• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Objective Fitting Evaluation Model for Dressing Fit Based on Wrinkle Index of Dressing Image

    2019-04-09 01:49:28ZHANGMengmengZHUANGMeilingZHANGXiaofeng

    ZHANG Mengmeng(), ZHUANG Meiling()*, ZHANG Xiaofeng()

    1 College of Textiles and Clothing, Qingdao University, Qingdao 266071, China 2 College of Computer Science and Technology, Qingdao University, Qingdao 266071, China

    Abstract: An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.

    Key words: objective fitting evaluation model; image to wrinkle(ITW); dressing image; wrinkles index

    Introduction

    The contradiction between visual fit of dress image and actual dressing fit has become one of the main factors restricting the development of the garment electronic business. In the virtual environment of online shopping, consumers can’t try on the size of garments, can’t intuitively distinguish the color and luster of garment’s fabrics, and can’t touch the feel quality of fabrics[1]. The comfort of garments can only be judged by the business copy display and customer purchase feedback on purchases. They can only judge the fitness of garment through the feedback of the merchants and customers. Shaoetal.[2]ranked and quantified the details of perceptual clues according to weight value and importance degree based on the eye movement testing. They also analyzed the impact of color, layout, pictures, text and other elements on consumers’ online shopping experience. It confirmed that images are more important than texts in garments’ online shopping. In other words, in the online shopping platform of garment, consumers are more inclined to make purchase prediction by observing the dressing image. Furthermore, the research on the influence of image display[3]affects consumers’ impulsive purchasing intention, and also proves the importance of image in garments’ online shopping. Therefore, this paper takes images as the research object. In recent years, in the field of textile and garment, most of the research on images mainly focuses on two aspects:(1) the recognition of information from single image;(2) retrieval and classification of target images in the virtual system. Based on the influencing factors of garment fitting[4], the former adopts image processing technology[5]to recognize and extract the quality, pattern, color, texture, style, modality and other information of garment and fabric in the image[6].Among them, fabric composition and properties are identified based on garment image[7-8]. Many scholars based on back propagation(BP) neural network, Fourier transform and Gabor transform algorithm recognize the surface texture and structure characteristics of fabrics[9]. At the same time, the identification of fabric defects was studied[10-12]. Javieretal.[13]and Leonardoetal.[14]objectively extracted and evaluated the wrinkles in different parts of garment images. Bossardetal.[15]proposed an algorithm to extract structural technical parameters such as chest circumference of garment based on standard working sketch and identify style image. Mengetal.[16]and Xingetal.[17]respectively analyzed the composition of three elements of color and extracted the main colors of national costumes based on algorithms.The latter is mostly based on the attitude estimation, scale-invariant feature transform(SIFT) features and other algorithms. The algorithm establishes feature labels to retrieve and classify garment images[18-24], such as the garment color, garment length, sleeve length, dress posture and other feature labels. In conclusion, current researchs are mostly limited to image recognition and target image retrieval. Therefore, an objective fitting evaluation model(image to wrinkle, ITW) based on the wrinkle index of dressing image is proposed to solve the contradiction in online garment purchasing. Furthermore, it improves the accuracy of consumers’ perception of actual dress fitting based on dress images, and reduces the return rate.

    1 ITW Model Framework Design

    Wrinkles are not only a direct index of the fitness of dressing, but also the reflectin of the wearer’s physiological and psychological comfort states. Therefore, this research presents an objective fitting evaluation model of dressing fit in virtual environment, which is called ITW. And the proposed model takes the wrinkle as its object of study. The ITW model framework design process is shown in Fig. 1.

    Fig. 1 ITW model framework

    Step 1 Image acquisition: download the dressing image on the garment website.

    Step 2 Image processing: the downloaded image is intercepted and processed by the software of Matlab, which can realize the function of segmentation of the target image and noise reduction of the original image. In this process, GCF threshold segmentation algorithm, Canny edge detection and gray scale curve are adopted.

    Step 3 Index extraction and quantification: extract the area, trends, width and depth unevenness of the wrinkle are used to quantify the wrinkle number, wrinkle regularity and wrinkle unevenness, respectively.

    2 Setting-Up ITW Evaluation Model

    2.1 GCF threshold segmentation algorithm

    GCF algorithm is an image processing algorithm proposed in this study. It is an image processing algorithm based on GCF. The purpose of the image processing is to reduce the noise of the original image, remove the noise and blur caused by illumination, scene and other factors, so as to improve the resolution and clarity of the image. Let f be the original color image, t be the gray image,t(x) be the gray histogram, g is the binary image, the background part isbw=1, the target part isbw=0, andxis the unknown gray value,T*is the optimal threshold. The GCF threshold segmentation algorithm is used to optimize the threshold. The flow diagram of the GCF threshold segmentation algorithm is shown in Fig.2. And the steps are as follows.

