• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Improved electrochemical properties in the Li3Fe2(PO4)3 by titanium and vanadium doping

    2019-04-11 02:40:12ZhengshenHuXinZhngXiojingFengXiornWngJunHeXinWngHuifenPeng
    Chinese Chemical Letters 2019年3期

    Zhengshen Hu,Xin Zhng,b,c,Xiojing Feng,Xiorn Wng,Jun He,Xin Wng,Huifen Peng,b,c,*

    a School of Material Science & Engineering,Hebei University of Technology,Tianjin 300130,China

    b Research Institute for Energy Equipment Materials,Hebei University of Technology,Tianjin 300130,China

    c Tianjin Key Laboratory of Laminating Fabrication & Interface Control Technology for Advanced Materials,Tianji 300130,China

    Keywords:

    ABSTRACT

    The nominal Li3-xFe2-xTix(PO4)2.55(VO4)0.45(x =0~0.3)compounds were synthesized by a sol-gel process.Different from the single VO43-doping,further introduction of Ti4+ion was easy to result in precipitation of a little secondary phases,besides the main NASICON products.The simultaneous substitution of Ti4+and VO43-for Fe3+and PO43-,respectively,in the Li3Fe2(PO4)3 resulted in a net improvement in the rate capability and cycling performance,as compared with the single Ti4+ or VO43--substituted compound.The sample with x=0.2 presented a high initial discharging capacity of 125.4 mAh/g at the rate of 0.5C,about 25% higher than the Ti4+-substituted Li2.8Fe1.8Ti0.2(PO4)3,and 102.6 mAh/g after 60 cycles at 2C,about 12%higher than the single VO43--substituted one.The high rate performance between 0.5C to 10C suggested that this sample had a good stability and reversibility.These results proved that the combination of the Ti4+ substitution for Fe3+ with the VO43- substitution for PO43- was a promising method of improving electrochemical performance of the studied Li3Fe2(PO4)3 cathode material.

    Nasicon based cathode materials have recently been paid much attentionduetotheirelasticthree-dimensional(3D)frameworkthat accommodates compositional changes and provides a fast pathway for ion transport [1-10].Among them,Li3Fe2(PO4)3is widely investigated from both economic and environmental viewpoints[3-11].It presents a theoretical capacity of 128 mAh/g vs.Fe2+/Fe3+redox couple.However,poor electronic conductivity(<10-8S/cm)caused by too large separation between the metal ions significantly retards its practical capacity.By decreasing the dimensions of the active material particles and introducing the conductive carbon to improve the interfacial connectivity,Morcrette et al.[11]obtained a high reversible capacityof110 mAh/g at a rate of 0.05Cand about85 mAh/g at 0.5C for the compound.Unfortunately,it is difficult to meet the rapid growing demand of high energy/power densities batteries when the discharging rate is lower than 0.5C.Therefore,great efforts are still needed to optimize electrochemical performance of the Li3Fe2(PO4)3compound.

    Transition metal ion substitution was generally adopted to improve electrochemical properties of the Li3Fe2(PO4)3[12-16].Sun et al.[15] found that the Ti4+and Mn2+doped Li3Fe1.8-Mn0.1Ti0.1(PO4)3presented a high discharging capacity of 94 mAh/g at 0.5C rate.Furthermore,Liu et al.[16] proved that single Ti4+-substituded Li2.8Fe2Ti0.2(PO4)3showed better electrochemical properties than the abovementioned Ti4+and Mn2+-substituted one.Its initial discharging capacity was about 122.3 mAh/g at 0.05C rate,which is very close to the theoretical capacity of Li3Fe2(PO4)3.And a high discharging capacity of about 100 mAh/g was obtained at 0.5C rate after 20 charging-discharging cycles for the Ti4+-substituted Li2.8Fe2Ti0.2(PO4)3compound.

    In spite of few reports on anionic substitution for the Nasicon cathode materials [17],we recently used several polyanions such as VO43-[18],MoO42-[19]and SO42-[20]to substitute for partial PO43-in the Li3Fe2(PO4)3,based on the successful achievements of the mixed anion effect on solid state electrolytes[21-26].It reveals that all these polyanion substituted products exhibited the initial discharging capacity larger than 95 mAh/g,with more than 94%capacity retention after 60 charge-discharge cycles at 2C rate,showing superior performances than those of the abovementioned transition metal ion doped ones.

    Simultaneous substitution of cation and anion was initially used to enhance ionic conductivity of the Ag+and Cu+superion conductors like Ag4HgSe2I2[27] and Rb4Cu16Cl13I7[28],this measure was proved to be also effective on LiTi2(PO4)3solid state electrolyte [29,30].Based on the abovementioned beneficial effects caused by cations and/or anions substitution,we were motivated to introduce Ti4+along with VO43-to the Li3Fe2(PO4)3cathode material,aiming to boost its electrochemical performance.This paper deals with substitution of Ti4+for the Fe3+in our formerly reported Li3Fe2(PO4)2.55(VO4)0.45cathode material.Effect of simultaneous substitution of Ti4+and V5+on electrochemical properties was investigated for the Li3Fe2(PO4)3cathode material.

