• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Flexible asymmetric supercapacitor with high energy density based on optimized MnO2 cathode and Fe2O3 anode

    2019-04-11 02:39:50WeiweiLiuMenghuZhuJinghuLiuXinLiJinLiu
    Chinese Chemical Letters 2019年3期

    Weiwei Liu,Menghu Zhu,Jinghu Liu,Xin Li,c,**,Jin Liu*

    a Department of Chemistry and Chemical Engineering,Harbin Institute of Technology,Harbin 150090,China

    b College of Materials Science and Engineering,Qingdao University of Science and Technology,Qingdao 266042,China

    c State Key Lab of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150090,China

    Keywords:

    ABSTRACT

    All-solid-state flexible supercapacitors have shown great potential in wearable and portable electronics.In this work,a flexible asymmetric pseudocapacitor(FAPC)is fabricated by using MnO2 nanosheetscarbon fabric as cathode and Fe2O3 nanowire-carbon fabric as anode in the presence of PVA-LiCl as gel electrolyte.With high area capacitances of MnO2 and Fe2O3 based electrodes by optimizing the reaction conditions,the device shows high working potential of 1.8 V,high area capacitance of 83.3 mF/cm2(119 F/g),stable cycling performance with 82.3%of capacitance retention after 5000 cycles,and a competitive energy density of 53.55 Wh/kg in the broader context of MnO2-based supercapacitors.In addition,the FAPC demonstrates excellent mechanical stability and flexibility with negligible degradation of electrochemical performance after numerous bending tests,establishing it as a promising candidate for portable and wearable energy storage.

    The advance of portable and wearable electronics requires the development of energy storage devices with high performance[1-3].Flexible supercapacitor is one of the most attractive energy storage technologies due to the advantage of high power density,ultra-long cycle life,and environmental friendliness[4,5].However,the limited energy storage performance of the devices hinders the applications[6].Since the energy density of the supercapacitor is determined by the capacitance and the working voltage(E=CV2/2),increasing either of the parameters can improve the energy storage efficiency[7,8].Developing asymmetric pseudocapacitor is an effective strategy to enhance the energy density by maximizing the working voltage from the asymmetric structure of the device and increasing the capacitance from pseudocapacitive electrodes[9-11].Therefore,designing the proper high-performance cathodes and anodes is the key step to realize the potential of the flexible asymmetric pseudocapacitors(FAPCs).

    Great efforts have been devoted to the search of optimized cathodes and anodes.For the cathodes,many electrochemically active metal oxide,such as Co3O4[12],NiO[13],TiO2[14],NiCo2O4[15],and V2O5[16],and polymers such as polyaniline [17],polypyrrole [18],have been developed and showed promising performance.For the anodes,metal oxide based electrodes like MoO3-x[19],VN [20],Bi2O3[21] have shown great potential for asymmetric supercapacitor.Among these electrodes,manganese oxide(MnO2)and iron oxide(Fe2O3)are two promising candidates for cathode and anode,respectively,thanks to their high theoretical specific capacitance,proper working potential windows,low cost,and environmental friendliness[22,23].Unfortunately,their practical applications were hindered by their low electric conductivity[13,24].Combining these materials with electrically conductive materials to prepare the composites is one of the most effective strategies to solve this issue.Many groups have used this strategy in MnO2and Fe2O3with different substrates and demonstrated good electrochemical performance of these composites[25-27].However,the performance especially on energy density and flexibility are both needed to be further improved.

    In this work,free-standing electrodes composed of uniform Fe2O3nanowires or MnO2nanosheets are grown on flexible carbon fabrics through facile hydrothermal reaction and directly used as anode and cathode of all-solid state FAPC,respectively.In these electrodes,the electrically conductive carbon fabric(CF)is used as substrate to load pseudocapacitive electrode materials of MnO2and Fe2O3.CF can improve conductivity of the electrodes and suppress the damage on electrodes from the volume variation during the long-term charge discharge process.Owing to synthesis process optimization and the perfect matching of cathode and anode,a high working voltage of 1.8 V is realized and the asymmetric device exhibits a high area capacitance of 83.3 mF/cm2(or 119 F/g)at current density of 1 mA/cm2,a compelling energy density of 53.55 Wh/kg with a power density of 43.95 kW/kg.Meanwhile,the device delivers good cycling performance up to 5000 cycles and superior flexibility,establishing it as a promising candidate for portable and wearable flexible energy device.

    MnO2nanosheets on CF(MnO2-CF)was prepared via a hydrothermal method[28].Commercial CF was first ultrasonically cleaned with 0.1 mol/L H2SO4solution for 20 min,followed by washing with deionized water(DI water).1 mmol KMnO4was dissolved in 20 mL DI water by stirring until a homogeneous solution was formed.The homogeneous solution and the treated CF(2 cm×2 cm)were transferred into a 50 mL stainless-steel Teflon-lined autoclave and kept at 100°C for certain time.When cooled down naturally to ambient temperature,CF was taken out and ultrasonically cleaned in DI water twice and dried in a vacuum oven at 60°C overnight.The prepared samples were labeled as MnO2-CF-X,where X represented the reaction time in min.The loading masses of MnO2on MnO2-CF-X were around 0.15,0.25,0.33 and 0.42 mg/cm2for MnO2-CF-20,MnO2-CF-40,MnO2-CF-60 and,MnO2-CF-80,respectively.