    Fig. 2 Flow diagram of GCF threshold segmentation algorithm

    Step 1 The background gray polynomial curveP1(x) and the target gray polynomial curveP2(x) are fitted respectively based on the background and target gray data.

    Step 2 The probability of background pixel occurrence isP1, the probability of target pixel occurrence isP2,P1+P2=1.xis the gray value, and the image can be expressed as mixed probability density function by Eq.(1).

    P(x)=P1P1(x)+P2P2(x).

    (1)

    Step 3 Searche for the thresholdx=T*, achieve the segmentation of the target and the background.

    The error probabilityE1(T) of dividing the target pixels into the background is expressed by Eq.(2).

    (2)

    The error probabilityE2(T) of dividing the background pixels into the target is expressed by Eq.(3).

    (3)

    The total error probabilityE(T) is expressed by Eq.(4).

    E(T)=P2E1(T)+P1E2(T).

    (4)

    (5)

    WhenP1=P2is taken, the optimal thresholdT*of GCF threshold segmentation algorithm is obtained.

    2.2 Canny edge detection

    Edge detection is a feature detection method, including Canny, Sobel, Roberts, Log and other edge detection operators[25]. In this study, the edge detection method is used to obtain wrinkle contour of clear and complete, so as to define three trends of wrinkle. Therefore, only the effect of edge detection on target contour recognition is considered, and other differences such as the noise of four kinds of edge detection are not considered. This research intends to use Canny edge detection algorithm to recognize the wrinkle contour in dressing image.

    2.3 Quantification of wrinkle indexes

    (1) Number index

    The number index is characterized by the area of wrinkle. It is expressed byWs. For the processed binary image, the area of the wrinkle is calculated by Eqs.(6) and(7).

    s=∑n(i, j),

    (6)

    (7)

    where,n(i, j)=0, ∑n(i, j)represents the accumulation of black pixels, that is the target part, andNarepresents the area of the binary image g,Wsrepresents the area of wrinkle.

    (2) Regularity index

    According to Canny edge detection image, combined with three shirt dress images of tight, fit and loose, this study defines three trends of wrinkle to represent the regularity index, as shown in Fig. 3.

    Fig. 3 Three wrinkle trends of the index of wrinkle regularity

    1) PG

    The force centre of the trend is in the chest point, shoulder point and other points of human body structure, as shown in Fig. 3(a). In the dress effect of tightening, most of wrinkles are PG.

    2) PLG

    The force centre of the trend is on the central line, and the wrinkles parallel to the central line are divergent, as shown in Fig. 3(b). On the edge of the surface of the human body, it is accumulated by the allowance of the fabric. In the dressing effect of looseness, most of wrinkles are PLG.

    3) LG

    The force centre of the trend is also the central line, but the wrinkle extends along the central line in all directions, as shown in Fig. 3(c). In the dressing effect of fitting, most of wrinkles are LG.

    (3) Unevenness index

    The wrinkle distribution of armhole, shoulder and chest is the main part of this study. In the intercepted image, the linear direction ofL1 andL2 is extended to recognize the gray change and generate the gray change curve.L1 represents 1/2 of the distance from the bottom of the armhole to the shoulder point.L2 represents the line in the bottom direction of the elongated armhole. The positions ofL1 andL2 in the structure diagram are shown in Fig. 4.Horizontal lines are drawn atL1 andL2, respectively. Calculate the depth unevenness(YVH) and width unevenness onL1 andL2 horizontal lines. The undulating variation of wrinkles is expressed by the depth unevenness, which reflects the lateral evenness of the wrinkles. The width unevenness is used to represent the space of wrinkles, which reflects the uniformity of wrinkles.

    Fig. 4 Location marking of L1 and L2 in the garment prototype structure

    Depth unevenness can be estimated by Eq.(8).

    (8)

    The width unevenness(YVD) can be estimated by Eq.(9).

    (9)

    3 Experiment and Simulation

    3.1 Single image simulation

    3.1.1ImageprocessingofGCFthresholdsegmentationalgorithm

    Step 1 Download shirt image from application software(APP)and capture the left chest and shoulder parts of the image as the original image f, as shown in Fig. 5(a).

    Step 2 Turn f to gray image t as shown in Fig. 5(b), calculate the gray distribution of t, and get the histogramt(x). In addition, the contrast adjustment was made to the gray distribution oft(x) to make the image clearer, and the adjusted histogram was obtained, as shown in Fig. 5(c).

    Step 3 The least square method was used to polynomial fit the bimodal curve in the gray histogram.

    The GCF is shown in Fig. 6,and the curve expression is as follows.

