c is the corresponding molecular model of the region A.Two para-TTF molecules are connected through weak--C--H···N=C H--bonding interaction as marked in the red circle.The para-TTF molecules are adsorbed on the fully expanded alkyl chains of TCDB.The energy per unit area of the system is calculated to be -0.332 kcal mol-1?-2,while that of the traditional TCDB self-assembly structure is about -0.286 kcal mol-1?-2[19].In comparison with the energy per unit area of domain A and domain B,it shows that under the regulation of TCDB template,the regular self-assembly structure para-TTF has been broken.Some para-TTF molecules will form new structure with TCDB,while the other para-TTF molecules tend to maintain the original self-assembly structure.These two co-existing structures constitute the chaotic structure shown in the region B.The results of theoretical calculation coincide with the experimental phenomena.

    Fig.3 shows a large scale STM image of the meta-TTF/TCDB system.The result is similar to the experimental results of EDTTF molecules [19].Two kinds of patterns denoted as domain I and domain II can be observed.Domain I shows the traditional pure assembly structure of TCDB.While in domain II,a new hexagonal network is observed.Some defects with missing bright point shown by the yellow arrow in Fig.3b could be visualized in the large STM image.As expected,meta-TTF molecules are involved in the process of large scale self-assembly.In domain II,each hexagonal ring consists of six bright points.Since the length of the bright point is about 1.5 nm,we suggest six meta-TTF molecules form a hexagonal ring.It is interesting that all the hexagonal rings are independent of each other.The edge length of the hexagonal network is about 2.1 nm,and the size of nanopores is obviously reduced compared with those formed by EDTTF.And,the hexagonal network still existed even after the sample was holding for 48 h.We suggested that in the meta-TTF/TCDB system the three alkyl chains of TCDB were fully extended.

    Fig.1.(a)Self-assembly of para-TTF molecules at PO/HOPG interface.Tunneling condition:Iset=299.1 pA,Vbias=599.1 mV.(b)and(c)represent calculated molecular model of pattern A and pattern B,respectively.Hydrogen bondings were marked out by red circles.Unit cells were superimposed onto STM images and molecular models of pattern A(a= 1.4±0.1 nm,b=2.8±0.1 nm,α=79±2°)and pattern B(a = 1.8±0.1 nm,b=2.7±0.1 nm,α=57±2°).The parameters were listed in Table S1(Supporting information).

    Fig.2.(a)Large-scale STM image of para-TTF/TCDB system.The yellow arrow marked out the traditional TCDB pattern.Tunneling condition:Iset=299.1 pA,Vbias=599.1 mV.(b)A high-resolution STM image of pattern A.Tunneling condition:Iset=349.1 pA,Vbias=599.1 mV.(c)Calculated molecular model of para-TTF/TCDB system.A unit cell(a=2.5±0.1 nm,b=3.9±0.1 nm,α=94±2°)was superimposed onto para-TTF/TCDB pattern with the corresponding parameters shown in Table S3(Supporting information).Hydrogen bonding C--H···N=C was marked out by the red circle.

    Fig.3.(a)Coexistence of traditional TCDB self-assembly(I)and meta-TTF/TCDB system(II).Tunneling condition:Iset=299.1 pA,Vbias=599.1 mV.(b)A high-resolution STM image of meta-TTF/TCDB pattern.Tunneling condition:Iset=349.1 pA,Vbias=599.1 mV.The distance of L=2.1±0.1 nm.The yellow arrows point out the missing bright points in the packing pattern.(c)Calculated molecular model of meta-TTF/TCDB system.A unit cell(a=4.4±0.1 nm,b=4.4±0.1 nm,α=60±2°)is superimposed onto meta-TTF/TCDB pattern with the corresponding parameters shown in Table S 3.

    As a result,the meta-TTF molecules can be fixed in the TCDB network through O-H ...N hydrogen bond between the carboxyl group of TCDB and pyridine from meta-TTF,as placed in Fig.3c.The total energy per unit area of meta-TTF/TCDB is -0.338 kcal mol-1?-2.The theoretical results also support the stable existence of nanoscale ring structure,which coincides with the experimental phenomena that the nanopores can be observed even the sample was shelving for a long time.From the co-assembly structure,we could conclude that meta-TTF molecules are not embedded in the nanopores of TCDB templates,but it interacts withTCDB toform a newhexagonalnetwork.Across-sectionprofile corresponding to Fig.S3b(Supporting information)shows that the height of the bright spots is higher than that of traditional TCDB network.Therefore,we could conclude that the bright spots correspond to meta-TTF molecules due to the height and as well as the strong electronic density of the core TTF of meta-TTF.