    Reagent-grade LiNO3(purity 99%),Fe(NO3)3·9H2O(purity 98.5%),NH4H2PO4(purity 99%),Li2CO3(purity 98%),V2O5(purity 99%)and Ti(C4H9O)4(purity 99%)were used as starting materials for synthesis of the nominal Li3-xTixFe2-x(PO4)2.55(VO4)0.45(x =0~0.3)compound.The starting materials LiNO3,Fe(NO3)3·9H2O and NH4H2PO4were dissolved in a stoichiometric ratio in 200 dm3DI water to achieve the total metal ions concentration of 0.06 mol/L.Further,V2O5and Li2CO3were dissolved in a stoichiometric ratio of Li3VO4in 0.21 mol/L HNO3solution,maintaining the VO43-concentration of 0.1 mol/L[31].Those two prepared solutions were mixed,and the same amount of citric acid and glycol was added and dissolved in the resulting solution as the complexing agent and dispersant,respectively,with the molar ratio of citric acid to metal ions equals to 1:1.On the other hand,appropriate Ti(C4H9O)4was dissolved into alcohol to form a homogeneous solution,which was then added to the above mixed solution.The formed solution was thoroughly stirred,by adding ammonia(30%)to adjust the pH value at about 5.0.The final solution was heated at 80°C to evaporate the excess water and formed a gel.After keeping for 48 h,the gel was calcined at 600°C to obtain the final products.

    Material characterization and electrochemical measurements were described in our previous work [18].

    Fig.1a shows XRD patterns of the nominal Li3-xTixFe2-x(PO4)2.55(VO4)0.45(x =0~0.3)samples heated at 600°C.By contrast,the standard XRD patterns of Li3Fe2(PO4)3,V2Ti7O17and Fe2O3are also presented in this figure.The single VO43-substituted sample,i.e.,x=0 or Li3Fe2(PO4)2.55(PO4)0.45,was identified as the pure Li3Fe2(PO4)3phase with an ordered monoclinic structure,corresponding to the JCPDS No.80-1515.Introduction of Ti4+cations into the Li3Fe2(PO4)2.55(VO4)0.45results in some identified impurity peaks located at 2θ of around 29°,22°and 35°in addition to the Li3Fe2(PO4)3phase,which may correspond to the phases like V2Ti7O17and Fe2O3,respectively.Those results suggest that,even though a pure Li3Fe2(PO4)3phase could be prepared by the Ti4+-substituted samples,along with the VO43-doping,a little impure phases were easy to appear in the obtained products.

    It is well established that two stronger XRD peaks,namely(002)(I=39.1%)and(121)(I=70.3%),around the strongest peak(21)for the monoclinic Li3Fe2(PO4)3phase according to the JCPDS No.80-1515 exist.The relative intensities of these three peaks,based on the fitting results shown in Fig.1b,are presented in Table S1 in Supporting information.The undoped Li3Fe2(PO4)3sample,reported by Yang et al.[18],presents the relative intensities of the three peaks almost same as the standard one.In addition to a slight left-shift of the XRD peaks due to the replacement of larger V5+ions(0.0355 nm)for the smaller P5+ions(0.017 nm)[32],VO43-doping greatly weakens the left(002)XRD peak.However,introduction of Ti4+cations not only results in a right-shift of the XRD peaks caused by the lattice contraction derived from the replacement of smaller Ti4+ions(0.0605 nm)for the larger Fe3+ions(0.0645 nm)[32],but also sharply lessens the right(121)XRD peak,concomitant with strengthening of the left(002)peak.Those variations in XRD peaks mainly correspond to the changes in concentration of the atoms located at coordinates of(0,0,0.5)and(0,0.5,0),respectively,respect to the Li3Fe2(PO4)3crystal.The V5+ion is about one time larger than the P5+ion.When the larger V5+ions replace the smaller P5+ones in the Li3Fe2(PO4)3crystal,positions of the other atoms must be adjusted in addition to a slight lattice expansion.On the other hand,introduction of Ti4+ions mainly crowds out the atoms at(0,0.5,0),along with re-backing to(0,0,0.5)for the out-crowded atoms by VO43-doping.Table S1 reveals that the number of atoms crowded out by Ti4+doping increases with an increase in the Ti4+contents.Those out-crowded atoms move to other positions and result in an adjustment in other parameters of the Li3Fe2(PO4)3lattice.

    Fig.1.XRD patterns of the samples in a nominal composition of Li3-xTixFe2-x(PO4)2.55(VO4)0.45 heated at 600°C,(a)large survey XRD patterns,(b)deconvolution to the peaks at 2 θ of about 20°-22°.