    Fe2O3nanowires on CF(Fe2O3-CF)was prepared via solvothermal process[27,29].CF was cleaned in an ultrasonic bath with 1 mol/L HNO3solution for 0.5 h and then in DI water for 10 min.6 mmol FeCl3·6H2O and 7.5 mmol Na2SO4were added into 20 mL DI water under magnetic stirring to form the homogeneously solution.The solution and the prepared CF(2 cm×2 cm)were both put into a 50 mL stainless Teflon-lined autoclave,and kept at 60°C overnight after sealed.After cooled down naturally to room temperature,CF was taken out and ultrasonically cleaned for 10 min in DI water,followed by drying at 60°C overnight.At last,the sample was annealed at 400°C for 120 min with a slow ramping rate of 1°C/min under nitrogen atmosphere to obtain Fe2O3-CF.The prepared samples were labeled as Fe2O3-CF-Y,where Y represented the reagent concentration in mmol.The loading mass of Fe2O3on Fe2O3-CF-Y was about 0.18,0.31 and 0.46 mg/cm2for Fe2O3-CF-3,Fe2O3-CF-6 and,Fe2O3-CF-12,respectively.

    Field-emission scanning electron microscopy(FE-SEM,Hitachi SU8030),and scanning/transmission electron microscopy(S/TEM,Hitachi HD2300,JEOL J2100,Hitachi 8100)were employed to investigate the morphologies and microstructures of the materials.The chemical compositions were confirmed by X-ray photoelectron spectroscopy(XPS,ESCALAB 250Xi).The phase purity and crystallographic information the samples were investigated by Xray diffraction(XRD,SCINTAC INC,2000)at a voltage of 40 kV.

    All the electrochemical tests were conducted on a ChenHua electrochemical workstation(CHI 660E,Shanghai).All single electrode measurements were performed in a three-electrode configuration.The reference and counter electrode were Ag/AgCl and platinum wire,respectively.1 mol/L Na2SO4solution was used as electrolyte.To fabricate the pseudocapacitor device,the optimized MnO2-CF electrode and Fe2O3-CF electrode were directly selected as the positive electrode and negative electrode.The PVA-LiCl gel was acted as the separator and solid electrolyte between the two electrodes in the FAPCs,which was synthesized as follows [28]:6 g PVA and 3 g LiCl powder were dispersed in 60 mL DI water under stirring at 90°C until the solution became clear.Then the PVA-LiCl electrolyte was smeared on the positive and negative electrodes following by drying at 50°C for 10 min.FAPC was finally fabricated by stacking up the two electrodes like a sandwich and dried at ambient temperature.Galvanostatic discharge/charge(GDC),cyclic voltammetry(CV)and electrochemical impedance spectroscopy(EIS,at open circuit voltage with 5 mV signal)were conducted to evaluate the performance of the device.To calculate the specific capacitance(Csc,F/g),power density(P,kW/kg)and energy density(E,Wh/kg),the following equations were used based on GDC curves.

    In the three-electrode system:

    where Caand Csare the area capacitance and specific capacitance of the single electrodes,I is the applied current,m and s are mass and effective area of the active material of the single electrode,Δt is the discharging time,ΔV is the discharge voltage.

    In FASCs:

    where Ctaand Ctsare the area capacitance and specific capacitance of the FASCs,I is the applied current,S is effective area of the device,Δ t is the discharging time,the mass of total active materials in two electrodes is represented by M,and ΔV stands for the working voltage obtained from the curve of discharge excluding the voltage drop.

    The synthesis of cathode MnO2-CF and anode Fe2O3-CF and the device assembly into FAPCs are shown in Fig.1.Hydrothermal reaction method is used to prepare MnO2on CF forming MnO2-CFX.A two-step method combining the solvothermal reaction and thermal annealing at N2is developed to prepare Fe2O3-CF-Y,FAPCs are assembled by sandwiching cathode MnO2-CF-X and anode Fe2O3-CF-Y in PVA-LiCl,which plays both roles of gel electrolyte and separator for device.

    Fig.1.Schematic illustration of the preparation of FAPCs based on MnO2-CF//Fe2O3-CF.

    Fig.2.(a,b)SEM images of MnO2-CF-60(inset is the carbon fabric).(c)HRTEM and TEM images(inset)of the MnO2 nanosheets in MnO2-CF-60.(d)XRD pattern of MnO2-CF-60.(e)XPS spectra of Mn 2p of MnO2-CF-60.(f)XPS spectra of O 1 s of MnO2-CF-60.

    The cathode MnO2-CF-X is first studied.Figs.2a and b show SEM images of MnO2-CF-60 at different magnifications.CF is uniformly covered by MnO2nanosheets forming an interconnected porous network.Fig.S1(Supporting information)shows similar structures of MnO2-CF-X at different reaction times.The structure of MnO2-CF-60 is further characterized by TEM(Fig.2c).The distinct lattice spacings of 0.22 nm,0.23 nm,0.31 nm,are corresponding to the(420),(121),(310)planes of MnO2,respectively.

    For MnO2-CF-60,as shown in Fig.2d,the most obvious peak at 25.8°results from the carbon fabric,and all the other diffraction peaks are in good consistence with tetragonal MnO2(JCPDS card No.72-1982).No diffraction peaks from residues or impurities are observed,indicating the high purity of the composite.The chemical compositionofMnO2-CF-60isanalyzedbyXPS.Thesurveyspectrum confirms the presence of Mn,C and O elements MnO2-CF-60(Fig.S2 in Supporting information).The strong C 1s peak should come from the CFsubstrate becauseitisthe onlycarbonsourceinthe composite and the intensity is strong enough which cannot be negligible.The high-resolution Mn 2p spectrum ranging from 635 eV to 660 eV is shown in Fig.2e.Two peaks seated at 653.9 eV and 642.0 eV are corresponding to Mn4+ions,suggesting Mn4+ions are dominant on the surface of the material.In the O 1s region,two peaks locating at 531.1 eV and 529.4 eV are designated as Mn-O-H and Mn-O-Mn,respectively(Fig.2f).In the high-resolution Mn 3 s spectrum,the binding energy width between the two Mn 3 s peaks can further prove the existence of Mn4+(Fig.S3 in Supporting information).All these results indicate that MnO2has been successfully grown on the surface of CF.

