• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New carbazole-substituted siloles for the fabrication of efficient non-doped OLEDs

    2019-04-11 02:38:46YiXiongJijieZengBinChenJkyLmZujinZhoShumingChenBenZhongTng
    Chinese Chemical Letters 2019年3期

    Yi Xiong,Jijie Zeng,Bin Chen,Jky W.Y.Lm,Zujin Zho,*,Shuming Chen*,Ben Zhong Tng,,**

    a State Key Laboratory of Luminescent Materials and Devices,Center for Aggregation-Induced Emission,South China University of Technology,Guangzhou 510640,China

    b Department of Electrical and Electronic Engineering,South University of Science and Technology of China,Shenzhen 518055,China

    c Department of Chemistry,Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction,The Hong Kong University of Science & Technology,Hong Kong,China

    Keywords:

    ABSTRACT

    Luminogenic molecules with aggregation-induced emission(AIE)property are free of aggregationcaused quenching and thus have great potential in the fabrication of efficient non-doped OLEDs.Herein,a series of new carbazole-substituted siloles have been synthesized and characterized.Their crystal and electronic structures,thermal stabilities,electrochemical behaviors,and photophysical properties are thoroughly investigated.These silole derivatives exhibit prominent AIE characteristics with high emission efficiencies in solid films.They can function as light-emitting layers in non-doped OLEDs,affording eminent electroluminescence efficiencies of 17.59 cd/A,12.55 lm/W and 5.63%,amongst the most efficient non-doped OLEDs based on fluorescent emitters,indicating their promising applications in OLEDs.

    In recent decades,tremendous progresses have been achieved in the development of optoelectronic devices[1].One of the most promising optoelectronic devices is organic light-emitting diode(OLED),whose response time and contrast ratio can be even better than liquid crystal display[2].The key active materials for OLEDs are the organic luminescent materials,one important kind of organic semiconductors.The studies on the preparation and application for them have got considerable attentions around the world[3].Since organic luminescent materials are applied as solid films in OLEDs,their solid-state emission efficiencies are of significant importance to the performances of OLEDs.However,there is still a thorny issue of aggregation-caused quenching(ACQ)of conventional chromophores [4],that is the emissions of these chromophores are weakened or totally quenched in the aggregated state,even if they can emit strongly in the solution state.In general,a vast majority of the conventional organic luminescent materials have a large and extended conjugated plane,which makes them prone to experience serious intermolecular interactions,and thus quenches the emissions in the aggregated state.Although multifarious chemical and engineering methods have been utilized for surmounting the ACQ problem,the attempts meet with only a limited success [5].Thus,the exploration of organic luminescent materials with strong emissions in the aggregated state for the application in OLEDs remains as an important research topic.

    Aggregation-induced emission(AIE),a unique phenomenon opposite to ACQ,has evoked intense academic and industrial interest.The luminogens with AIE property(AIEgens)are almost non-fluorescent in dilute solutions but can emit strongly in aggregates or solid films,furnishing an effective approach to solve the ACQ problem[6].In order to figure out the inner connections between the molecular structures and properties of AIEgens,several of meaningful experiments and calculations have been conducted.And exploiting more practical applications and deciphering the working mechanism for AIEgens are also of high importance.Currently,the mostly accepted theory about the AIE mechanism is restriction of intramolecular motions(RIM),including rotation,vibration,twisting,stretching,etc.[7].The active intramolecular motions in solutions can nonradiatively deactivate the excited state,but in the aggregated state,these motions are greatly suppressed by physical constraint as well as weak intermolecular interactions,such as C-H···π hydron bonds.In consequence,the nonradiative decay channel is blocked,and thus the excited state energy can dissipate via radiative transition,rendering greatly enhanced emissions [8].

    Siloles are created with high electron affinity and fast electron mobility because of their unique σ*-π* conjugated electronic structures,while the exceptional propeller-like molecular structures can bring about distinguished photophysical property of AIE[9].Consequently,they are widely adopted as effective building units to construct various functional materials for optoelectronic devices with excellent performances[10,11].In this work,we have prepared three new silole derivatives by combining 1-methyl-1,3,4-triphenyl-1H-silole and electron-donating 9-phenyl-9H-carbazole via different manners(Fig.1).These silole derivatives possess distinct AIE characteristic and can fluoresce strongly in solid films.The non-doped OLEDs with excellent electroluminescence(EL)efficiencies have been fabricated based on these silole derivatives.