    Fig.2 shows the initial charge-discharge profiles of the samples with different Ti4+contents,along with their rate capabilities studied in a range of cycling rates.The Ti4+-containing samples exhibit two charge-discharge plateaus longer than the only VO43--substituted one,i.e.,x=0 or Li3Fe2(PO4)2.55(PO4)0.45.The discharging capacity increases with an increase in the Ti4+contents,reaches the maximum at the Ti4+content of 0.2,and then decreases with a further increase in the Ti4+content.The initial discharging capacity is about 125.4 mAh/g at 0.5C for the sample with Ti4+content of 0.2.This discharge value is very close to the theoretical capacity of the Li3Fe2(PO4)3compound,and about 10.6% and 25.0% larger than those of the VO43--substituted Li3Fe2(PO4)2.55(PO4)0.45reported by Yang et al.[18]and the Ti4+-substituted Li2.8Fe2.8Ti0.2(PO4)3by Liu et al.[16],respectively.Though the discharging capacity decreases with an increase in discharging rates,the Ti4+-containing samples present the discharging capacity higher than the others.A high discharging capacity of 80 mAh/g is achieved at a rate of 5C for the sample with x=0.2,this value is comparable with the value obtained at 2C rate of the Li3Fe2(PO4)3reported by Yang et al.[18].In comparison with the only VO43--substituted one,the sample with Ti4+content of 0.2 also presents an apparently reduced polarization during the process of Li+insertion and extraction(Fig.2c).The sample with x=0.3 exhibits lower discharge capacity than the other two samples,which should be related to the more contraction in lattice parameters caused by Ti4+doping as shown in Fig.1,deteriorating lithium conduction in the 3D channels.Even so,the sample of x=0.3 presents the larger discharging capacity than the ones without Ti4+,especially at higher discharging rates(≥1C).These results suggest that simultaneous substitution of Ti4+and VO43-greatly improves the electrochemical performance of the Li3Fe2(PO4)3compound,and this is more effective than those doped by the single Ti4+or VO43-substitution,especially at high discharging rates.

    In order to further investigate the effect of the Ti4+substitution on the Li3-xTixFe2-x(PO4)2.55(VO4)0.45cathode material performances,the sample with x=0.2 was galvanostatically cycled at 2C rate(Fig.3a).One can see that the potential profiles of the cathode present two typical plateaus related to insertion of two Li+ions.Meanwhile,the potential profiles of the material maintain similar shape and sizes upon the subsequent cycles,which confirms its good reversibility.Fig.3b shows the cycling data of the samples with different Ti4+contents and the bare Li3Fe2(PO4)3cathode at 2C rate.Single VO43-substitution apparently improves the capacity retention of the Li3Fe2(PO4)3during the charge-discharge cycles,meanwhile,introduction of the Ti4+cations to the VO43--substituted one further enhances its discharging capacities at the same cycling.All the Ti4+doping samples present a similar discharging capacity at the same number of cycles.Among them,the sample with x=0.2 could deliver the largest discharging capacity of 95.4 mAh/g after 60 cycles,indicating the superior cycling stability.

    Fig.4a shows the rate performance of the sample of x=0.2 at room temperature,it is cycled by a mode of charging to 4 V under the same current densities as discharging to 2.0 V.Even though the discharging capacity decreases with an increase in the discharging rates from 0.5C to 10C,it is noteworthy that the cell capacity can almost recover to the initial value when the discharging rate was set back to 0.5C.Those results suggest that this sample could maintain a stable structure even at a high discharging rate.On the other hand,XRD patterns of the cathodes before and after rate cycling are shown in Fig.4b,corresponding to points A and B in Fig.4a,respectively.The cathode after 60 discharging-charging cycles under severe rate changing presents the almost same XRD pattern as that of the cathode before discharging(point A in Fig.4a).This result further proves that the sample with x=0.2 has a good stability and reversibility in our study.

    Fig.2.Initial charge-discharge profiles at 0.5C rate(a)and rate capability(b)of the samples with different Ti4+contents,and initial charge-discharge profiles of the samples with x=0.2 at different rates(c).

    Fig.3.Charge-discharge profiles of the sample of x=0.2 at 2C rate(a)and cycling performance of the samples with different Ti4+ contents(b).

    Fig.4.Variation in discharging capacity at gradually changing rates(a),and XRD patterns(b)of the cathodes.The cathodes used the sample of x=0.2 as the active material.

    CV curves of the samples with x=0 and 0.2,together with the Li3Fe2(PO4)3reported by Yang et al.[18],are shown in Fig.S1(Supporting information).Two distinct peaks could be observed in the discharge process for all samples,which could be attributed to the insertion of two Li+ions occurring at 2.6 V and 2.8 V regions coupled with the Fe3+/Fe2+redox processes,the results are consistent with the observation in Figs.2 and 3.The sample with x=0.2 possesses higher CV peak intensities for both reduction and oxidation,and a lower electrochemical polarization than the bare Li3Fe2(PO4)3and the single VO43--substituted one.It can be inferred that simultaneous presence of Ti4+and VO43-in the Li3Fe2(PO4)3compound exhibits remarkable positive effect of the electrochemical response and properties of this material as a cathode for lithium batteries.