    Fig.3.(a)Cyclic voltammetry(CV)curves of MnO2-CF-X at a scan rate of 10 mV/s.(b)CV curves of MnO2-CF-60 min at different scan rates.(c)Galvanostatic discharge-charge(GDC)curves of MnO2-CF-60 min at different current densities.(d)The specific capacitance and area capacitance of MnO2-CF-60 min at different current densities.

    To explore the electrochemical properties of the MnO2-CF-X cathodes,CV is firstly measured using a three-electrode systemwith 1 mol/L Na2SO4as the electrolyte.Ag/AgCl electrode and platinum wire are used as the reference electrode and the counter electrode,respectively.Fig.3a shows the CV plot of MnO2-CF-X in potential window of 0-1 V at 10 mV/s.The nearly rectangular shapes of the curves indicate the good capacitive characterization of MnO2-CF-X.MnO2-CF-60 shows the largest integral area of CV curve,suggesting the highest pseudocapacitance among all the samples.Fig.3b shows the CV curves of MnO2-CF-60 at different scan rates ranging from 10 mV/s to100 mV/s.Thecurrentresponseenhanceswithincreasing the scan rates while the curve shapes maintain well without distortion.Fig S4(Supporting information)shows the similar CV curves of MnO2-CF-X with different reaction time.

    GDC measurements at different current densities are conducted to further evaluate the performance of the MnO2-CF-60(Fig.3c).The discharge time gradually decreases when the current density increases and no obvious change is observed in the triangular shape of the curves.The nearly symmetrical GDC curves without obvious IR drop reveal the good electrochemical capacitive characteristics of MnO2-CF-60 with low internal resistance[30,31].The corresponding specific capacitance is calculated based on GDC information and shown in Fig.3d.At the current density of 1mA/cm2,the area capacitance of the MnO2-CF-60 is 204.6 mF/cm2(or 620 F/g at an equivalent current density of 3A/g).The specific capacitance slowly decrease as the current density increase.When the current density reaches to 15mA/cm2,the specific capacitance of MnO2-CF-60 still maintain at 169.95 mF/cm2,demonstrating a good rate performance.The high capacitance and outstanding rate capability are because of the large area and remarkable conductivity of carbon fabric,which provide more active sites for electrochemical reaction and fast charge delivery [29].Thus,MnO2-CF-60 with potential range of 0-1V is a promising cathode candidate for high-performance FAPCs.

    The anode Fe2O3-CF-Y is also studied in a similar way with MnO2-CF-X.Figs.4a and b show the morphology of Fe2O3-CF-6 at different magnifications.CF is uniformly covered by Fe2O3nanowires.Fig.4c shows the high resolution TEM images of Fe2O3nanowires from Fe2O3-CF-6.From the inset image,the diameter of Fe2O3nanowires is confirmed to be ~10 nm.The lattice spacing of 0.25 nm is corresponding to the(110)planes of Fe2O3.Similarly,Fe2O3-CF-Y are studied by SEM and shown in Fig.S5(Supporting information).

    Fig.4d shows the XRD pattern of the Fe2O3-CF-6.By assigning the strong peak at 25°to the carbon fabric,all the other peaks are in good consistence with α-Fe2O3(JCPDS No.33-0664).XPS is measured to explore the chemical composition of the Fe2O3-CF-6 nanostructure(Fig.S6 in Supporting information).In the Fe 2p XPS spectrum(Fig.4e),the peaks at 711.2 eV and 724.6 eV which are assigned to Fe 2p3/2and Fe 2p1/2of Fe3+and much higher than the peaks at 709 eV and 722.6 eV are ascribed to Fe2+,respectively.The satellite peak at 718.9 eV might be for Fe 2p3/2.In Fig.4f,the O 1 s spectrum ranging from 525 eV to 540 eV is deconvoluted into two main peaks centered at 529.8 eV,and 531.4 eV,designated to Fe-O and Fe-OH,respectively.These results indicate that Fe2O3nanowires are successfully covered on CF [32,33].

    The electrochemical performance of Fe2O3-CF-Y electrodes is evaluated in the three-electrode configuration.Fig.5a shows the CV tests of Fe2O3-CF-Yat scan rate of 10 mV/s.Fe2O3-CF-6 electrode exhibits the largest integral area in the electrochemical potential range of-0.8~0 V,indicating the highest charge storage capability in three samples.Fig.5b shows CV curves of Fe2O3-CF-6 at different scan rates.All the CV profiles appear as semi-rectangular shape with a pair of light fluctuations at 0.3 V at cathodic sweep and anodic sweep,indicating a pseudocapacitive behaviors.Similar CV curves of Fe2O3-CF-Y with different reagent concentration can be seen in Fig.S7(Supporting information).

    Fig.4.(a,b)SEM images of Fe2O3-CF-6.(c)HRTEM and TEM images of the Fe2O3 nanowires on Fe2O3-CF-6.(d)XRD pattern of the Fe2O3-CF-6.(e)XPS spectra of Fe 2p of Fe2O3-CF-6.(f)XPS spectra of O 1 s core level of Fe2O3-CF-6.