    The target compounds 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP were synthesized according to the synthetic routes illustrated in Scheme S1 in Supporting inforamtion.These new silole derivatives were yellow solids,and for them,THF,dichloromethane and toluene are good solvents,but water and ethanol are poor solvents.For the study and application in OLEDs,their thermal stability was evaluated.Thermogravimetric analysis(TGA)was carried out under nitrogen atmosphere at a heating rate of 10°C/min,and high decomposition temperatures(Td),corresponding to 5% initial weight loss,of 433.8,452.4 and 440.8°C for 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP,respectively,were recorded(Fig.S1A in Supporting information),indicating they are thermally stable enough for film preparation by vacuum deposition.In addition,high glass-transition temperatures(Tg)of 133.4,147.1 and 136.2°C were also detected(Fig.S1B),revealing these compounds are morphological stable,which are conducive to the stability of the devices.

    Crystal structure can provide useful information about the spatial conformation and stacking mode of the compounds in the aggregated state.Single crystals of 3,3′-MTPS-CaP were grown from CH2Cl2-C2H5OH mixture,and analyzed by X-ray diffraction crystallography.According to the crystal structure depicted in Fig.2,3,3′-MTPS-CaP shows a highly twisted conformation,and the dihedral angles between phenyls and the silole core at the 1,3,4-positions are 67.99°,82.55°and 80.01°,respectively.In addition,the two substituents at 2,5-positions are unsymmetrical,where the dihedral angles between carbazoles and silole core at these two positions are 47.83°and 9.39°,respectively.Further analysis for packing pattern of 3,3′-MTPS-CaP indicates that there are multiple intramolecular and intermolecular C-H···π hydrogen bonds within the range of 2.648-3.039 ?(Fig.S2 in Supporting informaiton).These weak interactions will rigidify molecular structure and restrict the intramolecular motions in the solid state.However,no π-π stacking interactions in crystalline state of 3,3′-MTPS-CaP are found.A highly twisted conformation is helpful to prevent strong intermolecular π-π interaction,and suppress the emission quenching in the condensed phase.

    Fig.2.ORTEP drawing of the crystal structure of 3,3′-MTPS-CaP.

    The absorption maxima of 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP in dilute THF solution(10-5mol/L)are located at 398,404 and 385 nm,owing to the π-π* electron transition(Fig.3A).The optical band gaps of 2,2′-MTPS-CaP and 3,3′-MTPSCaP are relatively narrower than that of 9,9′-MTPS-CaP,estimated from the onset of absorption spectra,which indicate that 2,2′-MTPS-CaP and 3,3′-MTPS-CaP have better effective conjugation than 9,9′-MTPS-CaP.The photoluminescence(PL)emissions of 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP in dilute THF solutions are very weak,with PL peaks at 525,526 and 520 nm,and low ΦFs of 5.75%,4.00% and 3.20%,respectively.After fabricated into solid films,they present slightly red-shifted and greatly enhanced PL peaks within the range of 520-539 nm(Fig.3B).Their ΦFs are significantly increased to 69.93%,60.33%and 80.00%(Table 1),indicating their AIE characteristics.To further assess the PL properties of 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP,the fluorescence lifetimes(τ),important parameters used to describe the excited-state decay processes,were measured and fitted.The intersystem crossing(ISC)process had been ignored in the excited-state decay process of silole derivatives because of their fluorescent nature.The ΦFand τ can be determined by radiative decay rate(kr)and nonradiative decay rate(knr)[12].Thus,the decay rates of 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP had been calculated,including in solution and solid states(Table S1 in Supporting information).For these silole derivatives,once fabricated into solid films,there are great increases in their ΦFand τ,but small increases in kr.However,the knris decreased significantly.These results manifest that the RIM is triggered in the aggregated state,which blocks the nonradiative decay channel,and thus boosts the PL emissions.

    Fig.3.(A)Absorption spectra in THF solutions,(B)photoluminescence(PL)spectra in solid films of these new silole derivatives.Eg = optical band gap.

    Fig.1.Molecular structures of these new silole derivatives.

    Table 1 Optical properties,thermal stabilities and energy levels of these silole-based luminogens.

    Fig.4.Photoluminescence(PL)spectra of(A)2,2′-MTPS-CaP,(B)3,3′-MTPS-CaP and(C)9,9′-MTPS-CaP in THF/water mixtures with different water fractions(fw),and(D)plots of(I/I0 - 1)correspond to different water fractions(fw),where I0 is the PL intensity when fw=0%,I is the PL intensity in each THF/water mixture(fw=0-90%).

    Fig.5.The molecular orbital amplitude plots and energy levels of HOMOs and LUMOs of these new silole derivatives,calculated by B3LYP/6-31G(d,p).