    EIS technique was employed to further investigate the effect of simultaneous substitution of Ti4+and VO43-on electrochemical performance of the Li3Fe2(PO4)3in a lithium half-cell with different composition cathode.The EIS data are presented in Fig.S2a(Supporting information).Nyquist plots of all studied samples display the same features and consist of a compressed semicircle in the high-to-medium frequency range and a straight line in the low frequency range.While the low frequency straight line is attributed to the“Warburg”impedance”resembling the solid state diffusion of Li ions within the solid active mass,the compressed semicircle is mainly attributed to the charge-transfer impedance at the electrode/electrolyte interface.It can be seen that the charge transfer resistance decreases with an increase in the Ti4+content,and approaches its minimum at x=0.2.This minimum value is only about 65% and 30% of those for the single VO43--substituted sample and the bare one,respectively.Charge transfer conditions are critical for the electrode performance,especially at the elevated densities.Based on the VO43-anion substitution,the Ti4+cation substitution further reduces the charge transfer impedance and contributes to the cathode performance enhancement in a lithium cell,which was clearly observed from the experimental data above on battery cycling and CV curves.

    The diffusion coefficient of lithium ion,D,can be calculated using the following Eq.(1)[33]:

    Where R is the universal gas constant,T is the absolute temperature,n is the surface area of electrode,F is the Faraday constant,C is the molar concentration of Li+,and σ is Warburg coefficient,which could be defined from the Eq.(2)[33]:

    where Zre is the real part of the EIS,Rs is the electrolyte resistance,Rct is the charge-transfer resistance and ω is the angular frequency in the low frequency region,as shown in Fig.S2b(Supporting information).The obtained D value for all the studied cathodes are presented in Table S2(Supporting information).One can see from those data that the sample of x=0.2 has the largest value of D while the bare Li3Fe2(PO4)3and the only VO43-substituted sample own the small lithium-ion diffusion coefficient.Charge-transfer diffusion is crucial for the materials applicability for practical purposes,as it determines the electrochemical processes kinetics.It can be seen that simultaneous presence of Ti4+and VO43-used in the current work remarkably improves the Li-ion diffusion in the system.Along with the results presented above,it proves that substitution of the Ti4+cation for Fe3+and VO43-anion for PO43-as a powerful technique to improve the electrical conductivity of the Nasicon Li3Fe2(PO4)3compound and its overall electrochemical performance as a cathode for lithium batteries.

    Although ionic conductivity is known to be much less than electronic conductivity for the electrode materials,the ionic conductivity is crucial for progress of electrochemical reactions in the electrode.Different from other electrode materials,long-range conduction for the mobile ions in the Nasicon structure involves hopping between M1and M2site sites,which are joined by a bottleneck.On the other hand,researches on Nasicon solid electrolytes reveal that movement of the mobile ions along the 3D conduction channels strongly depends on their structural parameters or the bottleneck size between M1and M2sites[30,34].XRD results shown in Fig.1 and Table S1 suggest that the Li3Fe2(PO4)3with Nasicon structure changes its bottleneck size between M1and M2sites due to variation in the lattice parameters and the atom concentration at different positions resulting from the VO43-and/or Ti4+doping,and then to affect its electrochemical properties.Furthermore,difference electronegativity between Ti(1.54)and Fe(1.83),as well as V(1.63)and P(2.19)[35],can alter the local electron density for the nearly iron and phosphorus,and then the ion conduction through them.The above electrochemical data suggest that the sample with x=0.2 presents the most appropriate bottleneck size for lithium ion conduction.

    In this work,Ti4+cations were used to replace partial Fe3+ions in theVO43--substitutedLi3Fe2(PO4)2.55(VO4)0.45forthepreparationof highperformancecathodeforlithiumionbatteries.Inadditiontothe main Nasicon compound,some secondary phases were formed in the products by introduction of Ti4+ions.Electrochemical measurements proved that simultaneous presence of Ti4+and VO43-in the Li3Fe2(PO4)3remarkably enhanced its rate capability and cycling performance via the improved conductivity and lithium diffusion,favoring releasing the stresses generated by the repetitive Li+intercalations/extraction,which consequently led to a lower electrochemical polarization at high rate charge-discharge process.Among the Ti4+substituted samples,the sample with x=0.2 exhibits the best electrochemical performance delivering a high initial capacity of 125.4 mAh/g at 0.5C rate and 102.6 mAh/g at a capacity retention of 93% after 60 cycles at 2C rate.Rate performance measurements between 0.5C to 10C proved that this sample possessed a good stability and reversibility.Those performance enhancements prove the partial substitution of iron and phosphorus by titanium and vanadium in Li3Fe2(PO4)3as a beneficial technique to remarkably improve reversible intercalation/extraction of Li+;and the electrochemical properties exhibited bythesamplewithx=0.2preparedinthiswokemakeitapromising cathode for high performance lithium-ion batteries.

    Acknowledgment

    This work was supported by Natural Science Foundation of Hebei Province(No.E2016202358).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.11.004.