    Actually,the TCDB network can adjust itself in response to different molecular size and shape of the guest [20-22].In addition,great changes for the size and the shape of TCDB cavity have happened during the coordination process [23].Unlike the reported works,the size and shape of these two TTF are the same,and only the position of pyridine is different.So,it would be an interesting work to further investigate why para-TTF preferentially absorbed on the top of the alkyl chains of TCDB while meta-TTF preferentially interact with terminal carboxylic acid group of TCDB.Many small molecules with unique properties will not be able to form stable assembly in a wide range because of intermolecular interaction and weak interaction between molecules and substrates.It is also possible that in the electric field,there is an exclusion between the molecules and the STM probes,therefore the self-assembly structure of the molecule cannot be characterized by STM.

    In these two systems para-TTF/TCDB and meta-TTF/TCDB,we presume PO molecules are not involved in self-assembly.Therefore,solvent do not play a major role in the self-assembly process.To further verify this idea,we dissolved TCDB and TTF molecules into the other high boiling point solvent DMF,which excludes the effects of benzene ring and alkyl chains.The STM experiments were carried out after the DMF was naturally dried in order to exclude the effect of solvent.As a result,it is found that the similar para-TTF/TCDB and meta-TTF/TCDB structures still exist,proving that solvent molecules are not involved in the selfassembly structure.The self-assembled meta-TTF/TCDB structures of at the gas/solid interface is shown in Fig.S4(Supporting information).

    In order to further investigate the effect of pyridine position on the self-assembly,one carboxylic acid solvent HA was used as solvent.And high-resolution self-assembly structure of para-TTF/TCDB and meta-TTF/TCDB is shown in Figs.S5a and c(Suppporting information),respectively.The para-TTF and meta-TTF molecules have regular linear assembly on the HOPG interface with HA.It is concluded from the intermolecular distance that the HA molecules have been involved in the self-assembly process.However,the selfassembly structure of these two molecule is different because of the different positions of N atoms in the pyridine ring.The lattice parameters for para-TTF/HA system and meta-TTF/HA system are measured to be a = 1.9±0.1 nm,b=1.9±0.1 nm,α=59±2°and a = 1.8±0.1 nm,b=1.7±0.1 nm,α=54±2°,which are also summarized in Table S1.Total energy and energy per unit area for para-TTF/HA system and meta-TTF/HA system are summarized in Table S2(Supporting information).

    In combinationwith DFTcalculation,the detailed self-assembled structure based on the observed phenomena were understand,and the molecular models of the corresponding structures are shown in Figs.S5b and d(Supporting information),respectively.The calculated parameters are in good agreement with the experimental data.The para-TTF and meta-TTF molecules interact with the HA molecules through the O--H···N=C hydrogen bond in the selfassembly structure.For the different position of N atoms in the pyridine ring,the spatial conformation of these two co-assembled network issomedifferent.In para-TTF/HAsystem,HAmoleculesare almost parallel to the skeleton of para-TTF.However,in meta-TTF/HA system,there is a certain angle between HA molecules and meta-TTF skeleton.The total energy per unit area of para-TTF and meta-TTF is -0.346 kcal mol-1?-2and -0.485 kcal mol-1?-2,respectively,indicating that meta-TTF/HA system is more stable.