    In order to gain an in-depth insight into their AIE property of these silole-based luminogens,their PL spectra in THF/water mixtures were measured and the results are shown in Fig.4.Since they are insoluble in water,their PL intensity was increased along with the increase of water fraction(fw)in the mixture.Strong PL emissions were observed in the aggregated state with a high water fraction(fw=90%),further validating the AIE property of these silole derivatives.

    To investigate the electronic structures of these new silole derivatives,their highest occupied molecular orbitals(HOMOs)and lowest unoccupied molecular orbitals(LUMOs)were calculated by density function theory(DFT)calculation using a B3LYP/6-31G(d,p)basis set on the Gaussian 09 program.The optimized structures and spatial distributions of HOMOs and LUMOs for 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP are illustrated in Fig.5.The HOMOs are located on the entire molecular backbones consisting of central silole ring and carbazole substituents.Their LUMOs,however,are mainly concentrated on the silole ring.The exocyclic single bonds at the 1,1-positions also contribute to the LUMOs,indicative of the unique σ*-π* conjugation.

    In order to get the experimental HOMO and LUMO energy levels of these novel silole-based luminogens,the electrochemical properties were investigated by cyclic voltammetry(CV)in dichloromethane solution containing 0.1 mol/L tetra-n-butylammonium hexafluorophosphate at a scan rate of 100 mV/s.The working electrode was platinum and the reference electrode was Ag/AgNO3electrode.They showed a good electrochemical stability with reversible oxidation processes(Fig.6).The values of Eoxonsetand Ereonsetwere represented by the onset oxidation and reduction potentials relative to Fc/Fc+.The onset potentials of oxidation(Eoxonset)of 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP occurred at 0.68,0.51 and 0.82 V,respectively.Thus,the HOMO energy levels can be determined as -5.20,-5.04 and -5.34 eV,respectively,according to the equation [HOMO=-(Eoxonset+4.8)eV].While the onset potentials of reduction(Ereonset)of these silole derivatives occurred at-1.92,-2.21 and-2.09 V,respectively,and their LUMO energy levels were calculated to be -2.70,-2.49 and-2.62 eV,respectively,from the equation [LUMO=-(Ereonset+4.8)eV].The variation tendency of energy band gaps between HOMOs and LUMOs are consistent with optical band gaps(Eg)(Table 1).

    Given the high solid-state emission efficiency and favorable thermal stability of these new silole derivatives,their potentials as light-emitting layers in non-doped OLEDs were evaluated.The non-doped OLEDs with a configuration of ITO/NPB(60 nm)/emitter(20 nm)/TPBi(40 nm)/LiF(1 nm)/Al were fabricated,in which new silole derivatives worked as light-emitting layers,NPB(N,N′-di(1-naphthyl)-N,N′-diphenyl-benzidine)functioned as the hole-transporting layer,and TPBi(1,3,5-tri(1-phenylbenzimidazol-2-yl)-benzene)served as the electron-transporting layer.The EL performance data for the non-doped OLEDs based on these silole derivatives are shown in Fig.7 and Table 2.These non-doped OLEDs could be turned on at voltages of 2.9-5.3 V,and radiated green lights.The maxima EL peaks of 2,2′-MTPS-CaP,3,3′-MTPSCaP and 9,9′-MTPS-CaP are located at 555(CIEx,y=0.244,0.435),552(CIEx,y=0.399,0.559)and 542 nm(CIEx,y=0.376,0.549),respectively,which are red-shifted by 16-22 nm in comparison with the PL emissions in films.Actually,this is a common phenomenon for the luminescent materials because of the microcavity effect [13].The devices of 2,2′-MTPS-CaP and 3,3′-MTPS-CaP showed comparable EL performances,with maxima luminance(ηL,max)of 83,870 and 78,780 cd/m2,maxima current efficiencies(ηC,max)of are 12.72 and 12.44 cd/A,maxima power efficiencies(ηP,max)of 9.87 and 10.64 lm/W and maxima external quantum efficiencies(ηext,max)of 4.01 and 3.57%,respectively.The device of 9,9′-MTPS-CaP exhibited the best EL performance,affording high ηL,max,ηC,max,ηP,maxand ηext,maxof 91,920 cd/m2,17.59 cd/A,12.55 lm/W,and 5.63%,respectively.The excellent ηext,maxis actually approaching the theoretical efficiency limit of fluorescent OLEDs.