    Fig.5.(a)CV curves of the Fe2O3-CF-Y at 10 mV/s.(b)CV curves of Fe2O3-CF-6 at different scan rates.(c)GDC curves of Fe2O3-CF-6 at different current densities.(d)The area and specific capacitance of Fe2O3-CF-6 at different current densities.

    GDC measurement at different current densities range from 1 mA/cm2to 15 mA/cm2are carried out for the Fe2O3-CF-6(Fig.5c).Nearly symmetric potential-time curves imply the high charge/discharge columbic efficiency and low polarization.Low polarization and high discharge/charge columbic efficiency of the Fe2O3-CF-6 can be concluded by the nearly symmetric time-potential plots.The little slight curvature on such triangular curves indicate the good capacitive behaviors.Fig.5d shows the specific capacitance of the Fe2O3-CF-6 obtained from GDC curves.The area capacitance reaches to 215 mF/cm2at 1 mA/cm2(or 693 F/g at 3.23 A/g).When the current density increase,the capacitance of Fe2O3-CF-6 gradually decrease and maintain a high capacitance of 162 m F/cm2at 15 mA/cm2.This result demonstrates that Fe2O3-CF-6 is a good anode candidate for FAPCs.

    Based on above information,FAPCs are assembled using Fe2O3-CF-6 as anode,MnO2-CF-60 as cathode,and PVA-LiCl as the separator and solid-state electrolyte.To assembly the FAPCs device,charge balance on cathode and anode is necessary to be considered in order to overall utilizing the whole potential window of the two electrodes[34,35].According to the equation of storage charge balance of q=C×ΔE×m,where q represents the storage charge on the electrode,C stands for the specific capacitance,ΔE and m are the potential range and mass loading of the positive or negative electrode,the mass ratio between cathode and anode should be m(MnO2)/m(Fe2O3)=0.89.The device MnO2-CF//Fe2O3-CF is prepared based on this information using cathode MnO2-CF-60 and anode Fe2O3-CF-6.

    In device MnO2-CF//Fe2O3-CF,MnO2-CF-60 has a stable working potential window from 0 V to 1.0 V and Fe2O3-CF-6 is-0.8 V to 0 V,the working voltage of the device can reach up to 1.8 V based on the total potential window of the electrodes(Fig.6a).A set of CV and GDC tests of the FAPC in different working voltages from 1.0 V to 1.8 V are performed to explore the stable working voltage(Fig.S8 in Supporting information).Fig.6b shows the CV plots in the working voltage of 1.8 V at different sweep speeds from 10 mV/s to 100 mV/s.The weak redox peaks of the device suggest the pseudocapacitive behaviors of both electrodes.At high scan speed of 100 mV/s,the CV curve maintains the overall shape,indicating low contact resistance and good capacitive behavior of the device.The performance of this device is further investigated by a series of GDC experiment at different current densities.As shown in Fig.6c,all the curves at different current density are nearly in triangular shape and exhibit negligible voltage drop due to the low resistance.The capacitance of the FAPC is calculated according to the discharge slope based on the total device area or the mass of active materials in the two electrodes(Fig.6d).The area capacitance of the FAPC can reach to 83.3 mF/cm2(or 119 F/g)at 1 mA/cm2and maintains a high value of 68.37 mF/cm2(97.66 F/g)at 15 mA/cm2,indicating an excellent rate capability.

    Fig.S9(Supporting information)shows the digital images of the device at different bending states.Cycling stability of the device is an important criterion in real application.The stability performance is studied in an extended charge-discharge cycling process(Fig.6e).After 5000 cycles at 5 mA/cm2,82.3%capacitance is maintained and the GDC curves are almost overlapping between the continuous cycles(inset of Fig.6e),demonstrating the good cycling stability.To analyze the degradation of capacitance,electrochemical impedance spectroscopy(EIS)experimentsare performed before and after5000 cycles of GDC tests at 5 mA/cm2.Fig.6f shows the Nyquist plot with two steep,straight lines at low frequency,indicating a low diffusion resistanceintheelectrodematerials andanidealcapacitivebehavior[12].The equivalent circuit model is proposed and shown in Fig.S10 in Supporting information.In this model,the equivalent series resistance( Rs)incorporates the internal resistance of the active electrode material,interfacial resistance between the electrolyte and electrode,and ionic resistance in the gel electrolyte.It increases from 4.15 Ω to 6.43 Ω before and after 5000 cycles.In the high frequency,charge transfer resistance(Rct)increase a little bit from 2.16 Ω to2.58Ω before and after 5000 cycles.The slight change of Rsand Rctis because of the distortion of the charge transfer channel which is due to the degradation of the electrode active material and gel electrolyte in the extended cycling[36].This EIS data further support the high rate capability and exceptionally stable performance of the FAPC.

    Fig.6.(a)Comparative CV curves of Fe2O3-CF-6 and MnO2-CF-60 at 10 mV/s.(b)CV tests of FAPC at 10 mV/s to 100 mV/s.(c)GDC curves of FAPC at 1-15 mA/cm2.(d)The area and specific capacitance of the device at different current densities.(e)The cycling stability of the device at 5 mA/cm2.(f)Nyquist plots of FAPC before and after 5000 cycles at 5 mA/cm2.(g)Ragone plots of MnO2-CF//Fe2O3-CF and the reported works.(h)CV curves of FAPC under different bending angles at 100 mV/s.(i)Capacitance retention of FAPC for the multiple bending times at the bending angle of 90°.