    In summary,the self-assembly behavior pyridine-TTF derivative para-TTF and meta-TTF without long alkyl chains has been detected for the first time.At the PO/HOPG interface,only para-TTF could form two kinds of linear structure,the compact arrangement and the loose arrangement.On the TCDB H-bonding networks,para-TTF and meta-TTF distrubed the H-bonding and induced the formation of new co-assembled structures.The difference is para-TTF located on top of two alkyl chains in the TCDB molecule.On the contrast,meta-TTF could form a grid nanostructure after introduction of TCDB network deformation.At the HA/HOPG interface,para-TTF and meta-TTF can form the stable linear self-assembly structures with HA molecules participating in the self-assembly structure.The self-assembled structures of TTF derivatives obtained by STM scanning showed that the packing of TTF cores can be effectively controlled by changing the substitution on the TTF molecule and the used solvent.This new phenomenon may enhance the understanding of the selfassembly of TTF at interfaces.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Nos.21472029,21773041 and 21372136),Beijing National Laboratory for Molecular Sciences,the Ministry of Science and Technology of China(Nos.2016YFA0200700 and 2017YFA0205001),Ningbo Natural Science Foundation(No.2017A610013).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.09.019

    久久精品国产亚洲av香蕉五月| 免费电影在线观看免费观看| 亚洲无线观看免费| 欧美3d第一页| 精品一区二区三区视频在线| 欧美性猛交黑人性爽| 亚洲熟妇熟女久久| 2021天堂中文幕一二区在线观| 熟女电影av网| 中文字幕av在线有码专区| 久久人妻av系列| 麻豆av噜噜一区二区三区| 少妇人妻精品综合一区二区 | 天堂av国产一区二区熟女人妻| 国产精品一区www在线观看| 国产高清有码在线观看视频| 日韩av不卡免费在线播放| 国产激情偷乱视频一区二区| 亚洲人成网站在线播| 精品欧美国产一区二区三| 成人午夜高清在线视频| 欧美日韩精品成人综合77777| 国产精品一区二区性色av| 日本黄大片高清| 波野结衣二区三区在线| 真实男女啪啪啪动态图| 最近中文字幕高清免费大全6| 欧美精品国产亚洲| 国产精品久久久久久亚洲av鲁大| 黄色日韩在线| 尤物成人国产欧美一区二区三区| 欧美高清性xxxxhd video| 国产片特级美女逼逼视频| 