    Fig.6.Cyclic voltammograms of the films of 2,2′-MTPS-CaP,3,3′-MTPS-CaP,9,9′-MTPS-CaP,measured in acetonitrile containing 0.1 mol/L tetra-n-butylammonium hexafluorophosphate.Scan rate:100 mV/s.

    In summary,a series of new silole derivatives functionalized by carbazole groups had been synthesized and characterized successfully.All of these new silole derivatives showed good thermal and electrochemical stabilities.They exhibited prominent AIE properties with high ΦFs in the solid state.Different connection pattern between silole and carbazole groups resulted in slightly varied optical properties.Efficient non-doped OLEDs based on these silole derivatives were fabricated.The device of 9,9′-MTPSCaP afforded the best EL performance,with excellent ηL,max,ηC,max,ηP,maxand ηext,maxof 91,920 cd/m2,17.59 cd/A,12.55 lm/W,and 5.63%,respectively,indicating the good potential for the application in OLEDs.

    Fig.7.(A)EL spectra,(B)current density-voltage-luminance,(C)current and(D)external quantum efficiencies with the luminance of the non-doped OLEDs based on 2,2′-MTPS-CaP,3,3′-MTPS-CaP and 9,9′-MTPS-CaP.

    Table 2 EL performances of OLEDs based on these silole derivatives.a

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China(Nos.21788102 and 21673082),the National Basic Research Program of China(973 Program,No.2015CB655004)founded by MOST,the Guangdong Natural Science Funds for Distinguished Young Scholar(No.2014A030306035),the Science and Technology Program of Guangzhou(No.201804020027),International Science and Technology Cooperation Program of Guangzhou(No.201704030069)and the Innovation and Technology Commission of Hong Kong(No.ITCCNERC14SC01).

    Appendix A.Supplementary data

    Supplementary material related to this article can be found,in the online version,at doi:https://doi.org/10.1016/j.cclet.2018.12.020.