    (a) (b) (c) (d)

    Fig. 6 Function curves of P1(x) and P2(x) in GCF threshold segmentation algorithm

    (1) Background function can be estimated by Eq.(10).

    P1(x)=

    -0.203x2+52.64x-2 391.x∈[0, 255].

    (10)

    (2) Objective function can be estimated by Eq.(11).

    P2(x)=

    -0.308x2+121.8x-11 478.x∈[0, 255].

    (11)

    (3) Mixed probability density function. The probability of background pixel occurrence isP1, the probability of target pixel occurrence isP2,P1+P2=1.xrepresents the gray value, and the image can be expressed as mixed probability density function by Eq.(12).

    P(x)=

    P1P1(x)+P2P2(x)=-(0.203P1+0.308P2)x2+

    (52.64P1+121.8P2)x-(2 391P1+11 478P2).

    (12)

    (4) Optimal thresholdT*

    The error probabilityE1(T) of dividing the target pixels into the background is expressed by Eq.(13).

    (13)

    The error probabilityE2(T) of dividing the background pixels into the target is expressed by Eq.(14).

    (14)

    The total error probabilityE(T) can be calculated by Eq.(15), andE(T) image is shown in Fig. 7.

    (15)

    The optimal thresholdT*is the value whenE(T) reaches the minimum valueE(T)min, that is to calculate

    (16)

    (17)

    T*=181, that is the optimal threshold of GCF segmentation algorithm for this image is 181.

    WhenT*=181, the binary image’s target and background are clearly segmented. Therefore, the optimal threshold value of this image is 181 by GCF threshold segmetation algorithm.

    Fig. 7 First derivative image of E(T) function

    3.1.2Imagecannyedgedetection

    Canny edge detection combines the three criteria of signal-to-noise ratio, positioning accuracy and single edge response to obtain the optimal detection operator. From the results of edge detection of lady’s shirt image in Fig. 8, we can see that the Canny edge detection Fig. 8(a) can better achieve the purpose of clear and complete contour of wrinkle. Using Canny edge detection algorithm to recognize wrinkle contour in dressing image is suitable for this research.

    (a) Canny (b) Log

    (c) Roberts (d) Sobel

    3.1.3Quantificationofwrinkleindexes

    (1) Wrinkle number

    The area of the wrinkle in Fig. 5(d) is calculated by Eqs.(6) and(7).

    Ws=0.279,

    (18)

    whereWsrepresents the area of wrinkle. Therefore, according to Eq.(18), the area of wrinkles accounts for 27.9% of the total area of the image.

    (2) Wrinkle regularity

    As shown in Fig. 9, the wrinkles in the red elliptical region are distributed in a line-gathering mode with the red solid line as the central line. This trend mainly focuses on the stress on the chest, shoulder and armhole to the central line. The yellow solid line(wrinkle line) is distributed in a point-gathering mode with the yellow dot as the centre, and the trend is mainly concentrated on the chest point and acromion point. The trend of the point is that the wrinkles in the blue box area are the blue lines with a parallel line. Among them, the regularity of parallel-line-gathering is the highest.

    Fig. 9 Three wrinkle trends by Canny edge detection

    (3) Wrinkle unevenness

    The depth unevennessYVHand width unevennessYVDof the wrinkle onL1 andL2 are calculated. It can be seen from Fig. 10 that the depth unevenness ofL2 is less thanL1 and the width unevenness is greater thanL1.L2 passes through the chest circumference, and the chest is a smooth curved surface with almost no wrinkles. The gray curve is relatively smooth, so the depth unevenness is lower thanL1. The right side ofL2 passes through the bottom of the armhole. The wrinkles at the bottom of the armhole are larger and the gray value decreases obviously. Therefore, the width of the wrinkle changes greatly and the unevenness is greater thanL1.

    Fig. 10 L1 and L2 unevenness of wrinkles(L1 curve: YVH=24.2%, YVD=11.5%; L2 curve: YVH=22.4%, YVD=12.7%)

    3.2 Multi-image of different fitness recognition simulation

    Based on the ITW objective evaluation model, simulation experiments were carried out with three different images: tight, fit and loose of dressing fit. And wrinkle indexes were extracted and quantified, and also the relationship between wrinkle indexes and dressing fit was established. Among them, the images of tight, fit and loose dress effects were recorded asT,F(xiàn)andLrespectively. The experimental results are shown in Figs. 11-12 and Table 1.