日韩成人av中文字幕在线观看 | 麻豆乱淫一区二区| 超碰av人人做人人爽久久| 观看美女的网站| 免费看美女性在线毛片视频| 国产一区二区三区在线臀色熟女| 长腿黑丝高跟| 久久欧美精品欧美久久欧美| 亚洲色图av天堂| 青春草视频在线免费观看| 99久国产av精品| 俺也久久电影网| 久久精品影院6| 国产一区亚洲一区在线观看| 91麻豆精品激情在线观看国产| 久久精品国产亚洲av香蕉五月| 色哟哟哟哟哟哟| 熟妇人妻久久中文字幕3abv| 亚洲美女搞黄在线观看 | 欧美区成人在线视频| 少妇熟女aⅴ在线视频| 少妇熟女aⅴ在线视频| 成人欧美大片| 亚洲一区高清亚洲精品| 在线免费十八禁| 国产单亲对白刺激| 欧美色视频一区免费| 卡戴珊不雅视频在线播放| 女生性感内裤真人,穿戴方法视频| 国产精品一及| 国产三级中文精品| 插逼视频在线观看| 国产精品电影一区二区三区| 国产精品野战在线观看| 成人二区视频| 久久精品夜色国产| 男女视频在线观看网站免费| 五月玫瑰六月丁香| 深夜a级毛片| 人人妻人人澡人人爽人人夜夜 | 高清毛片免费观看视频网站| 九色成人免费人妻av| 色综合亚洲欧美另类图片| 一进一出抽搐gif免费好疼| 一进一出抽搐gif免费好疼| 99久久九九国产精品国产免费| 大又大粗又爽又黄少妇毛片口| 午夜精品国产一区二区电影 | 韩国av在线不卡| 秋霞在线观看毛片| 免费高清视频大片| 久久久久久久久大av| 亚洲欧美精品自产自拍| 搞女人的毛片| 免费人成在线观看视频色| 老司机午夜福利在线观看视频| 老司机福利观看| 亚洲三级黄色毛片| 成熟少妇高潮喷水视频| 色视频www国产| 国产亚洲精品久久久com| 一级毛片久久久久久久久女| 长腿黑丝高跟| 又粗又爽又猛毛片免费看| 亚洲欧美日韩东京热| 又黄又爽又免费观看的视频| 久久久国产成人免费| 噜噜噜噜噜久久久久久91| 中文字幕av成人在线电影| 精品熟女少妇av免费看| 国产成人freesex在线 | 蜜臀久久99精品久久宅男| av在线蜜桃| 变态另类成人亚洲欧美熟女| 国产精品电影一区二区三区| 淫妇啪啪啪对白视频| 别揉我奶头 嗯啊视频| 亚洲精品456在线播放app| 老司机影院成人| 日韩av在线大香蕉| 成人午夜高清在线视频| 亚洲最大成人av| 亚洲av免费在线观看| 亚洲美女黄片视频| 精品一区二区免费观看| 色综合亚洲欧美另类图片| 亚洲真实伦在线观看| 国产av在哪里看| av.在线天堂| 国产精品人妻久久久久久| 淫妇啪啪啪对白视频| 国产伦精品一区二区三区四那| 亚洲人成网站在线播| 日本一本二区三区精品| 亚洲成人久久爱视频| 午夜精品在线福利| 日韩成人av中文字幕在线观看 | 搞女人的毛片| 亚洲色图av天堂| 欧美绝顶高潮抽搐喷水| 亚洲欧美精品自产自拍| 特级一级黄色大片| 大香蕉久久网| 天天一区二区日本电影三级| 97超碰精品成人国产| 国产91av在线免费观看| 欧美极品一区二区三区四区| 亚洲精品456在线播放app| 夜夜夜夜夜久久久久| 亚洲欧美中文字幕日韩二区| 国产片特级美女逼逼视频| 日本免费a在线| 精品免费久久久久久久清纯| 嫩草影院精品99| 校园人妻丝袜中文字幕| 久久久久久大精品| 一区二区三区四区激情视频 | 免费高清视频大片| 国产精品久久久久久精品电影| 亚洲精品色激情综合| 国产一区二区亚洲精品在线观看| 亚洲无线在线观看| 嫩草影院新地址| 成人特级av手机在线观看| 成年女人永久免费观看视频| 天美传媒精品一区二区| 高清毛片免费观看视频网站| 久久久色成人| 免费看av在线观看网站| av专区在线播放| 国产黄片美女视频| av.