    成年美女黄网站色视频大全免费| 丝袜美足系列| 交换朋友夫妻互换小说| 亚洲精品一二三| 国产精品蜜桃在线观看| 日韩一区二区三区影片| 久久韩国三级中文字幕| 狂野欧美激情性xxxx| 国产精品成人在线| 制服丝袜香蕉在线| 久久鲁丝午夜福利片| 热99久久久久精品小说推荐| 天堂俺去俺来也www色官网| 欧美日韩视频高清一区二区三区二| 日韩中文字幕视频在线看片| 黑丝袜美女国产一区| 人人妻人人爽人人添夜夜欢视频| 国产乱来视频区| 精品卡一卡二卡四卡免费| 国产免费视频播放在线视频| 2018国产大陆天天弄谢| 色婷婷av一区二区三区视频| 一区二区三区精品91| 久久精品国产亚洲av高清一级| 黄色一级大片看看| 考比视频在线观看| 纯流量卡能插随身wifi吗| 精品少妇一区二区三区视频日本电影 | 无限看片的www在线观看| 日韩av免费高清视频| 亚洲伊人久久精品综合| 99香蕉大伊视频| 国产精品av久久久久免费| 岛国毛片在线播放| 人妻一区二区av| 国产精品一二三区在线看| 狂野欧美激情性bbbbbb| 老司机深夜福利视频在线观看 | 宅男免费午夜| 精品国产一区二区三区四区第35| 国产乱人偷精品视频| 日韩制服丝袜自拍偷拍| 18禁观看日本| 麻豆乱淫一区二区| 亚洲精品成人av观看孕妇| 9191精品国产免费久久| 最近中文字幕高清免费大全6| 人人澡人人妻人| 欧美久久黑人一区二区| 啦啦啦在线观看免费高清www| 久久久久精品久久久久真实原创| 日本av免费视频播放| av网站免费在线观看视频| 欧美xxⅹ黑人| 黄频高清免费视频| 国产一区二区激情短视频 | 精品一区在线观看国产| 在线观看www视频免费| 老司机在亚洲福利影院| 亚洲四区av| 无限看片的www在线观看| 国产成人a∨麻豆精品| 久久青草综合色| 亚洲国产中文字幕在线视频| 欧美少妇被猛烈插入视频| 一本色道久久久久久精品综合| 少妇人妻 视频| 美女大奶头黄色视频| 久久国产精品大桥未久av| 丝袜美腿诱惑在线| 久久鲁丝午夜福利片| 五月开心婷婷网| 欧美人与善性xxx| 中文字幕人妻丝袜一区二区 | 视频区图区小说| 国产 一区精品| 婷婷色综合大香蕉| 午夜老司机福利片| 欧美人与性动交α欧美精品济南到| 亚洲精品久久久久久婷婷小说| 久久性视频一级片| 中文欧美无线码| 男人操女人黄网站| 国产精品久久久久久人妻精品电影 | 国产日韩欧美视频二区| 国产精品久久久久久精品电影小说| 亚洲精品av麻豆狂野| 中文字幕最新亚洲高清| 国产国语露脸激情在线看| bbb黄色大片| 精品一区二区免费观看| 成人国语在线视频| 国产成人91sexporn| 人人妻人人澡人人看| e午夜精品久久久久久久| 亚洲精品乱久久久久久| 日韩大码丰满熟妇| 色94色欧美一区二区| 亚洲精品美女久久久久99蜜臀 | 国产毛片在线视频| 亚洲精华国产精华液的使用体验| 国产色婷婷99| 久久精品熟女亚洲av麻豆精品| 涩涩av久久男人的天堂| 久久久久久久国产电影| 欧美 日韩 精品 国产| 嫩草影视91久久| 男女午夜视频在线观看| 日本91视频免费播放| 国产日韩欧美亚洲二区| 国产在线一区二区三区精| 乱人伦中国视频| 欧美精品亚洲一区二区| 国精品久久久久久国模美| 日韩制服骚丝袜av| 一级毛片黄色毛片免费观看视频| 久久人妻熟女aⅴ| av.在线天堂| 欧美在线一区亚洲| 视频在线观看一区二区三区| 大香蕉久久成人网| 国产一区二区三区av在线| 久久久久精品久久久久真实原创| 成人国语在线视频| 天堂8中文在线网| 丁香六月欧美| 日日爽夜夜爽网站| netflix在线观看网站| 欧美 亚洲 国产 日韩一| 久热爱精品视频在线9| 激情视频va一区二区三区| 久久精品国产a三级三级三级| 久久亚洲国产成人精品v| 色94色欧美一区二区| 在线看a的网站| 国产精品成人在线| 18禁裸乳无遮挡动漫免费视频| 亚洲av电影在线观看一区二区三区| 一区二区三区乱码不卡18| 亚洲熟女毛片儿| 精品人妻一区二区三区麻豆| 1024香蕉在线观看| av有码第一页| 天天躁夜夜躁狠狠久久av| 国产熟女午夜一区二区三区| 精品一区二区免费观看| 国产精品女同一区二区软件| 最近手机中文字幕大全| 九色亚洲精品在线播放| 国产成人欧美| 天天影视国产精品| 久久天堂一区二区三区四区| 99re6热这里在线精品视频| 大陆偷拍与自拍| 这个男人来自地球电影免费观看 | 