• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ni/Co-based metal-organic frameworks as electrode material for high performance supercapacitors

    2019-04-11 02:38:52ShofeiZhoLizhenZengGoChengLinYuHuqingZeng
    Chinese Chemical Letters 2019年3期

    Shofei Zho,Lizhen Zeng,Go Cheng,Lin Yu,*,Huqing Zeng*

    a School of Chemical Engineering & Light Industry,Guangdong University of Technology,Guangzhou 510006,China

    b Analysis and Testing Center,South China Normal University,Guangzhou 510006,China

    c Institute of Bioengineering and Nanotechnology,Singapore 138669,Singapore

    Keywords:

    ABSTRACT

    A novel bimetallic Ni/Co-based metal-organic framework(Ni/Co-MOF)was successfully synthesized via a simple solvothermal method,and used as electrode material for high performance supercapacitors.After doping of Co element,the Ni/Co-MOF materials retain the original crystalline topology structure of Ni3(BTC)2·12H2O.The as-obtained Ni/Co-MOF demonstrates an excellent specific capacitance of 1067 and 780 F/g at current density of 1 and 10 A/g,respectively,and can also retain 68.4% of the original capacitance after 2500 cycles.These results suggest that bimetallic Ni/Co-based MOFs are promising materials for the next generation supercapacitance,owing to their excellent electrochemical performance.The synthetic procedure can be applied to synthesize other bimetallic MOFs and enhance their conductive property.

    The energy-storage devices have attracted an ever-increasing research interest due to the worldwide environment issue and shortage of fossil energy.Among the various energy-storage devices,supercapacitors(SCs),exhibiting fast charging-discharging characteristics,high power densityand large cycle life,have been provoked as highly promising candidates for use in electronic devices [1].Supercapacitors can be categorized into two types depending on charge storage mechanisms.The first type is electrical double layer capacitors(EDLCs),which store electrochemical energy by ion adsorbing-disadsorbing.Carbon materials,such as activated carbon[2],CNT[3]andgraphene,withhighsurface-areaareusuallyutilized as EDLCs electrodes.The other type consists of pseudocapacitors,which mostly use transition metal oxides/hydroxide(NiO[4],MnO2[5],Fe2O3[6],Co3O4[7],Co(OH)2[8]andNi(OH)2[9])andconducting polymers(PEDOT-PSS [10],polyaniline [11],etc.)as electrodes,where capacitance comes from fast redox reactions.In general,pseudocapacitors display higher capacitance,but inferior rate capability and cycling life than EDLCs[12],due to the semiconducting or insulating nature of most metal oxides/hydroxide[13].Thus,new materials must be exploited to meet the growing demand of SCs for future applications.

    Metal-organic frameworks(MOFs),emerging as a new class of materials with tunable porosity,wide varieties,large specific surface area and excellent physical and chemical properties,have attracted tremendous attention in recent years,with demonstrated applications in such as catalysis [14],gas storage [15],separation[16],sensors [17],water purification [18],lithium-ion batteries[19] and supercapacitors [20-23].The pristine MOFs can be directly used as electrode materials for SCs,due to their porosity and metal cations that provide the accommodation space for electrolyte and the redox active sites,respectively[23].Apart from direct use,MOFs have also served as sacrificial materials for synthesizing metal oxides [24-26],carbons [27] and composites[28] or as supports to load nanomaterials [29].Díaz et al.firstly reported the utilization of pristine MOFs(Co8-MOF-5)as electrodes materials for electric double layer capacitors,which established the feasibility of MOFs-based electrodes [30].Yaghi et al.synthesized a series of MOFs with different central metal ions and organic ligands for SCs [31].It was found that zirconium-based MOFs displayed relatively high areal specific capacitance.Ma's group has synthesized a ball-in-cage(BIC)nanostructure material for SCs,possessing a capacitance of 119 F/g at a current density of 0.5 A/g[22].A high capacitance of 726 F/g for Ni-MOF was recently reported by Kong et al.[32].Nevertheless,studies on pristine bimetallic MOFs as electrode materials are still very rare[33].The main reason could be due to the poor electrical conductivity of pristine MOFs,and we believe substituting the central metal with other ions might be a feasible approach to overcome this disadvantage [1,21].

    In this work,we provided a simple strategy to synthesize layered Co-doped Ni-MOF as an excellent electrode material for SCs.While the original crystalline topology of Ni3(BTC)2·12H2O still remains for the[Ni3-xCox(BTC)2·12H2O](x ≈0.25,0.5),the Ni/Co-MOF exhibited a specific capacitance of 1067 F/g at a discharge current density of 1 A/g,which is two times that for Ni-MOF.The good rate capability was obtained with a specific capacitance of 780 F/g at 10 A/g.These results suggest that bimetallic MOF could function as promising and innovative materials for supercapacitors.