    99久久人妻综合| 国产午夜福利久久久久久| 日韩一区二区三区影片| 精品久久久久久电影网| 可以在线观看毛片的网站| 亚洲精品国产av成人精品| 国内揄拍国产精品人妻在线| 亚洲av中文字字幕乱码综合| 啦啦啦在线观看免费高清www| 亚洲欧洲国产日韩| 国产精品av视频在线免费观看| 亚洲自偷自拍三级| 少妇被粗大猛烈的视频| 午夜福利在线在线| 十八禁网站网址无遮挡 | 国产高清不卡午夜福利| 建设人人有责人人尽责人人享有的 | 看十八女毛片水多多多| 一区二区三区乱码不卡18| 97超视频在线观看视频| 国产成年人精品一区二区| 中文欧美无线码| 亚洲精品日韩在线中文字幕| 亚洲欧美精品专区久久| 国产免费福利视频在线观看| 在线播放无遮挡| 一级黄片播放器| 天天躁日日操中文字幕| 少妇人妻久久综合中文| 一级av片app| 麻豆成人午夜福利视频| 天天躁日日操中文字幕| 亚洲综合精品二区| 亚洲精品国产av成人精品| 免费观看性生交大片5| 国产视频首页在线观看| 久久ye,这里只有精品| 欧美日韩视频精品一区| 精品国产露脸久久av麻豆| 成人亚洲精品一区在线观看 | 亚洲精品日韩av片在线观看| 免费大片黄手机在线观看| 欧美激情国产日韩精品一区| 国产乱来视频区| 视频中文字幕在线观看| 天天一区二区日本电影三级| 超碰97精品在线观看| 成人毛片60女人毛片免费| 免费大片黄手机在线观看| 麻豆精品久久久久久蜜桃| 国产高潮美女av| 欧美区成人在线视频| 欧美高清成人免费视频www| 精品少妇黑人巨大在线播放| 插逼视频在线观看| 亚洲精品乱码久久久久久按摩| 国产熟女欧美一区二区| 麻豆久久精品国产亚洲av| 黄片wwwwww| 22中文网久久字幕| 全区人妻精品视频| 欧美区成人在线视频| 国产免费一级a男人的天堂| 国产熟女欧美一区二区| 网址你懂的国产日韩在线| 99热这里只有是精品50| 毛片女人毛片| 18禁动态无遮挡网站| 国产成人免费观看mmmm| 免费av毛片视频| 日韩中字成人| 黑人高潮一二区| 欧美日韩精品成人综合77777| 国产一区亚洲一区在线观看| 26uuu在线亚洲综合色| 国产午夜福利久久久久久| 国产伦精品一区二区三区四那| 内地一区二区视频在线| 中文字幕久久专区| www.av在线官网国产| 免费高清在线观看视频在线观看| 美女国产视频在线观看| 国产一区亚洲一区在线观看| 亚洲国产最新在线播放| 成年免费大片在线观看| 欧美成人精品欧美一级黄| 日日啪夜夜爽| 国产精品国产av在线观看| 国产成人freesex在线| 免费观看在线日韩| 26uuu在线亚洲综合色| 国产亚洲午夜精品一区二区久久 | 在线免费观看不下载黄p国产| 晚上一个人看的免费电影| 日韩免费高清中文字幕av| 日韩av在线免费看完整版不卡| 神马国产精品三级电影在线观看| 久久99热这里只有精品18| 我要看日韩黄色一级片| 国产精品精品国产色婷婷| 日韩欧美精品免费久久| 一本久久精品| 97热精品久久久久久| 精品人妻熟女av久视频| 男插女下体视频免费在线播放| 亚洲av免费高清在线观看| 女人被狂操c到高潮| 亚洲国产成人一精品久久久| 搡老乐熟女国产| 精品人妻偷拍中文字幕| 久久热精品热| 交换朋友夫妻互换小说| 午夜福利网站1000一区二区三区| 亚洲成人中文字幕在线播放| 久久久午夜欧美精品| 亚洲一区二区三区欧美精品 | 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久久电影| 国产成人一区二区在线| 国产亚洲精品久久久com| 大话2 男鬼变身卡| 国内精品宾馆在线| 亚洲自偷自拍三级| 亚洲国产日韩一区二区| av在线亚洲专区| 欧美精品国产亚洲| 久久久久久久久久人人人人人人| 精品99又大又爽又粗少妇毛片| 午夜免费鲁丝| 2018国产大陆天天弄谢| 亚洲熟女精品中文字幕| 国产精品福利在线免费观看| 亚洲人成网站在线播| av黄色大香蕉| 1000部很黄的大片| 国产淫语在线视频| 国产成人精品一,二区| 少妇猛男粗大的猛烈进出视频 | 久久人人爽人人爽人人片va| 不卡视频在线观看欧美| 91狼人影院| 内射极品少妇av片p| 亚洲无线观看免费| 欧美老熟妇乱子伦牲交| 狂野欧美白嫩少妇大欣赏| 大又大粗又爽又黄少妇毛片口| 亚洲国产成人一精品久久久| 一本久久精品| 精品久久久噜噜| 欧美性感艳星| 国产精品无大码| 免费av不卡在线播放| 夫妻性生交免费视频一级片| 成人亚洲欧美一区二区av| 亚洲成人av在线免费| 国产在线一区二区三区精| 