国产爽快片一区二区三区| 亚洲精品国产av蜜桃| 午夜福利一区二区在线看| 亚洲人成77777在线视频| 超色免费av| 十分钟在线观看高清视频www| 欧美另类一区| 午夜日韩欧美国产| 国产精品熟女久久久久浪| 婷婷色av中文字幕| 女人高潮潮喷娇喘18禁视频| 人妻一区二区av| 久久99一区二区三区| 免费高清在线观看视频在线观看| 日本vs欧美在线观看视频| 久久热在线av| 国产精品久久久久成人av| 天堂俺去俺来也www色官网| 精品亚洲成国产av| 秋霞伦理黄片| 性高湖久久久久久久久免费观看| 99精国产麻豆久久婷婷| 电影成人av| 亚洲av男天堂| 最近中文字幕2019免费版| 国产片特级美女逼逼视频| 老汉色∧v一级毛片| 日韩欧美一区视频在线观看| 精品国产乱码久久久久久男人| 亚洲天堂av无毛| 国产精品 欧美亚洲| 久久国产亚洲av麻豆专区| 丰满饥渴人妻一区二区三| 午夜免费观看性视频| 性高湖久久久久久久久免费观看| 男女边摸边吃奶| 一级毛片 在线播放| 精品国产国语对白av| 国产亚洲一区二区精品| 国产日韩欧美在线精品| 久久久久精品人妻al黑| 欧美最新免费一区二区三区| 又大又爽又粗| bbb黄色大片| 久久人人爽av亚洲精品天堂| 少妇人妻精品综合一区二区| 涩涩av久久男人的天堂| 欧美日本中文国产一区发布| 视频在线观看一区二区三区| 欧美日韩福利视频一区二区| 亚洲av福利一区| 91精品国产国语对白视频| 韩国高清视频一区二区三区| 一个人免费看片子| 国产伦理片在线播放av一区| 人体艺术视频欧美日本| 国产熟女午夜一区二区三区| 中文字幕最新亚洲高清| 国产 精品1| 亚洲专区中文字幕在线 | 各种免费的搞黄视频| 校园人妻丝袜中文字幕| 97精品久久久久久久久久精品| 丝袜喷水一区| 国产成人一区二区在线| 日韩一本色道免费dvd| 国产97色在线日韩免费| 久久青草综合色| 亚洲欧美精品综合一区二区三区| 老熟女久久久| 在线精品无人区一区二区三| 免费高清在线观看视频在线观看| 大码成人一级视频| 热re99久久国产66热| 亚洲国产欧美日韩在线播放| 另类亚洲欧美激情| 亚洲七黄色美女视频| 少妇人妻 视频| 亚洲国产精品一区三区| av卡一久久| 免费黄网站久久成人精品| 巨乳人妻的诱惑在线观看| 亚洲成人国产一区在线观看 | 人成视频在线观看免费观看| 欧美精品一区二区免费开放| 成人三级做爰电影| 精品少妇内射三级| 999精品在线视频| kizo精华| 在线看a的网站| 色婷婷av一区二区三区视频| 久久99热这里只频精品6学生| 精品国产国语对白av| 免费黄网站久久成人精品| 久久av网站| 亚洲精品自拍成人| 亚洲国产欧美在线一区| 美女福利国产在线| 悠悠久久av| 在线精品无人区一区二区三| 国产精品久久久久久人妻精品电影 | 色网站视频免费| 免费高清在线观看视频在线观看| 亚洲精品乱久久久久久| 午夜91福利影院| 国产欧美日韩一区二区三区在线| a级片在线免费高清观看视频| 亚洲av日韩精品久久久久久密 | 七月丁香在线播放| 久久影院123| 老司机在亚洲福利影院| 亚洲av成人不卡在线观看播放网 | 亚洲免费av在线视频| 亚洲婷婷狠狠爱综合网| 晚上一个人看的免费电影| 欧美黄色片欧美黄色片| 永久免费av网站大全| 最近最新中文字幕免费大全7| 亚洲,一卡二卡三卡| 一级a爱视频在线免费观看| 一级爰片在线观看| 精品国产露脸久久av麻豆| 亚洲av成人精品一二三区| 制服人妻中文乱码| 9热在线视频观看99| 日本91视频免费播放| 19禁男女啪啪无遮挡网站| 精品福利永久在线观看| av又黄又爽大尺度在线免费看| 久久精品亚洲熟妇少妇任你| 高清在线视频一区二区三区| 日本黄色日本黄色录像| 婷婷色综合大香蕉| av卡一久久| 99久久人妻综合| 少妇被粗大的猛进出69影院| 国产在线免费精品| 亚洲人成电影观看| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 国产在线一区二区三区精| 久久女婷五月综合色啪小说| 看非洲黑人一级黄片| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 亚洲国产日韩一区二区| 中文字幕人妻熟女乱码| 青青草视频在线视频观看| 最近的中文字幕免费完整| 午夜免费男女啪啪视频观看| 午夜日本视频在线| 日本猛色少妇xxxxx猛交久久| 