    (a)

    (b)

    (c)

    Fig. 11 Algorithmic simulation of three shirt dress images: (a) images in the tight state;(b) images in the fit state;(c) images in the loose state

    (a1)

    (a2)

    (b1)

    (b2)

    (c1)

    (c2)

    Fig. 12 Gray-scale curve of three shirt dress images:(a1) and(a2) represent theL1andL2curves of gray image of the tight state, respectively;(b1) and(b2) represent theL1 andL2 curves of gray image of the fitting state, respectively; (c1) and(c2) represent theL1 andL2 curves of gray images of the loose state, respectively

    The result of wrinkle number can be calculated by Formula(19).

    FWs

    (19)

    It has been proved that the wrinkle area is the smallest when the dressing is a fitting state. When the dressing is a loose state, although the number of wrinkles is small, the fabric allowance accumulates on the side of the body, resulting in a larger area of wrinkles. When the dressing is a tight state, the wrinkle area is relatively large after accumulating several small areas of wrinkles. The result of wrinkle regularity can be defined by Formula(20).

    Tr

    (20)

    whererrepresents the index of wrinkle regularity.Trrefers to the wrinkle unevenness when the dress is a tight.Frrefers to the wrinkle unevenness when the dress is fitting.Lrrefers to the wrinkle unevenness when the dress is loose. When the dressing is tight state, PG mode is the main trend of wrinkle, and the wrinkle regularity is the worst. When the dressing is a fitting state, the surface of the garments is smooth, and the wrinkles are mostly presented on the armhole by LG, and the wrinkles are more regularity. When the dressing is a loose state, the garment has margins. These margins are concentrated on the side of the garment and armhole. The wrinkles are mostly the PLG mode, and the wrinkle regularity is the highest.

    Table 1 Wrinkle index comparison of tight, fit and loose dressing effects

    The result of wrinkle unevenness can be calculated by Formulas(21) and (22).

    TYVH

    (21)

    TYVD

    (22)

    It is proved that when the dressing effect is tight, the wrinkle unevenness of depth and width is the smallest. When the dressing effect is fitting, the garment presents the smooth surface. When the dressing effect is loose, the unevenness of wrinkles is the highest. At the same time, the wrinkle index along the bottom of the armhole changes more than the wrinkle index at 1/2 of the distance from the bottom of the armhole to the shoulder point.

    Three shirt dressing images are processed by ITW objective fitting evaluation model, and the conclusion can be drawn:(1) the index of wrinkle number:FWs

    4 Conclusions

    This paper proposes the ITW objective fitting evaluation model of dressing fit. In the ITW objective fitting evaluation model, wrinkle information of dressing image is the subject of the study. Image processing technology is adopted, and GCF threshold segmentation algorithm and Canny edge detection algorithm are designed to extract the wrinkle area quantization wrinkle number index. Define three wrinkle trends to quantify the wrinkle regularity index, and the wrinkles unevenness is quantified by depth unevenness and width unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) are quantified by objective evaluation model. There are some shortcomings in this research, such as lack of physical verification. In the follow-up study, different samples will be designed through orthogonal experiments to verify the actual dressing fit. At present, this study can only compare the objective quantitative results of three dress states, and choose the clothes with the best fit in the comparison. Further quantification is needed in the following research, and the quantization range of the three dressing effects is given.