嘟嘟电影网在线观看| videos熟女内射| av专区在线播放| 岛国毛片在线播放| 夜夜看夜夜爽夜夜摸| av在线观看视频网站免费| 免费电影在线观看免费观看| 精华霜和精华液先用哪个| 精品国产三级普通话版| 亚洲第一区二区三区不卡| 亚洲精品中文字幕在线视频 | 欧美另类一区| 久久鲁丝午夜福利片| 国产欧美亚洲国产| 看十八女毛片水多多多| 亚洲精品成人久久久久久| av播播在线观看一区| 国产免费一级a男人的天堂| 国产精品伦人一区二区| 久久精品久久精品一区二区三区| 美女xxoo啪啪120秒动态图| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 我的女老师完整版在线观看| 国产熟女欧美一区二区| 国产毛片a区久久久久| 日韩在线高清观看一区二区三区| 黄色欧美视频在线观看| 欧美高清性xxxxhd video| 又爽又黄无遮挡网站| 亚洲精品第二区| 日韩欧美精品免费久久| 一级毛片我不卡| 国产精品女同一区二区软件| 久久精品综合一区二区三区| 亚洲国产日韩一区二区| 又爽又黄无遮挡网站| a级毛色黄片| 亚洲四区av| 韩国高清视频一区二区三区| 水蜜桃什么品种好| 亚洲精品第二区| 欧美成人精品欧美一级黄| 亚洲精品乱码久久久v下载方式| 尤物成人国产欧美一区二区三区| 免费黄网站久久成人精品| 亚洲国产精品成人久久小说| 六月丁香七月| 免费av毛片视频| 亚洲最大成人av| 亚洲国产精品专区欧美| 日日摸夜夜添夜夜爱| 日韩大片免费观看网站| 人妻制服诱惑在线中文字幕| 国产久久久一区二区三区| 别揉我奶头 嗯啊视频| 婷婷色av中文字幕| 最近的中文字幕免费完整| 建设人人有责人人尽责人人享有的 | 777米奇影视久久| 极品少妇高潮喷水抽搐| 99热这里只有是精品50| 最近最新中文字幕大全电影3| 超碰av人人做人人爽久久| 少妇高潮的动态图| 美女内射精品一级片tv| 观看美女的网站| 亚洲真实伦在线观看| 欧美xxⅹ黑人| 尾随美女入室| 国产午夜精品一二区理论片| 高清在线视频一区二区三区| 亚洲av在线观看美女高潮| 免费黄色在线免费观看| 午夜激情福利司机影院| 亚洲av不卡在线观看| 中文乱码字字幕精品一区二区三区| 一级黄片播放器| 美女高潮的动态| 久久精品综合一区二区三区| 最新中文字幕久久久久| 视频区图区小说| 我的女老师完整版在线观看| 国产一区二区在线观看日韩| 禁无遮挡网站| 色播亚洲综合网| 亚洲精品影视一区二区三区av| 在线观看美女被高潮喷水网站| 国产一区二区在线观看日韩| 国产一区二区三区av在线| 午夜福利在线观看免费完整高清在| 99热6这里只有精品| 国产人妻一区二区三区在| 免费观看性生交大片5| 国产成人福利小说| 最近中文字幕高清免费大全6| 亚洲欧美日韩另类电影网站 | 亚洲av成人精品一区久久| 成人美女网站在线观看视频| 男女边摸边吃奶| 99久久精品热视频| 国产av不卡久久| 搡老乐熟女国产| 午夜福利视频精品| 美女高潮的动态| av线在线观看网站| 一二三四中文在线观看免费高清| 乱系列少妇在线播放| 少妇 在线观看| 蜜桃久久精品国产亚洲av| 男女那种视频在线观看| 亚洲色图av天堂| 亚洲精品aⅴ在线观看| 日韩欧美一区视频在线观看 | 亚洲一级一片aⅴ在线观看| 成人特级av手机在线观看| 禁无遮挡网站| 老司机影院成人| 亚洲精品国产成人久久av| 久久韩国三级中文字幕| 国产精品一二三区在线看| 黄色欧美视频在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲真实伦在线观看| 男人舔奶头视频| 肉色欧美久久久久久久蜜桃 | 中文精品一卡2卡3卡4更新| 欧美日韩精品成人综合77777| 国产成人精品婷婷| av一本久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 少妇的逼好多水| 下体分泌物呈黄色| 秋霞伦理黄片| 亚洲欧美精品自产自拍| 久久久成人免费电影| 一区二区三区四区激情视频| 久久久久国产精品人妻一区二区| 久久精品国产鲁丝片午夜精品| 纵有疾风起免费观看全集完整版| 久久热精品热| 高清午夜精品一区二区三区| 国产免费福利视频在线观看| 亚洲欧洲日产国产| 欧美成人一区二区免费高清观看| 国产黄色视频一区二区在线观看| 禁无遮挡网站| 免费黄色在线免费观看| 在线观看一区二区三区激情| 99热这里只有是精品50| 最近中文字幕2019免费版| 菩萨蛮人人尽说江南好唐韦庄| 