亚洲综合精品二区| 亚洲精品一区蜜桃| 午夜福利免费观看在线| 看非洲黑人一级黄片| 国产片内射在线| 性色av一级| 女人久久www免费人成看片| 如日韩欧美国产精品一区二区三区| 我的亚洲天堂| 国产精品蜜桃在线观看| 捣出白浆h1v1| 别揉我奶头~嗯~啊~动态视频 | 久久av网站| 欧美亚洲 丝袜 人妻 在线| 免费av中文字幕在线| 精品久久久精品久久久| 精品亚洲成a人片在线观看| 国产av精品麻豆| 精品久久蜜臀av无| av不卡在线播放| 免费少妇av软件| 亚洲av欧美aⅴ国产| 久久ye,这里只有精品| 悠悠久久av| 日韩熟女老妇一区二区性免费视频| 制服诱惑二区| 毛片一级片免费看久久久久| 亚洲专区中文字幕在线 | netflix在线观看网站| 99久久人妻综合| av.在线天堂| 十分钟在线观看高清视频www| 女性被躁到高潮视频| 久久婷婷青草| a级毛片在线看网站| 9色porny在线观看| 国产精品蜜桃在线观看| 国产精品av久久久久免费| 一级片'在线观看视频| 99久国产av精品国产电影| 亚洲第一青青草原| 精品国产乱码久久久久久小说| 啦啦啦在线免费观看视频4| av在线老鸭窝| 满18在线观看网站| 成年女人毛片免费观看观看9 | 欧美黑人精品巨大| 国产女主播在线喷水免费视频网站| 免费av中文字幕在线| 婷婷成人精品国产| av有码第一页| 精品一区二区免费观看| 国产1区2区3区精品| 精品亚洲成a人片在线观看| 亚洲精品aⅴ在线观看| 欧美精品av麻豆av| 成年av动漫网址| 成人毛片60女人毛片免费| 欧美少妇被猛烈插入视频| 亚洲成人一二三区av| 99国产精品免费福利视频| 菩萨蛮人人尽说江南好唐韦庄| 夜夜骑夜夜射夜夜干| 久久久精品免费免费高清| 男人操女人黄网站| 免费在线观看视频国产中文字幕亚洲 | 精品免费久久久久久久清纯 | 欧美老熟妇乱子伦牲交| 老鸭窝网址在线观看| 国产视频首页在线观看| 国产一级毛片在线| 亚洲av日韩精品久久久久久密 | 狠狠婷婷综合久久久久久88av| 亚洲成人免费av在线播放| 精品视频人人做人人爽| 亚洲精品视频女| 亚洲婷婷狠狠爱综合网| 久久久精品免费免费高清| 精品国产一区二区久久| 老司机影院成人| 亚洲精品美女久久久久99蜜臀 | 欧美精品av麻豆av| 自线自在国产av| 亚洲一码二码三码区别大吗| 日本爱情动作片www.在线观看| 国产又爽黄色视频| 亚洲熟女精品中文字幕| 热99国产精品久久久久久7| 日韩,欧美,国产一区二区三区| 成人国产av品久久久| 99久久99久久久精品蜜桃| 亚洲成人国产一区在线观看 | 亚洲国产精品一区三区| 欧美精品高潮呻吟av久久| 亚洲天堂av无毛| 精品少妇一区二区三区视频日本电影 | 免费观看人在逋| 高清不卡的av网站| 波野结衣二区三区在线| 欧美国产精品va在线观看不卡| 纵有疾风起免费观看全集完整版| 免费黄色在线免费观看| 一区在线观看完整版| 午夜精品国产一区二区电影| 国产97色在线日韩免费| 一区福利在线观看| 国产精品女同一区二区软件| 女人久久www免费人成看片| 王馨瑶露胸无遮挡在线观看| 亚洲欧美一区二区三区黑人| 777久久人妻少妇嫩草av网站| 国产精品 国内视频| 日韩一区二区三区影片| 操出白浆在线播放| 少妇精品久久久久久久| 丰满乱子伦码专区| 捣出白浆h1v1| 一级毛片我不卡| 国产福利在线免费观看视频| 久热爱精品视频在线9| 婷婷色麻豆天堂久久| 一级黄片播放器| 国产 一区精品| 黑人巨大精品欧美一区二区蜜桃| 久久久久国产一级毛片高清牌| 人妻 亚洲 视频| 亚洲情色 制服丝袜| 久久久久精品人妻al黑| 女人爽到高潮嗷嗷叫在线视频| 国产伦人伦偷精品视频| 亚洲欧美日韩另类电影网站| 别揉我奶头~嗯~啊~动态视频 | 国产无遮挡羞羞视频在线观看| 国产欧美日韩综合在线一区二区| 亚洲国产毛片av蜜桃av| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| 精品少妇内射三级| 国产福利在线免费观看视频| 韩国高清视频一区二区三区| 亚洲国产av新网站| 久久婷婷青草| 日本爱情动作片www.