    All solvents and reagents for the syntheses were of analytical grade and were used as received from commercial sources without further purification.In a typical experimental set-up,0.594 g of NiCl2·6H2O,0.420 g of 1,3,5-benzenetricarboxylic acid(H3BTC)and different amounts of CoCl2·6H2O(0,0.059,0.118 g)were dissolved in a mixed DMF(N,N-dimethylformamide,10 mL)and H2O(10 mL)solution with stirring at room temperature.Then,the mixture was transferred to a 50 mL Teflon-lined stainless steel autoclave and maintained at 120°for 24 h.After cooling down to room temperature,the precipitate was thoroughly washed several times with DMF and H2O,respectively.Finally,the Co-doped Ni-MOFs were dried at 60°for 12 h under vacuum condition.Herein,Codoped Ni-based MOF materials prepared with different amounts of CoCl2·6H2O(0,0.059,0.118 g)are denoted as Ni-MOF,Ni/Co-MOF-0.25 and Ni/Co-MOF-0.5,respectively.

    The morphologies of samples were analyzed by using FESEM(ZESISS ULTRA 55,Germany)and transmission electron microscopy(TEM,JEOL JEM-2100HR,Japan).X-ray diffraction(XRD)patterns were obtained by XRD-6000(Shimadzu)in the Bragg′s angle(2θ)range from 5°to 50°with monochromatic Cu Kα radiation.Inductively coupled plasma(ICP)measurements(725 ICP-OES,Agilent)were used to determine the ions rate of Ni and Co.Fourier transform infrared(FTIR)analysis(Nicolet 6700)was conducted in the range of 400 cm-1to 4000 cm-1.Thermogravimetric analysis was performed using Q500 under air conditions from room temperature to 780°C.The valence state of the samples was measured by X-ray photoelectron spectroscopy(XPS)using ESCALAB250Xi system(Thermo Fisher Scientific,USA)with an Al Kα(mono)irradiation.

    A CHI 660E electrochemical workstation was used to perform the electrochemical properties of the samples with a threeelectrode system in 3 mol/L KOH aqueous electrolyte at room temperature.The working electrodes were prepared by mixing the active materials,carbon black and polyvinylidene difluoride(PVDF)in a weight ratio of 8:1:1.Then,an appropriate amount of N-methyl 2-pyrrolidone was added and grinded evenly to produce a slurry.The slurry was coated onto the pre-weighed nickel foam current collectors(1 cm×1 cm)and dried in vacuum at 60°C for 12 h to obtain the working electrode.The mass of the active material on nickel foam for Ni-MOF,Ni-Co-MOF-0.25 and Ni-Co-MOF-0.5 were 5.15,4.96 and 6.09 mg,respectively.Platinum foil(1.5 cm×1.5 cm)and a saturated calomel electrode were used as the counter and reference electrodes,respectively.

    Cyclic voltammetry(CV)measurements were conducted at various scan rates from 5 to 50 mV/s in the potential window of 0-0.5 V.Galvanostatic charge-discharge(GCD)measurements were carried out at different current densities form 1-20 A/g.The cycle performance was examined by GCD measurement at the current density of 10 A/g for 2500 cycles.Electrochemical impedance spectroscopy(EIS)was also measured.The amplitude of AC voltage is 5 mV and the frequency range is from 0.01 Hz to 100 kHz.

    The specific capacitance of the electrode was calculated from the discharge curves according to the following equation:

    where C is the specific capacitance in F/g,I is the discharge current in A,Δt is the time of discharge in s,m is mass of the active materials in g,and ΔV is the discharge voltage window in V.

    Fig.1a shows the XRD patterns of the Ni-MOF and Ni/Co-MOF.All the patterns are in good agreement with that simulated from the single-crystal data of[Ni3(BTC)2·12H2O](CCDC-1274034),four distinct diffraction peaks standing at 17.5°,18.7°,27.2°and 28.6°are indexed to the(220),(111),(20-2)and(11-2)planes,respectively.No impurity peaks were detected in the XRD results for the Ni/Co-MOF,implying that the Co doping did not change the original Ni-MOF structure.The FTIR spectrum of samples are shown in Fig.1b.All the peaks of samples are almost the same,which agree with the XRD results.The bands at 3440 cm-1and 3108 cm-1are due to the stretching vibration of water molecules,confirming the existence of coordinated H2O molecules within the structure.The strong absorption bands at 1648,1606,1546,1435 and 1373 cm-1were assigned to the asymmetric and symmetric stretching modes of the coordinated(-COO-)group,respectively[1,34].It should be noted that after doping of Co ions,the band at 1648 cm-1appeared in Ni/Co-MOFs,indicating the Co2+ions doped in the MOFs have changed the surrounding environment of -COO- group.The absence of absorption bands from 1730 cm-1to 1690 cm-1associated with the-COOH is indicative of the deprotonation of H3BTC upon its contact with metal ions [35].