    Fig.6g shows the Ragone plot of the device MnO2-CF//Fe2O3-CF with other asymmetric or symmetric supercapacitors.MnO2-CF//Fe2O3-CF achieves a highest energy density of 53.55 Wh/kg at 1.28 kW/kg.As current density increased to 15 mA/cm2,the energy density can still maintain at 43.95 Wh/kg,along with an excellent power density of 19.29 kW/kg.These values are comparable with or exceeding the previously reported works,such as MnO2nanoflowers//Bi2O3nanoflowers(11.3 Wh/kg at 352.6 W/kg)[21],MnO2@carbon fiber//graphene(27.2 Wh/kg at 979.7 W/kg)[28],Ni(OH)2-MnO2-RGO//RGO(54.0 Wh/kg at 392 W/kg)[37],MnO2-GNS//FeOOH-GNS-CNTs(30.4 Wh/kg at 237.6 W/kg)[38]and other samples [39-48].

    In order to examine its flexibility and mechanical stability,the FAPC at different bending states are tested by CV measurements.As shown in Fig.6h,the CV curves are well maintained when bent to different angles at 100 mV/s.When it is bent to 90°,180°,and then recovered to original state,no change on the CV curve is observed.The device performance is also evaluated at different bending cycles when bent to 90°.As shown in Fig.6i,the capacitance decreases slightly with the increase of the bending cycles.Only 6.4%of capacitance decays after 4000 bending cycles.These results demonstrate that the MnO2-CF//Fe2O3-CF device has the superior flexibility and mechanical stability.

    In summary,a flexible high-performance asymmetric supercapacitor is fabricated using MnO2nanosheets and Fe2O3nanowires grown on flexible carbon fabrics and employed as the cathode and anode,respectively.Owing to the optimization of the single electrodes and hybrid structures,the device exhibits high capacitance,stable cycling performance,a competitive energy density and power density,and good mechanical flexibility.These excellent performance metrics coupled with the low-cost design establish this as a promising candidate of advanced energy power system for portable and wearable electronics.

    Acknowledgments

    This work is financially supported by the National Natural Science Foundation of China(Nos.51579057 and 51379065),and State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2016DX07).J.Liu acknowledges the support of the Natural Science Foundation of Shandong Province(No.ZR2018MB018),the Natural Science Foundation of China(No.21802080),the Thousand Youth Talents Program of China,and the Doctoral Fund of the QUST.

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.09.013.