在线观看| 亚洲人成77777在线视频| 在现免费观看毛片| 国产精品秋霞免费鲁丝片| 久久精品国产a三级三级三级| 久久久久视频综合| 亚洲成人国产一区在线观看 | 欧美日韩亚洲高清精品| 中国三级夫妇交换| 亚洲视频免费观看视频| 中文字幕av电影在线播放| 国产高清不卡午夜福利| 日韩 亚洲 欧美在线| 国产精品一国产av| 亚洲精品一区蜜桃| 精品午夜福利在线看| 美女中出高潮动态图| 中文字幕色久视频| h视频一区二区三区| 色精品久久人妻99蜜桃| 国产精品一区二区在线不卡| 成年人免费黄色播放视频| 亚洲婷婷狠狠爱综合网| 母亲3免费完整高清在线观看| 韩国高清视频一区二区三区| 汤姆久久久久久久影院中文字幕| 日韩制服丝袜自拍偷拍| 国产激情久久老熟女| 999精品在线视频| e午夜精品久久久久久久| 秋霞伦理黄片| 大码成人一级视频| 男女床上黄色一级片免费看| 人妻人人澡人人爽人人| 精品酒店卫生间| 亚洲,一卡二卡三卡| 肉色欧美久久久久久久蜜桃| 男人爽女人下面视频在线观看| av.在线天堂| 欧美成人午夜精品| 久久99一区二区三区| 精品国产超薄肉色丝袜足j| 少妇人妻 视频| 久久久久久久大尺度免费视频| 各种免费的搞黄视频| 久久亚洲国产成人精品v| 国产精品三级大全| 一本一本久久a久久精品综合妖精| 亚洲国产欧美网| 性高湖久久久久久久久免费观看| av女优亚洲男人天堂| 亚洲色图 男人天堂 中文字幕| 韩国高清视频一区二区三区| 女人精品久久久久毛片| 女人高潮潮喷娇喘18禁视频| 国产麻豆69| 日韩欧美一区视频在线观看| 美女主播在线视频| 一级爰片在线观看| 日韩成人av中文字幕在线观看| 欧美黄色片欧美黄色片| 男男h啪啪无遮挡| 伊人亚洲综合成人网| 亚洲欧美一区二区三区久久| 婷婷色麻豆天堂久久| 乱人伦中国视频| 国产极品粉嫩免费观看在线| 美女午夜性视频免费| av天堂久久9| 蜜桃在线观看..| netflix在线观看网站| 成人免费观看视频高清| 最近2019中文字幕mv第一页| 看非洲黑人一级黄片| 久久久久久人人人人人| 国产精品免费大片| 日韩熟女老妇一区二区性免费视频| 国产高清国产精品国产三级| 国产av精品麻豆| 韩国av在线不卡| 欧美精品一区二区大全| 男人舔女人的私密视频| 一级片'在线观看视频| 国产淫语在线视频| av在线播放精品| 久久精品国产亚洲av高清一级| av电影中文网址| 国产精品偷伦视频观看了| 精品人妻一区二区三区麻豆| 十分钟在线观看高清视频www| 尾随美女入室| av电影中文网址| 亚洲七黄色美女视频| 国产精品久久久久久久久免| 精品午夜福利在线看| 一区福利在线观看| 中文字幕高清在线视频| 亚洲精品日韩在线中文字幕| 久久久久网色| 国产极品粉嫩免费观看在线| 少妇被粗大的猛进出69影院| av天堂久久9| 欧美激情高清一区二区三区 | 国产在线一区二区三区精| 国产精品 欧美亚洲| videosex国产| netflix在线观看网站| 免费人妻精品一区二区三区视频| 涩涩av久久男人的天堂| xxx大片免费视频| www.av在线官网国产| 国产黄色视频一区二区在线观看| 国产成人精品久久二区二区91 | 亚洲精品日韩在线中文字幕| 亚洲欧美激情在线| 99热网站在线观看| 国产成人欧美在线观看 | 久久亚洲国产成人精品v| 欧美乱码精品一区二区三区| 国产成人精品久久久久久| 在线亚洲精品国产二区图片欧美| 国产精品 欧美亚洲| 18禁国产床啪视频网站| 午夜福利影视在线免费观看| 成人黄色视频免费在线看| 国产色婷婷99| 国产片内射在线| 在线天堂最新版资源| 黄色 视频免费看| 日本色播在线视频| 日韩视频在线欧美| 啦啦啦中文免费视频观看日本| 日日啪夜夜爽| 午夜免费鲁丝| 电影成人av| 韩国av在线不卡| 大码成人一级视频| 亚洲av日韩精品久久久久久密 | 日本欧美国产在线视频| 精品国产一区二区三区久久久樱花| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 曰老女人黄片| 制服丝袜香蕉在线| 天堂8中文在线网| 国产男女超爽视频在线观看| 免费看av在线观看网站| 国产精品三级大全| 叶爱在线成人免费视频播放| 一边摸一边做爽爽视频免费| 日本色播在线视频| 另类亚洲欧美激情| 色视频在线一区二区三区| 久久久欧美国产精品| 久久久久久久久免费视频了| 男人爽女人下面视频在线观看| 韩国高清视频一区二区三区| 国产一区二区在线观看av| 久久精品aⅴ一区二区三区四区| 黄频高清免费视频| 日韩一区二区三区影片| 久久99一区二区三区| 99热全是精品| 亚洲精品视频女| 亚洲三区欧美一区| 欧美激情高清一区二区三区 |