    The SEM images of Ni/Co-MOFs are shown in Figs.S1a-c in Supporting information.It can been seen that all the samples exhibit a loosely packed layer structure,which is similar to the accordion-like Ni-MOF reported by Yan et al.[36].The TEM images of the Ni-MOF,Ni/Co-MOF-0.25 and Ni/Co-MOF-0.5 are shown in Figs.S1(d,g),Figs.S1(e,h)and Figs.S1(f,i)in Supporting information,respectively.The layer structure existed in Ni-MOF and Ni/Co-MOFs can be confirmed from Figs.S1(d-f).Meanwhile,it can be seen from Figs.S1(g-i)that the surface of all samples shows small pores.After doping the Co ions,the size of pores became smaller,which is about 5 nm,2 nm and 4 nm for Ni-MOF,Ni/Co-MOF-0.25 and Ni/Co-MOF-0.5,respectively.The obtained nano-pores is comparable with the pore size of similar MOFs [33].The hierarchical structure composed by the layer structure and smaller pores on the surface may increase the contact area between active materials and electrolyte,which results in a higher capacitance.

    Fig.1.XRD patterns(a)and FTIR spectra(b)of Ni-MOF and Ni/Co-MOFs.

    Schematic illustration of the synthetic process of MOFs is shown in Fig.2a.The light green color of Ni-MOFs changes to brown after doping of Co ions,which confirms the Ni ions have been substituted by Co ions.Ball and stick views of Ni-MOF along c axis and b axis are shown in Figs.2b and c.The structure of Ni-MOF is composed of zigzag chains constructed from two symmetryinequivalent tetra-aqua nickel(II)units and BTC ligands,as shown in Fig.2b.As shown in Fig.2c,the zigzag chains can be reinforced and held together by numerous hydrogen bonding interactions involving every remaining water and carboxylate units in the structure to yield a tightly associated 3-D network [32].

    TG curves of samples measured in air from room temperature to 790°are shown in Fig.S2 in Supporting information.Two stages of weight loss were observed during the whole test.It can be seen that the first weight loss up to 350°could be due to the loss of coordinated water molecules in channel.The primary weight loss of the MOFs appears at the second stage,which was attributed to the decomposition of the organic component starting at 393°,380°and 366°for Ni-MOF,Ni/Co-MOF-0.25 and Ni/Co-MOF-0.5,respectively.The decrease of the decomposition temperature may be due to the structure defects caused by doping the Co ions.

    XPS measurements were conducted to acquire further information on the chemical composition of Ni/Co-MOF-0.5 sample.Our results reveal a clear existence of C,O,Co and Ni elements(Fig.3a).In the high-resolution Co 2p spectrum(Fig.3b),two major peaks of Co 2p centered around 797.5 eV(Co 2p1/2)and 781.8 eV(Co 2p3/2)eV with a spin-energy separation of 15.7 eV indicate that the Co element existed in a divalent state[37].As shown in Fig.4c,the Ni 2p spectrum indicates that the Ni 2p3/2and Ni 2p1/2peaks are located at the binding energy of 856.3 and 873.8 eV accompanied by two satellite bands,respectively,implying the presence of Ni element in the form of a divalent state [38].

    Ion distributions of Ni and Co determined by inductively couple plasma(ICP)elemental analysis are shown in Table 1.The ratios of Ni and Co in the Ni-MOFs,Ni/Co-MOF-0.25,Ni/Co-MOF-0.5 were 0.2303:0,0.2105:0.0234 and 0.1964:0.0456,respectively,which confirm that the Ni2+have been partially substituted by Co2+in the Ni/Co-MOFs.

    Fig.3.XPS spectrum of the Ni/Co-MOF-0.5(a)and the elemental analysis of Co 2p(b)and Ni 2p(c).

    To investigate the potential application as electrode materials,the electrochemical performance of synthesized MOFs was tested using a three-electrode system in 3 mol/L KOH aqueous electrolyte.CV curves of the Ni-MOF and Ni/Co-MOFs at a scan rate of 5 mV/s are shown in Fig.4a.A pair of redox peaks was observed from 0 to 0.5 V,indicating typical pseudocapacitance characteristic of all samples,which is well distinguished from that of the electrical double-layer capacitors.The respective reduction and oxidation peaks might correspond to the intercalation and deintercalation of OH-during electrochemical reactions as similarly observed for Ni(OH)2and Co(OH)2[1,37].These indicate that the capacitance of Ni/Co-MOFs might be mainly attributed to the combination of ion exchange and redox mechanism,which were on account of the redox pair of Ni-O/Ni-O-OH and Co-O/Co-O-OH corresponding to the deintercalation and intercalation of OH-[39].This process might be represented by the following electron transfer equation:

    Fig.4b shows the CV curves of Ni/Co-MOF-0.25 at different scan rates between 5 mV/s and 50 mV/s.With the increase in scanning rate,the potential difference between anodic and cathodic peaks also increased,which can be attributed to the polarization effect of the electrode under a high scan rate [7].Fig.4c shows the charge and discharge curves of Ni/Co-MOF-0.25 at different current densities.The potential time response is nonlinear,displaying the characteristics of pseudocapacitance,which is consistent with the results of CV curves.The calculated specific capacitances of all samples as a function of the discharge current density are shown in Fig.4d.The specific capacitances of Ni/Co-MOF-0.25 are much higher than that of Ni-MOF but only slightly higher than that of Ni/Co-MOF-0.5,highlighting the significant synergistic effect of Ni and Co ions.In particular,Ni/Co-MOF-0.25 exhibits the highest capacitance,achieving 1067,972,870,816 and 780 F/g,at current densities of 1,2,5,8 and 10 A/g,respectively.The decrease of the capacitance value is due to the relatively insufficient faradic redox reaction at higher current densities.The results of cycle life tests at a constant current density of 10 A/g are shown in Fig.4e.The Ni/Cobased MOFs displayed a slight decrease in retention rate,and retained 68.4%of the original capacitance(520 F/g)after the 2500 cycles,indicating that the Ni/Co based MOFs had an excellent cycling property.The reason for the capacity loss could be attributed to the decomposition of the layered structure during the intercalation and deintercalation of OH-,which can be confirmed from the images of Fig.S3(Supporting information).Compared with the previously reported results for Ni-MOFs,Co-MOFs,CoNiO,Co/Fe-MOF,ZnCo2O4or Ni/Co(OH)2,our synthesized materials are comparable or even superior to them.The results of comparison are shown in Table 2.

    Fig.2.Schematic illustration of the synthetic process of MOFs(a),and ball and stick view of Ni-MOF along c axis(b)and b axis(c).

    Fig.4.CV curves of the Ni-MOF and Ni/Co-MOF at a scan rate of 5 mV/s(a); CV curves of Ni/Co-MOF-0.25 at the scan rate between 5 mV/s and 50 mV/s(b); Charge and discharge curves of Ni/Co-MOF-0.25 at different current densities(c);Specific capacity of three samples at various current densities(d);Cycling performance of three samples at a discharge current density of 10 A/g(e); Nyquist plots of three samples(the inset shows the equivalent electrical circuit from the fitted impedance spectra)(f).

    Table 1 Ion distributions of Ni and Co determined by ICP.

    To gain further insight into the electrical conductivity of the Ni/Co-MOF,electrochemical impedance spectroscopy measurements were conducted.The inset of Fig.4f shows the equivalent electrical circuit from the fitted impedance spectra,which consists of an electrolyte solution resistance(Rs),Warburg impedance(W),charge-transfer impedance(Rct),and a constant phase element[45].It can be seen form Fig.4f that a semicircle at the high frequency and a straight line at the low frequency region are shown,which represents the charge transfer process and the diffusion-limited electron-transfer processes,respectively [46].The Rsvalues for the electrolyte solution was similar for both electrodes.The intercept value for Ni-MOF,Ni/Co-MOF-0.25 and Ni/Co-MOF-0.5 are 0.23,0.37 and 0.26 Ω,respectively.The charge transfer resistance of Co/Ni-MOF-0.25 electrode(0.31 Ω)is smaller than that of pristine Ni-MOF(3.49 Ω)and Ni/Co-MOF-0.5(0.32 Ω),indicating a better electrical conductivity of Ni/Co-MOF-0.25.Because of the similar sizes of Co and Ni ion radii,it is excepted Co2+ions would diffuse into the Ni-MOF lattice and partially replace Ni2+ions,resulting in an increase in the hole concentration,and thus an enhancement in the MOFs conductivity [47].

    Table 2 The results of comparison with previous reports.

    In summary,we have explored the use of Ni/Co-based bimetal MOFs as electrode material for supercapacitors,and significantly improved the capacitance performance with respect to the reported Ni/Co based MOFs materials.The excellent supercapacitive behaviors of Ni/Co-MOFs electrode can be attributed to the synergetic effect contributed from the improved electronic conductivity and hierarchical structure,which favors rapid diffusion of an electrolyte,highly conductive pathway for electron transport,and efficient material utilization.The synthesized Ni/Co-MOF-0.25 exhibited a maximum specific capacitance of 1067 F/g at 1 A/g.When the current density increases to 10 A/g,its specific capacitance still remains as high as 780 F/g with 68.4% of the original capacitance retained even after 2500 cycles.Their excellent electrochemical performance makes Ni/Co-based MOFs promising electrode materials for supercapacitances.

    Acknowledgements

    This work was financially supported by the National Natural Science Foundation of China(Nos.21306026,21576054,51678160),the Scientific Project of Guangdong Province(Nos.2014A010106030,2014A010105041,2016A010104017,2016B020241003)and the Foundation of Higher Education of Guangdong Province(No.2015KTSCX027).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.10.018.