自拍欧美九色日韩亚洲蝌蚪91 | 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 国产精品嫩草影院av在线观看| 一边亲一边摸免费视频| 亚洲色图综合在线观看| 久久影院123| 在线观看免费高清a一片| 亚洲欧美一区二区三区国产| 国产精品一区www在线观看| 欧美丝袜亚洲另类| 国产精品久久久久久精品电影小说 | 中文字幕亚洲精品专区| 国产精品久久久久久精品古装| 别揉我奶头 嗯啊视频| 青春草视频在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 久久ye,这里只有精品| 男男h啪啪无遮挡| 91精品伊人久久大香线蕉| 欧美成人a在线观看| 国产成人aa在线观看| 晚上一个人看的免费电影| 伊人久久精品亚洲午夜| 伦精品一区二区三区| 欧美精品人与动牲交sv欧美| 亚洲成人av在线免费| 久久国产乱子免费精品| 少妇被粗大猛烈的视频| 久久久久久伊人网av| 女人十人毛片免费观看3o分钟| 国产乱来视频区| 美女被艹到高潮喷水动态| 人人妻人人澡人人爽人人夜夜| 欧美xxⅹ黑人| 少妇被粗大猛烈的视频| 夫妻午夜视频| 舔av片在线| 激情五月婷婷亚洲| 亚洲国产精品成人综合色| 亚洲欧美中文字幕日韩二区| 久久精品国产亚洲网站| 亚洲欧美中文字幕日韩二区| 亚洲成人一二三区av| 成人欧美大片| 亚洲丝袜综合中文字幕| 在线播放无遮挡| 成人高潮视频无遮挡免费网站| 成人毛片60女人毛片免费| 汤姆久久久久久久影院中文字幕| 日韩欧美 国产精品| 国产亚洲5aaaaa淫片| 黄片无遮挡物在线观看| 亚州av有码| 王馨瑶露胸无遮挡在线观看| 在线免费观看不下载黄p国产| 极品教师在线视频| 青春草视频在线免费观看| 亚洲无线观看免费| 精品人妻偷拍中文字幕| 噜噜噜噜噜久久久久久91| 国产老妇伦熟女老妇高清| 少妇人妻精品综合一区二区| 高清毛片免费看| 尾随美女入室| 蜜臀久久99精品久久宅男| 亚洲国产欧美人成| 18禁在线无遮挡免费观看视频| 97精品久久久久久久久久精品| 成年av动漫网址| 国产探花在线观看一区二区| 在线a可以看的网站| 男人舔奶头视频| 国产高潮美女av| 一级二级三级毛片免费看| 狂野欧美激情性bbbbbb| 联通29元200g的流量卡| 国产午夜福利久久久久久| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲精品国产av蜜桃| av.在线天堂| 少妇人妻久久综合中文| 国模一区二区三区四区视频| 又爽又黄无遮挡网站| 伊人久久精品亚洲午夜| 身体一侧抽搐| 欧美精品国产亚洲| 狂野欧美白嫩少妇大欣赏| 国产又色又爽无遮挡免| 中文天堂在线官网| 69人妻影院| 国产69精品久久久久777片| 欧美变态另类bdsm刘玥| 欧美xxⅹ黑人| 九色成人免费人妻av| 亚洲欧美一区二区三区国产| 久久这里有精品视频免费| 永久免费av网站大全| 777米奇影视久久| 中文字幕av成人在线电影| 国产精品无大码| 亚洲综合精品二区| 久久久久久久大尺度免费视频| 亚洲在久久综合| 大码成人一级视频| 亚洲成人久久爱视频| 极品教师在线视频| 国产成人午夜福利电影在线观看| 日韩av不卡免费在线播放| 精品国产乱码久久久久久小说| av国产精品久久久久影院| 卡戴珊不雅视频在线播放| 少妇人妻精品综合一区二区| 高清视频免费观看一区二区| 十八禁网站网址无遮挡 | 久久久欧美国产精品| 97人妻精品一区二区三区麻豆| 免费观看无遮挡的男女| 女的被弄到高潮叫床怎么办| 国产午夜福利久久久久久| 国产国拍精品亚洲av在线观看| 在线免费观看不下载黄p国产| 免费观看av网站的网址| 美女主播在线视频| 成人无遮挡网站| 狠狠精品人妻久久久久久综合| 成年女人看的毛片在线观看| 国产成人福利小说| 亚洲精品成人av观看孕妇| 午夜福利在线观看免费完整高清在| a级毛片免费高清观看在线播放| 如何舔出高潮| 亚洲欧美成人综合另类久久久| 国产美女午夜福利| 纵有疾风起免费观看全集完整版| 最后的刺客免费高清国语| 精品亚洲乱码少妇综合久久| 王馨瑶露胸无遮挡在线观看| 国产成年人精品一区二区| 韩国高清视频一区二区三区| 99久久精品一区二区三区| 亚洲av电影在线观看一区二区三区 | 国产一区亚洲一区在线观看| 18禁在线播放成人免费| 另类亚洲欧美激情| 亚洲自拍偷在线| 乱系列少妇在线播放| 欧美日本视频| 只有这里有精品99| 亚洲高清免费不卡视频| 