    精品久久国产蜜桃| 精品久久久精品久久久| 久久ye,这里只有精品| 亚州av有码| 久久久久久久久大av| 亚洲av成人精品一二三区| 欧美精品一区二区免费开放| 在线观看免费日韩欧美大片 | 久久久久国产网址| 黄色日韩在线| 亚洲经典国产精华液单| 日本午夜av视频| 日韩av免费高清视频| 中国国产av一级| 一区二区三区免费毛片| 熟妇人妻不卡中文字幕| 九草在线视频观看| 国产一区二区三区av在线| 亚洲内射少妇av| videossex国产| 乱系列少妇在线播放| 伊人久久国产一区二区| 成人亚洲欧美一区二区av| 国产 一区精品| 一级毛片电影观看| 亚洲欧美一区二区三区国产| 18禁动态无遮挡网站| 久久久久久久国产电影| 99久久精品国产国产毛片| av福利片在线| 欧美精品人与动牲交sv欧美| 午夜日本视频在线| 蜜臀久久99精品久久宅男| av在线观看视频网站免费| 精品国产一区二区久久| 国产亚洲91精品色在线| 国产高清国产精品国产三级| 成人无遮挡网站| 麻豆精品久久久久久蜜桃| 三级国产精品片| 蜜桃久久精品国产亚洲av| 国产日韩欧美在线精品| 两个人免费观看高清视频 | 久久精品国产自在天天线| 少妇人妻一区二区三区视频| 自拍偷自拍亚洲精品老妇| 全区人妻精品视频| 永久网站在线| 欧美三级亚洲精品| 久久精品久久久久久久性| 人妻制服诱惑在线中文字幕| 80岁老熟妇乱子伦牲交| 中文字幕制服av| 日本91视频免费播放| 国产69精品久久久久777片| 久热久热在线精品观看| 精品亚洲乱码少妇综合久久| 久久婷婷青草| 中文资源天堂在线| 亚洲av二区三区四区| 国产精品一区二区性色av| 男的添女的下面高潮视频| 欧美日韩在线观看h| 深夜a级毛片| 亚洲国产精品一区二区三区在线| 一级,二级,三级黄色视频| 国产欧美日韩综合在线一区二区 | 国产高清国产精品国产三级| 中文字幕精品免费在线观看视频 | 免费观看av网站的网址| 99精国产麻豆久久婷婷| 三级经典国产精品| 高清午夜精品一区二区三区| 亚洲精华国产精华液的使用体验| 亚洲av不卡在线观看| 日日啪夜夜爽| 欧美激情国产日韩精品一区| 成人毛片60女人毛片免费| 深夜a级毛片| 亚洲内射少妇av| 成人国产av品久久久| 美女中出高潮动态图| 日韩一区二区三区影片| 一本大道久久a久久精品| 热re99久久国产66热| 91精品伊人久久大香线蕉| 午夜福利影视在线免费观看| av女优亚洲男人天堂| 免费在线观看成人毛片| 一本久久精品| 人妻夜夜爽99麻豆av| 国产欧美亚洲国产| 亚洲人与动物交配视频| av国产精品久久久久影院| 能在线免费看毛片的网站| 久久久久精品性色| 久久国内精品自在自线图片| 欧美国产精品一级二级三级 | 一级黄片播放器| 女性被躁到高潮视频| 最近2019中文字幕mv第一页| 亚洲va在线va天堂va国产| 在线观看美女被高潮喷水网站| 在线观看美女被高潮喷水网站| 美女内射精品一级片tv| 国产精品久久久久久av不卡| 男人和女人高潮做爰伦理| 99热这里只有是精品在线观看| 国产视频内射| 欧美3d第一页| 99九九在线精品视频 | 亚洲第一av免费看| 亚洲人成网站在线播| 妹子高潮喷水视频| 国产精品麻豆人妻色哟哟久久| 乱人伦中国视频| 亚洲国产毛片av蜜桃av| 色视频www国产| 最近2019中文字幕mv第一页| 91精品国产国语对白视频| 午夜久久久在线观看| 日本wwww免费看| 日韩三级伦理在线观看| 国产亚洲欧美精品永久| 伦理电影免费视频| 黄色毛片三级朝国网站 | 日韩成人伦理影院| 国产白丝娇喘喷水9色精品| 欧美三级亚洲精品| 日韩一本色道免费dvd| av免费观看日本| 久久影院123| 欧美日韩av久久| av黄色大香蕉| 亚洲中文av在线| 全区人妻精品视频| 免费高清在线观看视频在线观看| 最新中文字幕久久久久| 日韩不卡一区二区三区视频在线| 亚洲欧洲精品一区二区精品久久久 | 久久久久久人妻| 韩国高清视频一区二区三区| 自线自在国产av| 亚洲国产精品999| 国产在线免费精品| 国产有黄有色有爽视频| 看非洲黑人一级黄片| 97在线视频观看| 97超视频在线观看视频| 日韩欧美 国产精品| 两个人的视频大全免费| 日韩欧美 国产精品| 这个男人来自地球电影免费观看 | 久久午夜综合久久蜜桃| 美女内射精品一级片tv| 最近2019中文字幕mv第一页| 久热久热在线精品观看| 亚洲av成人精品一区久久| 