    亚洲片人在线观看| a级片在线免费高清观看视频| 91麻豆精品激情在线观看国产 | av欧美777| 免费在线观看完整版高清| 亚洲久久久国产精品| 成在线人永久免费视频| 亚洲av熟女| 成年人黄色毛片网站| 18禁黄网站禁片午夜丰满| 国产精品永久免费网站| 色综合婷婷激情| 国产免费男女视频| 欧美日韩黄片免| 国产精品影院久久| 欧美激情极品国产一区二区三区| 国产精品久久视频播放| 亚洲精华国产精华精| 别揉我奶头~嗯~啊~动态视频| 亚洲免费av在线视频| 国产人伦9x9x在线观看| 亚洲精品av麻豆狂野| 看免费av毛片| 国产精品免费视频内射| av天堂在线播放| 亚洲片人在线观看| 午夜福利在线免费观看网站| 久久人妻福利社区极品人妻图片| 成年人黄色毛片网站| 久久草成人影院| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院 | 日韩欧美免费精品| 18禁裸乳无遮挡免费网站照片 | 亚洲精华国产精华精| 操出白浆在线播放| 欧美大码av| av电影中文网址| 精品一区二区三区视频在线观看免费 | 香蕉丝袜av| 久久性视频一级片| 亚洲免费av在线视频| 淫妇啪啪啪对白视频| 精品卡一卡二卡四卡免费| 在线观看66精品国产| 韩国精品一区二区三区| 一本一本久久a久久精品综合妖精| 精品国产一区二区三区久久久樱花| 1024视频免费在线观看| 日韩欧美在线二视频 | 99精国产麻豆久久婷婷| 青草久久国产| 中文字幕最新亚洲高清| 免费在线观看视频国产中文字幕亚洲| 欧美 日韩 精品 国产| 亚洲欧美色中文字幕在线| 天堂√8在线中文| 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 国产高清videossex| 午夜91福利影院| 免费一级毛片在线播放高清视频 | 女人精品久久久久毛片| 久久 成人 亚洲| 手机成人av网站| 成人特级黄色片久久久久久久| 国产一区有黄有色的免费视频| 国产欧美亚洲国产| 视频在线观看一区二区三区| 如日韩欧美国产精品一区二区三区| 大片电影免费在线观看免费| 又黄又爽又免费观看的视频| 久久精品国产a三级三级三级| 精品国产美女av久久久久小说| 久久精品熟女亚洲av麻豆精品| 天堂动漫精品| 每晚都被弄得嗷嗷叫到高潮| 日韩精品免费视频一区二区三区| 天堂中文最新版在线下载| 亚洲一码二码三码区别大吗| 亚洲人成电影观看| av片东京热男人的天堂| 久久久久国产一级毛片高清牌| 国产精品偷伦视频观看了| 无人区码免费观看不卡| 精品熟女少妇八av免费久了| 老司机午夜十八禁免费视频| 欧美中文综合在线视频| 老司机深夜福利视频在线观看| 日韩中文字幕欧美一区二区| av一本久久久久| 午夜91福利影院| 一本大道久久a久久精品| 亚洲中文字幕日韩| 国产91精品成人一区二区三区| 国产一区二区三区在线臀色熟女 | 亚洲熟女精品中文字幕| 看免费av毛片| 中文亚洲av片在线观看爽 | 精品国产乱码久久久久久男人| 黄频高清免费视频| 亚洲人成电影免费在线| 国精品久久久久久国模美| 又紧又爽又黄一区二区| 国产野战对白在线观看| 午夜福利免费观看在线| 嫁个100分男人电影在线观看| bbb黄色大片| av天堂久久9| 热re99久久国产66热| 一边摸一边抽搐一进一出视频| 亚洲专区中文字幕在线| 国产av一区二区精品久久| 美女高潮到喷水免费观看| 国产精品自产拍在线观看55亚洲 | 亚洲中文日韩欧美视频| 欧美不卡视频在线免费观看 | 黑人巨大精品欧美一区二区蜜桃| 久久久久久久午夜电影 | 国产精品九九99| 最近最新免费中文字幕在线| 国产精品久久电影中文字幕 | 欧美精品高潮呻吟av久久| 国产一区二区激情短视频| 波多野结衣一区麻豆| 成人18禁高潮啪啪吃奶动态图| 香蕉久久夜色| 精品国产美女av久久久久小说| 亚洲色图 男人天堂 中文字幕| 久久久久视频综合| 一本综合久久免费| 在线视频色国产色| 亚洲黑人精品在线| 欧美一级毛片孕妇| 亚洲欧美一区二区三区久久| 在线视频色国产色| 亚洲欧美激情综合另类| 国产精品免费大片| 亚洲欧美一区二区三区久久| 999久久久国产精品视频| 丰满的人妻完整版| 久久性视频一级片| 在线观看舔阴道视频| 国产在线观看jvid| 男女下面插进去视频免费观看| 成人三级做爰电影| 亚洲欧美激情在线| 国产一区二区三区综合在线观看| 久久久国产成人精品二区 | 又黄又爽又免费观看的视频| 欧美黑人欧美精品刺激| 