天堂俺去俺来也www色官网| 精品熟女少妇av免费看| 夫妻午夜视频| 老师上课跳d突然被开到最大视频| 国产免费一级a男人的天堂| 噜噜噜噜噜久久久久久91| 国产在线一区二区三区精| 26uuu在线亚洲综合色| 免费观看的影片在线观看| 在线观看人妻少妇| 欧美精品人与动牲交sv欧美| 午夜亚洲福利在线播放| 久久久欧美国产精品| 日韩制服骚丝袜av| 狠狠精品人妻久久久久久综合| 免费观看在线日韩| 国产视频首页在线观看| 中文字幕人妻熟人妻熟丝袜美| 三级国产精品欧美在线观看| 激情 狠狠 欧美| 欧美一级a爱片免费观看看| 男的添女的下面高潮视频| 观看美女的网站| 欧美+日韩+精品| 国产精品久久久久久精品电影| 成年免费大片在线观看| 人体艺术视频欧美日本| 免费大片18禁| 97超碰精品成人国产| 国产精品av视频在线免费观看| 国内精品宾馆在线| 老司机影院毛片| 舔av片在线| 国产探花在线观看一区二区| 大码成人一级视频| 少妇熟女欧美另类| 交换朋友夫妻互换小说| 一本一本综合久久| 国产欧美亚洲国产| 五月伊人婷婷丁香| 王馨瑶露胸无遮挡在线观看| 精品一区二区三卡| 久久久成人免费电影| 建设人人有责人人尽责人人享有的 | 国产 一区精品| 色视频www国产| 在线看a的网站| 午夜爱爱视频在线播放| 九九在线视频观看精品| videossex国产| 国产精品国产av在线观看| 国产伦精品一区二区三区视频9| 亚洲美女搞黄在线观看| 亚洲精品视频女| 王馨瑶露胸无遮挡在线观看| 大香蕉久久网| 男女边吃奶边做爰视频| 亚洲人成网站在线播| 国产精品秋霞免费鲁丝片| 午夜激情福利司机影院| 国产精品国产三级专区第一集| 国产在视频线精品| 亚洲电影在线观看av| 超碰av人人做人人爽久久| 六月丁香七月| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 久久精品久久久久久久性| 免费高清在线观看视频在线观看| 精品久久久精品久久久| 日韩电影二区| 日韩中字成人| 狂野欧美激情性bbbbbb| 另类亚洲欧美激情| 国产伦精品一区二区三区视频9| 高清在线视频一区二区三区| 在线观看美女被高潮喷水网站| 91狼人影院| 成人漫画全彩无遮挡| 啦啦啦啦在线视频资源| 麻豆成人av视频| 草草在线视频免费看| 欧美zozozo另类| 国产亚洲av片在线观看秒播厂| 精品久久久久久久人妻蜜臀av| 国产黄色免费在线视频| 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 国产精品.久久久| av国产免费在线观看| 禁无遮挡网站| 国产成人freesex在线| 国产一区亚洲一区在线观看| 亚洲国产成人一精品久久久| 边亲边吃奶的免费视频| 黄色怎么调成土黄色| 国产探花极品一区二区| 大片电影免费在线观看免费| 下体分泌物呈黄色| 两个人的视频大全免费| 一级毛片我不卡| 日韩av在线免费看完整版不卡| 亚洲精品第二区| 我的女老师完整版在线观看| 又黄又爽又刺激的免费视频.| 久久久久久久精品精品| 国产成人一区二区在线| 好男人在线观看高清免费视频| 肉色欧美久久久久久久蜜桃 | 看黄色毛片网站| 99久久精品热视频| 日日摸夜夜添夜夜添av毛片| 一级二级三级毛片免费看| 制服丝袜香蕉在线| 狠狠精品人妻久久久久久综合| 久久久成人免费电影| 尾随美女入室| 欧美少妇被猛烈插入视频| 国产成人精品福利久久| 亚洲欧美日韩另类电影网站 | 夫妻性生交免费视频一级片| 男人爽女人下面视频在线观看| 少妇人妻 视频| 欧美xxxx性猛交bbbb| av国产免费在线观看| 人妻 亚洲 视频| 久久久久久国产a免费观看| 成人免费观看视频高清| 久久午夜福利片| 亚洲成人精品中文字幕电影| 日韩视频在线欧美| 啦啦啦在线观看免费高清www| 国产毛片a区久久久久| 一区二区三区乱码不卡18| 亚洲天堂av无毛| 六月丁香七月| 国产成人精品福利久久| 久久精品国产亚洲网站| 五月伊人婷婷丁香| 尤物成人国产欧美一区二区三区| 免费看a级黄色片| 国产成年人精品一区二区| 国产高清国产精品国产三级 | 午夜老司机福利剧场| 国产精品一区二区在线观看99| 国产精品嫩草影院av在线观看| 国产精品偷伦视频观看了| 丝瓜视频免费看黄片| 黑人高潮一二区| 欧美老熟妇乱子伦牲交| 一二三四中文在线观看免费高清| 两个人的视频大全免费| 伊人久久国产一区二区| 久久99热这里只频精品6学生| av.在线天堂| 日本av手机在线免费观看| 免费黄网站久久成人精品|