在线天堂| 两性午夜刺激爽爽歪歪视频在线观看| 网址你懂的国产日韩在线| 97超碰精品成人国产| 人人妻人人澡人人爽人人夜夜 | 最近的中文字幕免费完整| 熟女人妻精品中文字幕| 亚洲国产色片| 老司机午夜福利在线观看视频| 99久久中文字幕三级久久日本| 91麻豆精品激情在线观看国产| 色哟哟·www| 欧美成人a在线观看| 桃色一区二区三区在线观看| 又爽又黄a免费视频| 午夜福利成人在线免费观看| 久久久a久久爽久久v久久| 日韩欧美国产在线观看| 天堂影院成人在线观看| 老师上课跳d突然被开到最大视频| 亚洲精品456在线播放app| 一卡2卡三卡四卡精品乱码亚洲| 老司机福利观看| 免费一级毛片在线播放高清视频| 尾随美女入室| 国内精品一区二区在线观看| 99视频精品全部免费 在线| 日本-黄色视频高清免费观看| 嫩草影视91久久| 国产精品福利在线免费观看| avwww免费| 色综合站精品国产| 久久久久久久午夜电影| 一个人观看的视频www高清免费观看| 综合色丁香网| 欧美xxxx黑人xx丫x性爽| 久久久久九九精品影院| 人妻少妇偷人精品九色| 熟女人妻精品中文字幕| 校园春色视频在线观看| 久久精品国产亚洲av天美| 国产大屁股一区二区在线视频| 波多野结衣巨乳人妻| 中文字幕av在线有码专区| 人妻制服诱惑在线中文字幕| 国产精品综合久久久久久久免费| 亚洲第一区二区三区不卡| 日本五十路高清| 高清日韩中文字幕在线| 亚洲精品国产av成人精品 | 久久久久精品国产欧美久久久| 99久久精品一区二区三区| 欧美高清成人免费视频www| 亚洲色图av天堂| 一级黄色大片毛片| 成人毛片a级毛片在线播放| 国产白丝娇喘喷水9色精品| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 卡戴珊不雅视频在线播放| 日日摸夜夜添夜夜爱| 亚洲欧美日韩高清专用| 蜜桃久久精品国产亚洲av| 欧美激情国产日韩精品一区| 免费无遮挡裸体视频| 一级黄色大片毛片| 少妇熟女aⅴ在线视频| 3wmmmm亚洲av在线观看| 亚洲性夜色夜夜综合| 国产精品久久久久久av不卡| 晚上一个人看的免费电影| 成人综合一区亚洲| 日韩成人伦理影院| 亚洲中文字幕一区二区三区有码在线看| 午夜福利在线观看免费完整高清在 | 小说图片视频综合网站| 成人av一区二区三区在线看| 午夜福利18| 深夜精品福利| 18禁在线播放成人免费| 中文字幕精品亚洲无线码一区| 精品日产1卡2卡| 精品久久久久久久人妻蜜臀av| 成人永久免费在线观看视频| 老熟妇乱子伦视频在线观看| 国内少妇人妻偷人精品xxx网站| 看非洲黑人一级黄片| 最好的美女福利视频网| 一区福利在线观看| 三级国产精品欧美在线观看| 在线观看免费视频日本深夜| 三级男女做爰猛烈吃奶摸视频| 日韩欧美 国产精品| 亚洲中文字幕一区二区三区有码在线看| 亚洲av中文av极速乱| 久久久久久久久大av| 中文字幕熟女人妻在线| 欧美成人一区二区免费高清观看| 久久久久性生活片| 直男gayav资源| 日日摸夜夜添夜夜添av毛片| 久久久久国产精品人妻aⅴ院| 日韩精品青青久久久久久| 成年女人永久免费观看视频| 精品久久久久久久末码| av女优亚洲男人天堂| 国产在线精品亚洲第一网站| 久久精品国产亚洲av涩爱 | 1024手机看黄色片| 国产视频内射| 人妻丰满熟妇av一区二区三区| www日本黄色视频网| 国产老妇女一区| 自拍偷自拍亚洲精品老妇| 精品久久国产蜜桃| 色播亚洲综合网| 日本一二三区视频观看| 国产成人aa在线观看| 久久草成人影院| 国产在线精品亚洲第一网站| 搞女人的毛片| 不卡一级毛片| 精品人妻视频免费看| 99热只有精品国产| 偷拍熟女少妇极品色| 1024手机看黄色片| 女人被狂操c到高潮| 午夜日韩欧美国产| 又黄又爽又免费观看的视频| 无遮挡黄片免费观看| 丰满人妻一区二区三区视频av| 国产精品精品国产色婷婷| 好男人在线观看高清免费视频| 99热这里只有精品一区| 亚洲性久久影院| 1000部很黄的大片| 久久精品久久久久久噜噜老黄 | 国产视频内射| 国产av麻豆久久久久久久| 国产精品一区二区三区四区免费观看 | 日产精品乱码卡一卡2卡三| 黑人高潮一二区| 午夜爱爱视频在线播放| 我的老师免费观看完整版| 亚洲乱码一区二区免费版| 九色成人免费人妻av| 国产精品一及| 女人十人毛片免费观看3o分钟| 亚洲欧美日韩卡通动漫| 岛国在线免费视频观看| 亚洲精品456在线播放app| 啦啦啦观看免费观看视频高清| 白带黄色成豆腐渣| 精品一区二区免费观看| 岛国在线免费视频观看| 国内精品宾馆在线| 久久99热6这里只有精品| 在线播放无遮挡| 欧美区成人在线视频| 国产男靠女视频免费网站| 日韩欧美一区二区三区在线观看| 九九热线精品视视频播放| 国内精品宾馆在线| 能在线免费观看的黄片| 亚洲图色成人| 日日摸夜夜添夜夜添av毛片| 日本免费一区二区三区高清不卡| 久久精品国产亚洲av香蕉五月| 五月玫瑰六月丁香| 国产精品久久久久久av不卡| 可以在线观看的亚洲视频| 亚洲第一电影网av| .