    大码成人一级视频| 久久亚洲真实| 十八禁人妻一区二区| 日本一区二区免费在线视频| 国产1区2区3区精品| 午夜激情av网站| 乱人伦中国视频| 18禁国产床啪视频网站| 麻豆av在线久日| 国产精品亚洲av一区麻豆| 美女福利国产在线| 久久精品国产a三级三级三级| 国产91精品成人一区二区三区| 日本精品一区二区三区蜜桃| 侵犯人妻中文字幕一二三四区| 操出白浆在线播放| 国产精品.久久久| 18禁国产床啪视频网站| 国产一区二区三区综合在线观看| 国产免费现黄频在线看| 一个人免费在线观看的高清视频| 少妇裸体淫交视频免费看高清 | 嫁个100分男人电影在线观看| 交换朋友夫妻互换小说| 国产成人影院久久av| 久久久精品国产亚洲av高清涩受| 国产精品美女特级片免费视频播放器 | 国产成人影院久久av| 国产男女内射视频| 手机成人av网站| 巨乳人妻的诱惑在线观看| 亚洲九九香蕉| 久久香蕉激情| 咕卡用的链子| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻丝袜制服| 久久久国产一区二区| 久久久久国产精品人妻aⅴ院 | 久久午夜综合久久蜜桃| 变态另类成人亚洲欧美熟女 | 村上凉子中文字幕在线| 久久中文字幕人妻熟女| 99久久综合精品五月天人人| 亚洲色图av天堂| 99re在线观看精品视频| 视频在线观看一区二区三区| av天堂久久9| 国产精品免费视频内射| 亚洲精品美女久久久久99蜜臀| a在线观看视频网站| 欧美精品av麻豆av| 一区二区三区激情视频| 欧美激情极品国产一区二区三区| 精品国产一区二区久久| av电影中文网址| 精品亚洲成国产av| 亚洲一码二码三码区别大吗| 欧美国产精品一级二级三级| 999久久久精品免费观看国产| 亚洲av美国av| 女警被强在线播放| 日日爽夜夜爽网站| 男女午夜视频在线观看| 亚洲av熟女| 人妻久久中文字幕网| www日本在线高清视频| 99国产极品粉嫩在线观看| 法律面前人人平等表现在哪些方面| 免费日韩欧美在线观看| 亚洲欧洲精品一区二区精品久久久| 男女高潮啪啪啪动态图| av国产精品久久久久影院| 韩国av一区二区三区四区| 手机成人av网站| 伊人久久大香线蕉亚洲五| 美女午夜性视频免费| 亚洲熟妇中文字幕五十中出 | 美女高潮到喷水免费观看| 18禁美女被吸乳视频| 午夜精品久久久久久毛片777| 首页视频小说图片口味搜索| 91老司机精品| 久久精品国产a三级三级三级| 俄罗斯特黄特色一大片| 中出人妻视频一区二区| 欧美成人午夜精品| 一二三四社区在线视频社区8| 欧美精品一区二区免费开放| 黄色丝袜av网址大全| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区激情| 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 欧美日韩福利视频一区二区| av国产精品久久久久影院| 亚洲 国产 在线| 久久中文字幕一级| 老司机午夜福利在线观看视频| a级毛片黄视频| 亚洲精品久久成人aⅴ小说| 久久久久国内视频| 亚洲成人手机| 啦啦啦免费观看视频1| 日韩人妻精品一区2区三区| 欧美大码av| 妹子高潮喷水视频| 俄罗斯特黄特色一大片| 国产高清videossex| 亚洲欧美激情在线| 色94色欧美一区二区| 最新在线观看一区二区三区| 在线十欧美十亚洲十日本专区| 日本欧美视频一区| 欧美日韩成人在线一区二区| 丝袜美足系列| 80岁老熟妇乱子伦牲交| 免费在线观看黄色视频的| 韩国av一区二区三区四区| 久久国产精品男人的天堂亚洲| 国产精品久久久久久人妻精品电影| 国内久久婷婷六月综合欲色啪| 建设人人有责人人尽责人人享有的| 亚洲第一青青草原| 国产欧美日韩综合在线一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 少妇被粗大的猛进出69影院| 在线观看日韩欧美| 亚洲一区二区三区不卡视频| 亚洲精品一二三| 麻豆国产av国片精品| 美女福利国产在线| 国产不卡一卡二| 久久精品成人免费网站| 色播在线永久视频| 精品国产美女av久久久久小说| 制服诱惑二区| 国产免费男女视频| 黄片小视频在线播放| 丰满的人妻完整版| 69精品国产乱码久久久| av电影中文网址| 国产高清激情床上av| 国产精品偷伦视频观看了| 亚洲色图综合在线观看| 日韩精品免费视频一区二区三区| 久99久视频精品免费| 欧美 亚洲 国产 日韩一| 在线永久观看黄色视频| 午夜老司机福利片| 久热爱精品视频在线9| 中文字幕人妻丝袜一区二区| 久久久久视频综合| 999精品在线视频| 免费高清在线观看日韩| www.精华液| 身体一侧抽搐| 俄罗斯特黄特色一大片| 久久久久久久久免费视频了| 久久国产精品男人的天堂亚洲| 免费看十八禁软件| 咕卡用的链子| 中文字幕人妻丝袜一区二区| 成人三级做爰电影| 亚洲专区国产一区二区| 午夜福利一区二区在线看| 99re6热这里在线精品视频| 啦啦啦在线免费观看视频4| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点 | 久久香蕉激情| 黄色a级毛片大全视频| av国产精品久久久久影院| 999久久久精品免费观看国产| 亚洲男人天堂网一区| 日韩人妻精品一区2区三区| 18在线观看网站| 男女高潮啪啪啪动态图| 午夜两性在线视频| 日韩 欧美 亚洲 中文字幕| 国产精品久久久人人做人人爽| 国产免费现黄频在线看| 一边摸一边抽搐一进一小说 | 亚洲成人免费av在线播放| 欧美激情极品国产一区二区三区| 久久精品成人免费网站| av网站在线播放免费| 9191精品国产免费久久| 身体一侧抽搐| 国产成+人综合+亚洲专区| 成人av一区二区三区在线看| 久久久国产欧美日韩av| 人人妻人人爽人人添夜夜欢视频| 又大又爽又粗| 9色porny在线观看| 97人妻天天添夜夜摸| 久久精品国产亚洲av香蕉五月 | 日本欧美视频一区| 视频区欧美日本亚洲| 国产色视频综合| 国内久久婷婷六月综合欲色啪| 看黄色毛片网站| 