欧美高清成人免费视频www| 老司机影院毛片| 夫妻性生交免费视频一级片| 国产成人freesex在线| 99精国产麻豆久久婷婷| 老司机影院毛片| 99精国产麻豆久久婷婷| 中文资源天堂在线| 免费大片黄手机在线观看| 成人亚洲欧美一区二区av| 女性生殖器流出的白浆| 波野结衣二区三区在线| 日本-黄色视频高清免费观看| 最新的欧美精品一区二区| 亚州av有码| 欧美另类一区| 亚洲国产色片| 香蕉精品网在线| 亚洲人与动物交配视频| 久久精品国产鲁丝片午夜精品| 丝瓜视频免费看黄片| 秋霞伦理黄片| 中国美白少妇内射xxxbb| 日本免费在线观看一区| 国产极品天堂在线| 我的女老师完整版在线观看| 国产精品三级大全| 五月天丁香电影| 十八禁高潮呻吟视频 | 视频区图区小说| 日韩成人av中文字幕在线观看| 91精品国产国语对白视频| 中文乱码字字幕精品一区二区三区| 一级av片app| 中文字幕久久专区| 插逼视频在线观看| 亚洲国产av新网站| 高清不卡的av网站| a 毛片基地| 十八禁高潮呻吟视频 | 国产成人免费观看mmmm| 多毛熟女@视频| 一区二区三区免费毛片| 麻豆精品久久久久久蜜桃| 中文字幕久久专区| 国产熟女欧美一区二区| 国产午夜精品久久久久久一区二区三区| 97超视频在线观看视频| 亚洲,一卡二卡三卡| 中文字幕av电影在线播放| 成人无遮挡网站| 另类精品久久| 亚洲国产毛片av蜜桃av| 国产欧美亚洲国产| 国产精品一区二区在线观看99| 欧美精品一区二区大全| 国产精品久久久久久久电影| 99精国产麻豆久久婷婷| 亚洲av日韩在线播放| 亚洲精品日韩在线中文字幕| 成人国产麻豆网| 亚洲精品久久久久久婷婷小说| 成人黄色视频免费在线看| 精品国产一区二区久久| 九色成人免费人妻av| 国产成人免费无遮挡视频| 啦啦啦啦在线视频资源| 亚洲第一av免费看| 国产男女超爽视频在线观看| 五月伊人婷婷丁香| 精品久久国产蜜桃| 亚洲va在线va天堂va国产| 国产深夜福利视频在线观看| 日本黄色日本黄色录像| 2022亚洲国产成人精品| 男女国产视频网站| 黄色视频在线播放观看不卡| 日韩精品免费视频一区二区三区 | 亚洲一区二区三区欧美精品| 少妇被粗大猛烈的视频| 久久99热这里只频精品6学生| 国产精品熟女久久久久浪| 欧美日韩亚洲高清精品| 精品一区二区三卡| 人人妻人人爽人人添夜夜欢视频 | 91aial.com中文字幕在线观看| 国产精品秋霞免费鲁丝片| 国产男女内射视频| 青青草视频在线视频观看| av国产精品久久久久影院| 亚洲内射少妇av| 欧美日韩视频高清一区二区三区二| 久久6这里有精品| 国产亚洲精品久久久com| 秋霞在线观看毛片| videos熟女内射| 日日啪夜夜爽| www.av在线官网国产| 亚洲精品久久久久久婷婷小说| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 一级二级三级毛片免费看| 色婷婷久久久亚洲欧美| 欧美成人精品欧美一级黄| 久久精品国产亚洲av涩爱| 久久免费观看电影| 汤姆久久久久久久影院中文字幕| 国产伦精品一区二区三区四那| 一级爰片在线观看| 精品亚洲成国产av| 2022亚洲国产成人精品| 免费观看a级毛片全部| 亚洲天堂av无毛| 国产精品一区二区三区四区免费观看| a级毛片在线看网站| 国产一区二区三区av在线| 一级a做视频免费观看| 一二三四中文在线观看免费高清| 少妇 在线观看| 国产色婷婷99| 久久久久国产网址| 91午夜精品亚洲一区二区三区| 七月丁香在线播放| 好男人视频免费观看在线| 日韩一区二区三区影片| h视频一区二区三区| 欧美97在线视频| 久久99热6这里只有精品| 国产精品嫩草影院av在线观看| 我要看黄色一级片免费的| 久久久久精品性色| 老女人水多毛片| 在线观看一区二区三区激情| 日韩精品免费视频一区二区三区 | 色5月婷婷丁香| 涩涩av久久男人的天堂| 日日啪夜夜爽| 日韩视频在线欧美| 少妇 在线观看| 91精品国产九色| 国产精品99久久99久久久不卡 | 51国产日韩欧美| 天美传媒精品一区二区| 91aial.com中文字幕在线观看| 各种免费的搞黄视频| av在线播放精品| 日韩亚洲欧美综合| 国产欧美日韩一区二区三区在线 | videossex国产| 97精品久久久久久久久久精品| 又爽又黄a免费视频| 精品一区二区三卡| 日本免费在线观看一区| 