久久午夜亚洲精品久久| av国产精品久久久久影院| ponron亚洲| 亚洲av成人av| 国产亚洲欧美98| 下体分泌物呈黄色| 一二三四社区在线视频社区8| 美女 人体艺术 gogo| 亚洲精品久久午夜乱码| 亚洲美女黄片视频| cao死你这个sao货| 国产成人精品久久二区二区免费| 亚洲成人国产一区在线观看| 国产97色在线日韩免费| 女人爽到高潮嗷嗷叫在线视频| 搡老岳熟女国产| 黄片大片在线免费观看| 夫妻午夜视频| 12—13女人毛片做爰片一| 韩国av一区二区三区四区| 久久婷婷成人综合色麻豆| 亚洲九九香蕉| 操出白浆在线播放| 97人妻天天添夜夜摸| 新久久久久国产一级毛片| 亚洲七黄色美女视频| 国产亚洲欧美精品永久| 丰满饥渴人妻一区二区三| 国产精品国产av在线观看| tocl精华| 看免费av毛片| 国产男靠女视频免费网站| 99精品欧美一区二区三区四区| 欧美亚洲日本最大视频资源| 热re99久久精品国产66热6| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩乱码在线| 国产在线精品亚洲第一网站| 精品人妻1区二区| 午夜福利在线观看吧| 我的亚洲天堂| 99久久人妻综合| 亚洲aⅴ乱码一区二区在线播放 | 一级黄色大片毛片| 国产亚洲精品久久久久5区| 国产精品欧美亚洲77777| 激情在线观看视频在线高清 | 看免费av毛片| 国产成+人综合+亚洲专区| 国产日韩欧美亚洲二区| 视频区欧美日本亚洲| 老司机福利观看| 曰老女人黄片| 日本精品一区二区三区蜜桃| 久久久久视频综合| 又紧又爽又黄一区二区| 99精品欧美一区二区三区四区| 国产精品一区二区在线观看99| 在线观看免费午夜福利视频| 亚洲精品av麻豆狂野| 午夜免费成人在线视频| 精品免费久久久久久久清纯 | 又紧又爽又黄一区二区| 五月开心婷婷网| 精品国产一区二区三区久久久樱花| 极品教师在线免费播放| 久久精品亚洲av国产电影网| 国产亚洲精品一区二区www | 别揉我奶头~嗯~啊~动态视频| 国产激情欧美一区二区| 老熟女久久久| 国产av精品麻豆| 欧美人与性动交α欧美精品济南到| 国产激情欧美一区二区| 精品亚洲成国产av| а√天堂www在线а√下载 | 搡老岳熟女国产| 欧美精品人与动牲交sv欧美| 亚洲 欧美一区二区三区| 久久婷婷成人综合色麻豆| cao死你这个sao货| 怎么达到女性高潮| 国产精品影院久久| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 亚洲欧美色中文字幕在线| 啪啪无遮挡十八禁网站| 久久青草综合色| www.自偷自拍.com| 久久精品国产亚洲av高清一级| 亚洲avbb在线观看| 午夜免费鲁丝| 欧美最黄视频在线播放免费 | 国产1区2区3区精品| 自线自在国产av| 99在线人妻在线中文字幕 | 久久精品亚洲熟妇少妇任你| 亚洲精品久久成人aⅴ小说| 电影成人av| 亚洲欧洲精品一区二区精品久久久| 亚洲欧美激情在线| 久久人妻福利社区极品人妻图片| 操出白浆在线播放| 国产在视频线精品| 飞空精品影院首页| www.自偷自拍.com| 91av网站免费观看| 久久人人爽av亚洲精品天堂| 18禁观看日本| 在线观看免费视频日本深夜| 亚洲精品美女久久久久99蜜臀| 免费观看人在逋| 国产精品偷伦视频观看了| 操美女的视频在线观看| 咕卡用的链子| 在线观看免费视频网站a站| a在线观看视频网站| 精品一区二区三区四区五区乱码| 免费久久久久久久精品成人欧美视频| 国产精品免费视频内射| 国产精品一区二区在线观看99| 成熟少妇高潮喷水视频| 色在线成人网| 国产成人免费观看mmmm| 老汉色∧v一级毛片| 色精品久久人妻99蜜桃| 国产成+人综合+亚洲专区| 老汉色av国产亚洲站长工具| √禁漫天堂资源中文www| 女人高潮潮喷娇喘18禁视频| 久久久精品国产亚洲av高清涩受| 国产精品综合久久久久久久免费 | 一级a爱视频在线免费观看| 亚洲男人天堂网一区| 色综合欧美亚洲国产小说| 纯流量卡能插随身wifi吗| 日韩欧美免费精品| 国产亚洲欧美精品永久| 少妇猛男粗大的猛烈进出视频| 精品福利观看| 精品亚洲成国产av| 一级毛片精品| 亚洲一码二码三码区别大吗| 久久精品亚洲av国产电影网| 午夜老司机福利片| 午夜免费鲁丝| 国产视频一区二区在线看| 久久香蕉精品热| 精品电影一区二区在线| 村上凉子中文字幕在线| 免费少妇av软件| 日韩欧美一区二区三区在线观看 | 91老司机精品| 两性午夜刺激爽爽歪歪视频在线观看 | 老汉色av国产亚洲站长工具| 日韩欧美免费精品| 99热网站在线观看| 成人精品一区二区免费| 老熟女久久久| 精品福利永久在线观看| 交换朋友夫妻互换小说| 久99久视频精品免费| 黄色怎么调成土黄色| 中文字幕最新亚洲高清| 亚洲欧美日韩高清在线视频| 国产精品乱码一区二三区的特点 | 亚洲精品乱久久久久久| 精品一区二区三区四区五区乱码| 窝窝影院91人妻| 精品福利观看| 一区二区三区激情视频| 校园春色视频在线观看| 亚洲第一欧美日韩一区二区三区| 91九色精品人成在线观看| 欧美国产精品一级二级三级| 在线十欧美十亚洲十日本专区| 99re6热这里在线精品视频| 女警被强在线播放| 精品久久久久久久久久免费视频 | 脱女人内裤的视频| 91成人精品电影| 国产精品 国内视频| 日日爽夜夜爽网站| 亚洲国产看品久久| 操出白浆在线播放| 久热爱精品视频在线9| 精品一品国产午夜福利视频| 狠狠狠狠99中文字幕| 国产成人啪精品午夜网站| 婷婷成人精品国产| 亚洲七黄色美女视频| 国产精品电影一区二区三区 | 国产成人免费观看mmmm| 身体一侧抽搐| 露出奶头的视频| 波多野结衣一区麻豆| 久久热在线av| 午夜影院日韩av| 亚洲一区二区三区欧美精品| 色播在线永久视频| 久久中文看片网| 十分钟在线观看高清视频www| 在线观看www视频免费| 亚洲九九香蕉| 国产99久久九九免费精品| 久久精品国产99精品国产亚洲性色 | 两性夫妻黄色片| 在线观看66精品国产| 国产精品九九99| 18禁黄网站禁片午夜丰满| 久久国产精品影院| 亚洲精品一二三| 别揉我奶头~嗯~啊~动态视频| 757午夜福利合集在线观看| 国产三级黄色录像| 欧美精品av麻豆av| 自线自在国产av| 欧美日韩福利视频一区二区| 777久久人妻少妇嫩草av网站| 成人免费观看视频高清| 亚洲欧美日韩高清在线视频| 久久精品国产亚洲av香蕉五月 | 午夜福利在线免费观看网站| 午夜91福利影院| 国产av精品麻豆| av电影中文网址| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲| 国产成人精品无人区| 在线十欧美十亚洲十日本专区| 在线看a的网站| 在线十欧美十亚洲十日本专区| 午夜福利在线免费观看网站| 看片在线看免费视频| 他把我摸到了高潮在线观看| 日本一区二区免费在线视频| 亚洲一区中文字幕在线| 欧美日韩亚洲综合一区二区三区_| 免费观看精品视频网站| 亚洲片人在线观看| 99久久国产精品久久久| 999精品在线视频| 一级,二级,三级黄色视频| av不卡在线播放| 国产成人精品在线电影| 精品国产乱子伦一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 久久午夜亚洲精品久久| 亚洲三区欧美一区| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 美女视频免费永久观看网站| 80岁老熟妇乱子伦牲交| www.精华液| 巨乳人妻的诱惑在线观看| 18禁黄网站禁片午夜丰满| 丰满饥渴人妻一区二区三| 少妇被粗大的猛进出69影院| 成熟少妇高潮喷水视频| 欧美精品高潮呻吟av久久| 在线观看日韩欧美| 丝袜美足系列| 大陆偷拍与自拍| 日日夜夜操网爽| 免费在线观看完整版高清| 曰老女人黄片| 黄片大片在线免费观看| 一进一出抽搐gif免费好疼 | 国内久久婷婷六月综合欲色啪| 两个人免费观看高清视频| 成人影院久久| 一二三四社区在线视频社区8| 免费一级毛片在线播放高清视频 | 国产三级黄色录像| 欧美乱色亚洲激情| 亚洲五月天丁香| 国产激情欧美一区二区| 国产又爽黄色视频| 亚洲av第一区精品v没综合| 色播在线永久视频| 亚洲精品国产精品久久久不卡| 精品国产美女av久久久久小说| 欧美中文综合在线视频| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| 精品久久久久久久久久免费视频 | 国产日韩欧美亚洲二区| 99热国产这里只有精品6| 色老头精品视频在线观看| 99国产精品免费福利视频| 久久影院123| 国产不卡一卡二| 狂野欧美激情性xxxx| 国产男靠女视频免费网站| 久久国产精品大桥未久av| 免费观看精品视频网站| 一区福利在线观看| 老司机福利观看| 天天躁狠狠躁夜夜躁狠狠躁| 十分钟在线观看高清视频www| 悠悠久久av| 亚洲av日韩精品久久久久久密| 婷婷丁香在线五月| 久久国产乱子伦精品免费另类| 视频区图区小说| 在线观看www视频免费| 色精品久久人妻99蜜桃| a级毛片黄视频| 人人妻人人澡人人爽人人夜夜| 日日摸夜夜添夜夜添小说| 老汉色av国产亚洲站长工具| 国产成+人综合+亚洲专区| 国产精品秋霞免费鲁丝片| 涩涩av久久男人的天堂| 熟女少妇亚洲综合色aaa.