好男人电影高清在线观看| 久久久精品免费免费高清| 成人免费观看视频高清| 欧美精品一区二区免费开放| 黑人猛操日本美女一级片| 激情在线观看视频在线高清 | av网站在线播放免费| 美国免费a级毛片| 色在线成人网| 99re6热这里在线精品视频| 久久草成人影院| 亚洲精品在线美女| 夜夜爽天天搞| 一本大道久久a久久精品| 亚洲精品一二三| 国产区一区二久久| 老熟妇仑乱视频hdxx| 天天操日日干夜夜撸| 看免费av毛片| 国产欧美日韩一区二区三| 极品人妻少妇av视频| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 黄片播放在线免费| 两个人免费观看高清视频| 女警被强在线播放| 国产99白浆流出| 满18在线观看网站| 在线观看免费高清a一片| 国产淫语在线视频| 久久久精品国产亚洲av高清涩受| 欧美亚洲日本最大视频资源| 18在线观看网站| 一本大道久久a久久精品| 亚洲av成人av| 法律面前人人平等表现在哪些方面| 嫩草影视91久久| 最近最新免费中文字幕在线| 老司机亚洲免费影院| 捣出白浆h1v1| 成人18禁高潮啪啪吃奶动态图| 免费看a级黄色片| 国产精品偷伦视频观看了| 欧美性长视频在线观看| 黄色视频,在线免费观看| 亚洲在线自拍视频| 亚洲精品一二三| 中文字幕色久视频| 国产日韩欧美亚洲二区| 日韩有码中文字幕| 超碰97精品在线观看| 亚洲av熟女| 丝袜美足系列| av有码第一页| 精品国内亚洲2022精品成人 | 久久精品国产99精品国产亚洲性色 | 久99久视频精品免费| av免费在线观看网站| 国产精品av久久久久免费| 人人澡人人妻人| 国产精品香港三级国产av潘金莲| 可以免费在线观看a视频的电影网站| 飞空精品影院首页| 男人的好看免费观看在线视频 | 亚洲国产看品久久| 免费不卡黄色视频| 嫩草影视91久久| 91国产中文字幕| 女性被躁到高潮视频| 久久久国产精品麻豆| 亚洲情色 制服丝袜| 日韩精品免费视频一区二区三区| 久久99一区二区三区| 午夜免费鲁丝| 人妻一区二区av| 国产成人啪精品午夜网站| 老熟妇仑乱视频hdxx| 精品免费久久久久久久清纯 | 别揉我奶头~嗯~啊~动态视频| 老司机福利观看| 久久精品亚洲精品国产色婷小说| 久久狼人影院| a在线观看视频网站| 一区二区三区国产精品乱码| 黑人巨大精品欧美一区二区mp4| 色在线成人网| а√天堂www在线а√下载 | 啦啦啦免费观看视频1| 亚洲av熟女| 欧美精品av麻豆av| 精品国产超薄肉色丝袜足j| 午夜福利,免费看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲欧美激情综合另类| 亚洲一区二区三区不卡视频| 国产一区在线观看成人免费| 亚洲精华国产精华精| 国产人伦9x9x在线观看| 婷婷精品国产亚洲av在线 | 日韩免费高清中文字幕av| 成年人免费黄色播放视频| 久久久久精品国产欧美久久久| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 伊人久久大香线蕉亚洲五| 亚洲色图 男人天堂 中文字幕| 少妇 在线观看| 亚洲国产精品一区二区三区在线| 久久精品亚洲熟妇少妇任你| 久久人妻熟女aⅴ| 色播在线永久视频| 免费高清在线观看日韩| 热re99久久国产66热| 中文字幕人妻丝袜一区二区| 精品国产乱子伦一区二区三区| 久久精品国产清高在天天线| 欧美大码av| 久久久精品免费免费高清| 亚洲第一欧美日韩一区二区三区| 精品久久久久久,| 国产麻豆69| 天天躁夜夜躁狠狠躁躁| 午夜老司机福利片| 午夜免费成人在线视频| e午夜精品久久久久久久| 三上悠亚av全集在线观看| 国产精品偷伦视频观看了| 又紧又爽又黄一区二区| 亚洲av日韩在线播放| 国产在视频线精品| 91av网站免费观看| 欧美性长视频在线观看| 一二三四社区在线视频社区8| 香蕉国产在线看| 日韩三级视频一区二区三区| 嫁个100分男人电影在线观看| 久久香蕉激情| 国产精品一区二区在线不卡| 欧美+亚洲+日韩+国产| 亚洲人成77777在线视频| 99热网站在线观看| 手机成人av网站| 国产在线一区二区三区精| 国产亚洲精品第一综合不卡| 老司机影院毛片| 日本撒尿小便嘘嘘汇集6| 下体分泌物呈黄色| 国产蜜桃级精品一区二区三区 | 无限看片的www在线观看| 国产深夜福利视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产色视频综合| 女人爽到高潮嗷嗷叫在线视频| 成年动漫av网址| 久99久视频精品免费| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三| 热re99久久精品国产66热6| 亚洲av成人av| 日韩欧美在线二视频 | videosex国产| 人妻丰满熟妇av一区二区三区 | 一进一出抽搐动态| 国产精品国产高清国产av | 久久人人爽av亚洲精品天堂| av不卡在线播放| 亚洲精品av麻豆狂野| 美女午夜性视频免费| 在线观看免费午夜福利视频| 757午夜福利合集在线观看| 国产三级黄色录像| 国产日韩一区二区三区精品不卡| 国产高清激情床上av| 久久香蕉激情| 成年人午夜在线观看视频| 在线天堂中文资源库| 国产精品 欧美亚洲| 亚洲国产精品sss在线观看 | 国产精品自产拍在线观看55亚洲 | 亚洲av美国av| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 亚洲一码二码三码区别大吗| 王馨瑶露胸无遮挡在线观看| 十八禁网站免费在线| 高清av免费在线| 人人妻,人人澡人人爽秒播| 久久性视频一级片| 欧美乱码精品一区二区三区| 国产一区二区三区综合在线观看| 成人影院久久| 色在线成人网| 视频在线观看一区二区三区| 又黄又粗又硬又大视频| 在线天堂中文资源库| 人人澡人人妻人| 涩涩av久久男人的天堂| 制服诱惑二区| 国产精品乱码一区二三区的特点 | tocl精华| 亚洲成人手机| 久久精品aⅴ一区二区三区四区| 成人手机av| 国产在视频线精品| 