蜜臀久久99精品久久宅男| 3wmmmm亚洲av在线观看| 免费久久久久久久精品成人欧美视频 | 少妇人妻久久综合中文| 日本av免费视频播放| 最新的欧美精品一区二区| 国产成人freesex在线| 久久99精品国语久久久| 国产男人的电影天堂91| 亚洲国产色片| 伦精品一区二区三区| 只有这里有精品99| 久久青草综合色| 日本黄色片子视频| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 日本vs欧美在线观看视频 | 王馨瑶露胸无遮挡在线观看| 高清毛片免费看| 伊人久久精品亚洲午夜| 国产有黄有色有爽视频| 亚洲欧洲精品一区二区精品久久久 | 中文精品一卡2卡3卡4更新| 日本黄大片高清| 高清午夜精品一区二区三区| 精品久久久久久久久亚洲| 大片电影免费在线观看免费| 欧美国产精品一级二级三级 | 一级二级三级毛片免费看| 最后的刺客免费高清国语| 亚洲成人一二三区av| 日本黄色片子视频| 乱人伦中国视频| 人人妻人人看人人澡| 成年人免费黄色播放视频 | 精品久久久久久久久av| 亚洲色图综合在线观看| 国模一区二区三区四区视频| 春色校园在线视频观看| 欧美日韩av久久| 久久久久久久大尺度免费视频| 色婷婷久久久亚洲欧美| 性色avwww在线观看| 丰满迷人的少妇在线观看| 91久久精品国产一区二区成人| www.色视频.com| 自拍欧美九色日韩亚洲蝌蚪91 | 一级a做视频免费观看| 美女xxoo啪啪120秒动态图| 亚洲欧美中文字幕日韩二区| 久久这里有精品视频免费| 中文资源天堂在线| 成人免费观看视频高清| 亚洲欧美一区二区三区黑人 | videossex国产| 人妻人人澡人人爽人人| 欧美3d第一页| 久久婷婷青草| 亚洲第一区二区三区不卡| 日韩大片免费观看网站| 激情五月婷婷亚洲| 国产成人aa在线观看| 精品视频人人做人人爽| 亚洲经典国产精华液单| 欧美日韩精品成人综合77777| 美女xxoo啪啪120秒动态图| 人妻系列 视频| 欧美 日韩 精品 国产| 蜜桃在线观看..| 欧美最新免费一区二区三区| 夜夜看夜夜爽夜夜摸| 欧美+日韩+精品| 亚洲av日韩在线播放| 久久久久久久久大av| 大片电影免费在线观看免费| 卡戴珊不雅视频在线播放| 亚洲婷婷狠狠爱综合网| 亚洲四区av| 国产91av在线免费观看| 国产伦理片在线播放av一区| 亚洲国产精品一区二区三区在线| 自拍偷自拍亚洲精品老妇| 18禁裸乳无遮挡动漫免费视频| 亚洲情色 制服丝袜| 一二三四中文在线观看免费高清| 国产高清国产精品国产三级| 五月天丁香电影| 乱人伦中国视频| 97超碰精品成人国产| 精品人妻偷拍中文字幕| 九色成人免费人妻av| 国产精品一区二区在线不卡| 久久精品久久久久久久性| 人妻 亚洲 视频| 久久久国产精品麻豆| 国产精品秋霞免费鲁丝片| 亚洲成人手机| 国产成人精品一,二区| 欧美精品一区二区大全| 日韩av免费高清视频| 久久人人爽人人片av| 人妻一区二区av| 亚洲av欧美aⅴ国产| 久久人人爽人人爽人人片va| av不卡在线播放| 精品久久久精品久久久| 极品少妇高潮喷水抽搐| 一级毛片黄色毛片免费观看视频| 精品久久国产蜜桃| 国产视频内射| 久久这里有精品视频免费| 欧美亚洲 丝袜 人妻 在线| 亚洲色图综合在线观看| 在线观看www视频免费| 亚洲第一av免费看| 欧美激情极品国产一区二区三区 | 免费在线观看成人毛片| 美女xxoo啪啪120秒动态图| 日韩视频在线欧美| av福利片在线| 男男h啪啪无遮挡| 欧美一级a爱片免费观看看| 亚洲精品日韩在线中文字幕| 夫妻午夜视频| 久久久国产一区二区| 中文字幕亚洲精品专区| 亚洲欧美成人精品一区二区| 伊人久久精品亚洲午夜| a级毛色黄片| 成人二区视频| 人妻一区二区av| 久久鲁丝午夜福利片| 欧美激情极品国产一区二区三区 | 国产91av在线免费观看| 国产高清不卡午夜福利| 自拍偷自拍亚洲精品老妇| 午夜91福利影院| 黄色欧美视频在线观看| 欧美bdsm另类| 人妻人人澡人人爽人人| 两个人免费观看高清视频 | 99久久中文字幕三级久久日本| 亚洲欧美一区二区三区国产| 午夜福利,免费看| 日本wwww免费看| 麻豆成人午夜福利视频| 高清午夜精品一区二区三区| 精品一区在线观看国产| 妹子高潮喷水视频| 国产免费一级a男人的天堂| 一级二级三级毛片免费看| 中文字幕制服av| 成人黄色视频免费在线看| 色视频www国产| 