国产精品久久| 国产三级在线视频| 成年女人永久免费观看视频| 99在线视频只有这里精品首页| 欧美成人精品欧美一级黄| 亚洲在线自拍视频| 三级经典国产精品| 国产高潮美女av| 日韩制服骚丝袜av| 两个人视频免费观看高清| 夜夜夜夜夜久久久久| 可以在线观看毛片的网站| 在线观看66精品国产| 无遮挡黄片免费观看| 欧美一区二区国产精品久久精品| 给我免费播放毛片高清在线观看| 久久人人爽人人片av| 99精品在免费线老司机午夜| 两性午夜刺激爽爽歪歪视频在线观看| 久久久午夜欧美精品| 一a级毛片在线观看| 免费高清视频大片| 国产精品日韩av在线免费观看| 高清毛片免费观看视频网站| 亚洲精品乱码久久久v下载方式| 国产免费男女视频| 久久欧美精品欧美久久欧美| 一区二区三区四区激情视频 | 亚洲熟妇熟女久久| 嫩草影院入口| 亚洲美女搞黄在线观看 | 国产精品免费一区二区三区在线| 一个人观看的视频www高清免费观看| 干丝袜人妻中文字幕| 欧美日韩国产亚洲二区| 欧美+亚洲+日韩+国产| 麻豆国产97在线/欧美| 欧美色欧美亚洲另类二区| 欧美日本视频| 欧美不卡视频在线免费观看| 丰满人妻一区二区三区视频av| av卡一久久| 中出人妻视频一区二区| 在线观看66精品国产| 国产不卡一卡二| 日韩欧美免费精品| 国产亚洲欧美98| 免费av观看视频| ponron亚洲| 哪里可以看免费的av片| 午夜精品在线福利| 在线看三级毛片| 别揉我奶头 嗯啊视频| 国产白丝娇喘喷水9色精品| 看非洲黑人一级黄片| 亚洲精品国产成人久久av| 国产精品女同一区二区软件| 久久久久国内视频| 久久久色成人| 久久人人爽人人片av| 尤物成人国产欧美一区二区三区| 国产精品人妻久久久久久| 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 91午夜精品亚洲一区二区三区| 最好的美女福利视频网| 亚洲精品粉嫩美女一区| 欧美性猛交╳xxx乱大交人| videossex国产| 成年女人毛片免费观看观看9| 亚洲久久久久久中文字幕| 在线国产一区二区在线| 国内精品美女久久久久久| 国产精品福利在线免费观看| 国产精品国产三级国产av玫瑰| 午夜老司机福利剧场| 色视频www国产| 真人做人爱边吃奶动态| 少妇丰满av| 日本一二三区视频观看| 国产成人一区二区在线| 菩萨蛮人人尽说江南好唐韦庄 | 国产成人freesex在线 | 啦啦啦观看免费观看视频高清| 国产 一区精品| 性插视频无遮挡在线免费观看| 欧美最黄视频在线播放免费| 亚洲激情五月婷婷啪啪| 乱人视频在线观看| 男女那种视频在线观看| 亚洲美女黄片视频| 欧美成人a在线观看| 免费人成在线观看视频色| 亚洲乱码一区二区免费版| 一个人观看的视频www高清免费观看| 淫妇啪啪啪对白视频| 久久人人爽人人片av| 好男人在线观看高清免费视频| 亚洲人成网站在线观看播放| www日本黄色视频网| 久久久国产成人免费| 久久久久久久久久成人| 丰满的人妻完整版| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇熟女久久| 老女人水多毛片| 国产三级中文精品| 99久久精品国产国产毛片| 真人做人爱边吃奶动态| 97超视频在线观看视频| 免费在线观看成人毛片| 亚洲精品一卡2卡三卡4卡5卡| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| 日本熟妇午夜| 在线观看一区二区三区| 国产精品嫩草影院av在线观看| 国产麻豆成人av免费视频| 极品教师在线视频| 天堂√8在线中文| 夜夜爽天天搞| 国产探花在线观看一区二区| 国产精品无大码| 丰满乱子伦码专区| 在线播放国产精品三级| 亚洲av电影不卡..