老汉色av国产亚洲站长工具| 国产97色在线日韩免费| 欧美日韩黄片免| 日本a在线网址| 夜夜躁狠狠躁天天躁| 天天影视国产精品| 久久精品91无色码中文字幕| 色播在线永久视频| 日韩欧美一区视频在线观看| 99riav亚洲国产免费| 看片在线看免费视频| 精品一区二区三区视频在线观看免费 | 最新美女视频免费是黄的| 日韩免费av在线播放| 久久精品成人免费网站| 一区二区三区国产精品乱码| 国产免费av片在线观看野外av| 国产色视频综合| 色综合婷婷激情| videosex国产| 一级毛片精品| 亚洲精品一二三| 黄色丝袜av网址大全| 天天躁狠狠躁夜夜躁狠狠躁| 又大又爽又粗| 三级毛片av免费| 999久久久精品免费观看国产| 性色av乱码一区二区三区2| 精品欧美一区二区三区在线| 一边摸一边抽搐一进一出视频| 99re6热这里在线精品视频| 久久久久精品国产欧美久久久| av视频免费观看在线观看| 精品久久蜜臀av无| www.自偷自拍.com| 视频区图区小说| 午夜两性在线视频| 国产亚洲精品久久久久5区| 制服人妻中文乱码| 自线自在国产av| 国产免费现黄频在线看| 丰满人妻熟妇乱又伦精品不卡| 男女午夜视频在线观看| 一区二区三区精品91| 99国产精品一区二区三区| 无遮挡黄片免费观看| 久久这里只有精品19| 不卡一级毛片| 一级,二级,三级黄色视频| 99精品在免费线老司机午夜| 久久精品国产清高在天天线| 欧美成狂野欧美在线观看| 一边摸一边抽搐一进一出视频| 国精品久久久久久国模美| 国产在线精品亚洲第一网站| 国产淫语在线视频| 亚洲第一欧美日韩一区二区三区| 女人高潮潮喷娇喘18禁视频| 99香蕉大伊视频| 欧美亚洲日本最大视频资源| 久久性视频一级片| 天堂俺去俺来也www色官网| 久久久久国内视频| 久久国产精品影院| 亚洲精品自拍成人| 水蜜桃什么品种好| 亚洲av熟女| 欧美精品啪啪一区二区三区| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 天天添夜夜摸| 久久久久久久久免费视频了| 亚洲第一青青草原| 亚洲欧洲精品一区二区精品久久久| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 女同久久另类99精品国产91| 国产精品 国内视频| av免费在线观看网站| 久久亚洲真实| 成年人午夜在线观看视频| 亚洲国产精品一区二区三区在线| 又黄又爽又免费观看的视频| 91av网站免费观看| 中文亚洲av片在线观看爽 | avwww免费| 怎么达到女性高潮| 精品免费久久久久久久清纯 | 亚洲欧美激情综合另类| 在线观看免费视频网站a站| xxxhd国产人妻xxx| 51午夜福利影视在线观看| 午夜两性在线视频| 99热网站在线观看| 18禁国产床啪视频网站| 91九色精品人成在线观看| 久久天躁狠狠躁夜夜2o2o| 日韩免费av在线播放| 成熟少妇高潮喷水视频| 天堂√8在线中文| 又黄又粗又硬又大视频| 国产色视频综合| 村上凉子中文字幕在线| 两个人看的免费小视频| 国产男女超爽视频在线观看| 侵犯人妻中文字幕一二三四区| 99热国产这里只有精品6| 精品一区二区三卡| av国产精品久久久久影院| 亚洲七黄色美女视频| 999久久久精品免费观看国产| 国产亚洲欧美98| 少妇被粗大的猛进出69影院| 亚洲av片天天在线观看| 亚洲精华国产精华精| 精品电影一区二区在线| 久久久国产一区二区| 亚洲精品美女久久av网站| 欧美国产精品va在线观看不卡| 国产av又大| 午夜福利视频在线观看免费| 精品久久久久久久久久免费视频 | 超色免费av| 午夜免费成人在线视频| 久久午夜综合久久蜜桃| 丝袜美腿诱惑在线| 在线观看www视频免费| 夜夜夜夜夜久久久久| 亚洲成人国产一区在线观看| 天天躁日日躁夜夜躁夜夜| 嫁个100分男人电影在线观看| 精品亚洲成a人片在线观看| www.熟女人妻精品国产| 亚洲性夜色夜夜综合| 亚洲三区欧美一区| 国产单亲对白刺激| 日本黄色日本黄色录像| 亚洲一区中文字幕在线| 18禁黄网站禁片午夜丰满| 一区二区日韩欧美中文字幕| 午夜日韩欧美国产| 亚洲人成电影观看| 亚洲国产毛片av蜜桃av| 一级毛片女人18水好多| 精品福利永久在线观看| 欧美+亚洲+日韩+国产| 国产片内射在线| 俄罗斯特黄特色一大片| 超碰97精品在线观看| 777米奇影视久久| 一二三四社区在线视频社区8| 久久久久国产精品人妻aⅴ院 | 成人18禁在线播放| 视频区欧美日本亚洲| 黑人巨大精品欧美一区二区mp4| 日本撒尿小便嘘嘘汇集6| 99热只有精品国产| 欧美精品啪啪一区二区三区| 免费在线观看黄色视频的| 亚洲精品久久成人aⅴ小说| 国产成人精品久久二区二区免费| 国产黄色免费在线视频| 精品亚洲成国产av| 免费在线观看日本一区| 国产精品久久久久久人妻精品电影| 久久久久久人人人人人| 男女高潮啪啪啪动态图| 国内毛片毛片毛片毛片毛片| 黄色 视频免费看| 欧美中文综合在线视频| 国产男女超爽视频在线观看| 精品国产亚洲在线| 久久久国产一区二区| 91成年电影在线观看| 天堂俺去俺来也www色官网| 91麻豆av在线| 久久久国产精品麻豆| 亚洲成人免费电影在线观看| 精品欧美一区二区三区在线| 岛国毛片在线播放| 黑人巨大精品欧美一区二区mp4| 成人国语在线视频| 黄色视频不卡| 亚洲专区国产一区二区| 欧美日韩一级在线毛片| 国产精品久久久av美女十八| 免费av中文字幕在线| 亚洲国产毛片av蜜桃av| 亚洲人成77777在线视频| 午夜91福利影院| 18禁美女被吸乳视频| 在线观看免费视频日本深夜| 一进一出抽搐动态| 村上凉子中文字幕在线| 色综合欧美亚洲国产小说| 日韩欧美一区视频在线观看| 久久人妻av系列| 成人亚洲精品一区在线观看| 99国产精品一区二区三区| 国产黄色免费在线视频| 精品电影一区二区在线| 欧美一级毛片孕妇| 欧美午夜高清在线| 丁香六月欧美| 狠狠狠狠99中文字幕| 亚洲三区欧美一区| x7x7x7水蜜桃| 两个人免费观看高清视频| 国产99久久九九免费精品| 久久中文字幕人妻熟女|