国产乱人偷精品视频| 精品国产乱码久久久久久小说| 欧美三级亚洲精品| 色吧在线观看| 蜜桃久久精品国产亚洲av| 一区在线观看完整版| 三级国产精品片| 欧美激情极品国产一区二区三区 | 寂寞人妻少妇视频99o| 亚洲欧美日韩卡通动漫| 人体艺术视频欧美日本| 亚洲国产色片| 亚洲精品乱码久久久久久按摩| 水蜜桃什么品种好| 人人妻人人看人人澡| 3wmmmm亚洲av在线观看| 韩国av在线不卡| 美女脱内裤让男人舔精品视频| 视频中文字幕在线观看| 国产色爽女视频免费观看| 成人黄色视频免费在线看| 99久久精品国产国产毛片| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 亚洲成人一二三区av| 街头女战士在线观看网站| 插阴视频在线观看视频| 中文资源天堂在线| av免费在线看不卡| 国产色爽女视频免费观看| 男人舔奶头视频| 国产 精品1| 久久久国产精品麻豆| 国产成人免费无遮挡视频| 国产精品人妻久久久久久| 国产精品免费大片| 日本91视频免费播放| 男女啪啪激烈高潮av片| 美女cb高潮喷水在线观看| 麻豆成人av视频| 免费观看a级毛片全部| av女优亚洲男人天堂| 欧美日本中文国产一区发布| 亚洲天堂av无毛| 成人国产av品久久久| 高清毛片免费看| 成年美女黄网站色视频大全免费 | 日韩成人av中文字幕在线观看| 日本欧美视频一区| 久久久国产一区二区| 一级爰片在线观看| 高清av免费在线| 久久精品熟女亚洲av麻豆精品| 欧美少妇被猛烈插入视频| 日韩一区二区视频免费看| 国产 一区精品| 成人18禁高潮啪啪吃奶动态图 | 黑人高潮一二区| 最后的刺客免费高清国语| 亚洲成人av在线免费| 亚洲熟女精品中文字幕| 丰满迷人的少妇在线观看| 亚洲图色成人| 亚洲精品第二区| 高清午夜精品一区二区三区| 汤姆久久久久久久影院中文字幕| 热99国产精品久久久久久7| 午夜福利影视在线免费观看| 夫妻性生交免费视频一级片| 亚洲欧洲日产国产| 国产乱来视频区| 久久人妻熟女aⅴ| 王馨瑶露胸无遮挡在线观看| 欧美高清成人免费视频www| 免费不卡的大黄色大毛片视频在线观看| 成人二区视频| 国产女主播在线喷水免费视频网站| 又粗又硬又长又爽又黄的视频| 免费观看无遮挡的男女| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄| 丝袜脚勾引网站| av福利片在线观看| 成人国产麻豆网| 热re99久久国产66热| 在线播放无遮挡| 久久国产乱子免费精品| 在线亚洲精品国产二区图片欧美 | 18禁动态无遮挡网站| 亚洲美女黄色视频免费看| 免费观看性生交大片5| 中国美白少妇内射xxxbb| 国产欧美另类精品又又久久亚洲欧美| 男男h啪啪无遮挡| 日韩成人伦理影院| 国产一区二区在线观看av| 在线 av 中文字幕| 久久久久人妻精品一区果冻| 丝袜喷水一区| 成人特级av手机在线观看| 99久久精品一区二区三区| 亚洲精品久久午夜乱码| 久久久久久久久久人人人人人人| 9色porny在线观看| 久久人妻熟女aⅴ| 国产精品久久久久久精品电影小说| 久久精品国产自在天天线| 久久久久久久大尺度免费视频| 十分钟在线观看高清视频www | 18+在线观看网站| 天美传媒精品一区二区| 久久久久久久久久久免费av| 2021少妇久久久久久久久久久| 观看av在线不卡| 天美传媒精品一区二区| 中文天堂在线官网| 亚洲图色成人| 午夜激情久久久久久久| 色94色欧美一区二区| 久久6这里有精品| 亚洲一区二区三区欧美精品| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| 久久久精品免费免费高清| 国产高清国产精品国产三级| 人妻制服诱惑在线中文字幕| 最新中文字幕久久久久| 精品久久久噜噜| 最新中文字幕久久久久| 日本欧美视频一区| 午夜福利视频精品| 免费黄网站久久成人精品| 多毛熟女@视频| 亚洲国产日韩一区二区| 国产精品久久久久久av不卡| 大话2 男鬼变身卡| 有码 亚洲区| 亚洲国产日韩一区二区| 欧美日韩国产mv在线观看视频| 九草在线视频观看| 最近最新中文字幕免费大全7| av线在线观看网站| av在线老鸭窝| 啦啦啦中文免费视频观看日本| 欧美激情国产日韩精品一区| 曰老女人黄片| 两个人的视频大全免费| 熟妇人妻不卡中文字幕| 自拍偷自拍亚洲精品老妇| 高清毛片免费看|