在线观看| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 99热6这里只有精品| 中文资源天堂在线| 免费不卡的大黄色大毛片视频在线观看 | 日韩强制内射视频| 国产成人aa在线观看| 99精品在免费线老司机午夜| 亚洲精品日韩在线中文字幕 | 日本黄色片子视频| 成人亚洲欧美一区二区av| 一a级毛片在线观看| 老司机影院成人| 青春草视频在线免费观看| 免费av不卡在线播放| 久久精品影院6| 日本黄色片子视频| 亚洲中文日韩欧美视频| 免费无遮挡裸体视频| 午夜影院日韩av| 国内精品宾馆在线| 久久久精品大字幕| 91久久精品电影网| 精品久久久久久久久av| 女的被弄到高潮叫床怎么办| 国产aⅴ精品一区二区三区波| 精品福利观看| 亚州av有码| 免费看日本二区| 天堂网av新在线| 国产精品亚洲一级av第二区| 97人妻精品一区二区三区麻豆| 综合色丁香网| 在线播放国产精品三级| 亚洲中文字幕一区二区三区有码在线看| 国产国拍精品亚洲av在线观看| 老司机午夜福利在线观看视频| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 人人妻人人澡欧美一区二区| 精品少妇黑人巨大在线播放 | 桃色一区二区三区在线观看| 国产精品伦人一区二区| 日韩国内少妇激情av| 国产一区二区三区在线臀色熟女| 别揉我奶头 嗯啊视频| 亚洲欧美日韩无卡精品| 我要看日韩黄色一级片| 少妇熟女欧美另类| 天天躁夜夜躁狠狠久久av| 精品免费久久久久久久清纯| 伊人久久精品亚洲午夜| 男女之事视频高清在线观看| 国产黄色小视频在线观看| 中文资源天堂在线| 亚洲自偷自拍三级| 亚洲人成网站高清观看| 国产 一区精品| 精品久久久久久久末码| 在线国产一区二区在线| 大型黄色视频在线免费观看| 麻豆国产97在线/欧美| 最近的中文字幕免费完整| 搡老熟女国产l中国老女人| 色在线成人网| 男女之事视频高清在线观看| av在线老鸭窝| 一个人看视频在线观看www免费| 亚洲欧美精品自产自拍| 亚洲av一区综合| 午夜激情福利司机影院| 精品人妻一区二区三区麻豆 | 久久久午夜欧美精品| 嫩草影院入口| 可以在线观看的亚洲视频| 国产久久久一区二区三区| 免费观看的影片在线观看| 午夜福利视频1000在线观看| 日韩欧美国产在线观看| 免费看a级黄色片| 91在线精品国自产拍蜜月| 成人高潮视频无遮挡免费网站| 男女做爰动态图高潮gif福利片| 亚洲av电影不卡..在线观看| 精品少妇黑人巨大在线播放 | 国产不卡一卡二| 蜜桃亚洲精品一区二区三区| 亚洲欧美成人精品一区二区| 亚洲内射少妇av| 国产乱人偷精品视频| 热99在线观看视频| 国产精品美女特级片免费视频播放器| 成人av一区二区三区在线看| 日本免费一区二区三区高清不卡| 国产成人影院久久av| 中国美白少妇内射xxxbb| 97在线视频观看| 美女内射精品一级片tv| 看十八女毛片水多多多| 中国美女看黄片| 搞女人的毛片| 精品久久久久久久久av| 成人性生交大片免费视频hd| 1000部很黄的大片| 亚洲无线在线观看| 91在线观看av| 国产一区二区在线观看日韩| 内地一区二区视频在线| 国产一级毛片七仙女欲春2| 欧美性感艳星| 在线免费观看不下载黄p国产| a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 人妻久久中文字幕网| 国产精品av视频在线免费观看| 中国美女看黄片| 91狼人影院| 两个人的视频大全免费| 欧美在线一区亚洲| 婷婷精品国产亚洲av| 国产精品精品国产色婷婷| 伊人久久精品亚洲午夜| 欧美性猛交黑人性爽| 亚洲国产精品久久男人天堂| 日本与韩国留学比较| 狠狠狠狠99中文字幕| 亚洲av电影不卡..在线观看| 日产精品乱码卡一卡2卡三| 色播亚洲综合网| 波多野结衣巨乳人妻| 九色成人免费人妻av| 小蜜桃在线观看免费完整版高清| 草草在线视频免费看| 亚洲人成网站在线播| 久久久久久久久大av| 亚洲av不卡在线观看| 老熟妇乱子伦视频在线观看| 丰满的人妻完整版| 欧洲精品卡2卡3卡4卡5卡区| 久久久久久久久大av| 99热这里只有是精品在线观看| 久久久久国产网址| 99热网站在线观看| 国产人妻一区二区三区在| 久久久国产成人免费| 国产探花极品一区二区| avwww免费| 国产美女午夜福利| 欧美日本亚洲视频在线播放| 在现免费观看毛片| 国产熟女欧美一区二区| 日本一二三区视频观看|