| 热99久久久久精品小说推荐| 热99re8久久精品国产| 男人的好看免费观看在线视频 | 飞空精品影院首页| 日本wwww免费看| 在线观看一区二区三区激情| 久久久久精品国产欧美久久久| 欧美黑人欧美精品刺激| 精品久久久精品久久久| 视频在线观看一区二区三区| 亚洲全国av大片| 欧美黄色淫秽网站| 久久久精品免费免费高清| 最新美女视频免费是黄的| 日韩熟女老妇一区二区性免费视频| 一本综合久久免费| 最新的欧美精品一区二区| 欧美成人午夜精品| 久久性视频一级片| 99国产极品粉嫩在线观看| 亚洲国产中文字幕在线视频| 亚洲精品美女久久久久99蜜臀| 韩国av一区二区三区四区| 日韩人妻精品一区2区三区| 999久久久精品免费观看国产| 三级毛片av免费| 亚洲第一av免费看| 两个人看的免费小视频| 国产精品一区二区在线观看99| 曰老女人黄片| 中文字幕人妻熟女乱码| 色在线成人网| 精品第一国产精品| 日韩熟女老妇一区二区性免费视频| 岛国在线观看网站| 久久九九热精品免费| 国产亚洲精品第一综合不卡| 正在播放国产对白刺激| 91成年电影在线观看| 成年人午夜在线观看视频| 亚洲色图 男人天堂 中文字幕| 亚洲成人免费av在线播放| 黑人猛操日本美女一级片| 亚洲精品美女久久av网站| 在线观看免费高清a一片| 亚洲性夜色夜夜综合| 午夜激情av网站| 男人操女人黄网站| 国产成人系列免费观看| 黄色怎么调成土黄色| 国产伦人伦偷精品视频| 日韩中文字幕欧美一区二区| 国产区一区二久久| 欧美午夜高清在线| 韩国av一区二区三区四区| 这个男人来自地球电影免费观看| 亚洲伊人色综图| 国产高清videossex| 亚洲人成77777在线视频| 亚洲专区国产一区二区| 国产麻豆69| 精品人妻在线不人妻| 在线观看免费高清a一片| av网站免费在线观看视频| 久久婷婷成人综合色麻豆| 大码成人一级视频| 99精品欧美一区二区三区四区| 欧美乱色亚洲激情| 国产av又大| 日韩成人在线观看一区二区三区| 亚洲情色 制服丝袜| 免费观看人在逋| 不卡一级毛片| 老司机福利观看| 啦啦啦 在线观看视频| www日本在线高清视频| 国产色视频综合| 国产一区有黄有色的免费视频| 黄色a级毛片大全视频| 91av网站免费观看| 999精品在线视频| 老司机福利观看| 国产精品九九99| 国产精品98久久久久久宅男小说| 很黄的视频免费| 黄色女人牲交| 精品国产国语对白av| 十八禁人妻一区二区| 久久久国产欧美日韩av| 久久人人爽av亚洲精品天堂| 一夜夜www| 国产成人欧美| 国产精品久久电影中文字幕 | 丰满迷人的少妇在线观看| 午夜亚洲福利在线播放| 超碰97精品在线观看| 亚洲精品乱久久久久久| 99在线人妻在线中文字幕 | 欧美日韩一级在线毛片| avwww免费| 色综合婷婷激情| 嫁个100分男人电影在线观看| 久久国产乱子伦精品免费另类| 精品一区二区三区av网在线观看| 最近最新中文字幕大全免费视频| 久久久久久久国产电影| 伦理电影免费视频| 中文字幕人妻丝袜制服| 亚洲成人免费电影在线观看| 老司机午夜福利在线观看视频| 啦啦啦 在线观看视频| 国产精品98久久久久久宅男小说| 99久久精品国产亚洲精品| 深夜精品福利| 老熟妇乱子伦视频在线观看| 99久久国产精品久久久| a级片在线免费高清观看视频| 好看av亚洲va欧美ⅴa在| 久久午夜亚洲精品久久| 一区福利在线观看| 午夜91福利影院| 香蕉国产在线看| 亚洲片人在线观看| 韩国av一区二区三区四区| tocl精华| 两个人免费观看高清视频| 日韩欧美一区二区三区在线观看 | 19禁男女啪啪无遮挡网站| 下体分泌物呈黄色| av片东京热男人的天堂| 亚洲av成人av| 下体分泌物呈黄色| 亚洲成a人片在线一区二区| 美女高潮喷水抽搐中文字幕| 亚洲午夜精品一区,二区,三区| 国产成人av教育| 亚洲av美国av| 老司机亚洲免费影院| bbb黄色大片| 日韩欧美三级三区| 手机成人av网站| 免费在线观看黄色视频的| 久久久精品免费免费高清| av国产精品久久久久影院| 久久亚洲真实| 又黄又爽又免费观看的视频| 中文字幕人妻熟女乱码| 亚洲成人国产一区在线观看| 国产精品国产高清国产av |