• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Leader-Following Consensus of Nonlinear Strict-Feedback Multi-agent Systems

    2019-04-09 01:56:10KANGJianlingYULingling

    KANG Jianling(), YU Lingling()

    College of Science, Donghua University, Shanghai 201620, China

    Abstract: The distributed leader-following consensus for nonlinear multi-agent systems in strict-feedback forms is investigated under directed topology. Firstly, each follower node is modeled by an integrator incorporating with nonlinear dynamics. The leader node is modeled as an autonomous nonlinear system which sends its information to one or more followers. Then, a simple and novel distributed protocol is proposed based only on the state feedback, under which the states of the followers ultimately synchronize to the leader. By using Lyapunov stability theorem and matrix theory, it is proved that the distributed leader-following consensus of nonlinear multi-agent systems with strict-feedback form is guaranteed by Lipschitz continuous control laws. Finally, some numerical simulations are provided to show the effectiveness of the developed method.

    Key words: leader-following consensus; nonlinear multi-agent system; strict-feedback form; distributed control

    Introduction

    The multi-agent system has been an important branch of distributed artificial intelligence from the late 20th century to the early 21st century. The goal is to solve large and complex practical problems that are beyond the capacity of a single agent. Its research involves knowledge, objectives, skills, planning and so on.The researchers mainly focus on the interactive communication, coordination and cooperation, conflict resolution among the agents, emphasize the close group cooperation among multiple agents, rather than the autonomy and exertion of individual abilities. The multi-agent system has autonomy, distribution, coordination, self-organizing ability, learning ability and reasoning ability. Using the multi-agent system to solve practical problems has strong robustness, reliability and high efficiency.

    The consensus problem, as the basis of the coordinated control among multi-agents, has become a research hotspot in the field of control. Degroot firstly proposed the consensus theory[1]. The consensus[2]of multi-agent systems refers to that some states of agent will reach the same value or synchronization after a period of convergence time. Most of the existing research on the consensus control of multi-agent systems are limited to the analysis of individual dynamics of first-order or second-order integrators. However, the low-order linearization model ignores the high-order and nonlinear characteristics of the actual physical system, so that the dynamic characteristics of the system can not be accurately described.

    Existing consensus problems can be roughly categorized into three classes, namely, leaderless consensus[3-6], leader-follower consensus with one leader(also called cooperative tracking)[7-13]and containment control with multiple leaders[14-19]. In general, the first-order nonlinear multi-agent systems are mostly chained systems, and the second-order nonlinear multi-agent systems can be extended to high-order systems. Distributed containment control problems of high-order multi-agent systems with nonlinear dynamics are investigated, and the distributed adaptive nonlinear protocol is proposed based only on the relative state information, under which the states of the followers converge to the dynamic convex hull spanned by those of the leaders[14]. By using recursive method, the finite-time consensus control is developed, and the finite-time leader-following consensus problem is addressed for a class of high-order multi-agent systems with uncertain nonlinear dynamics[20]. Based on the sliding-mode auxiliary systems, an adaptive near-optimal protocol is finally presented to control high-order nonlinear multi-agent systems with fully unknown parameters[21].

    In reality, all physical systems are inherently nonlinear, such as the robot system, air-craft system and induction motor system[22]. In the existing literatures, there are only few results about the consensus of nonlinear multi-agent systems. Hence, the nonlinearities in dynamics have been taken into consideration for many researchers recently, and they concern neuro-adaptive cooperative tracking control of unknown high-order affine nonlinear systems[23]. Tracking consensus is studied for a class of high-order nonlinear multi-agent systems with directed switching networks[24]. Compared with the results in Refs.[23-24], the nonlinear term with the strict-feedback form is further introduced for the nonlinear systems in this paper. There is no doubt that this type of system can simulate many actuals in many fields, including wheeled mobile robots, dynamics of mainpulatorsetc.[25-26]Based on the discussion above, leader-following consensuses for a type of nonlinear systems with the strict-feedback form are proposed in this work. Motivated by our previous controllers designed for nonlinear systems[27-28], we construct a novel distributed control algorithm for each follower agent, under which sufficient conditions are obtained for reaching a consensus. Under the directed topology, the leader sends its message to one or more followers. The main contributions of this paper are composed of three aspects. Firstly, compared with results in Refs.[23, 29], we consider a class of more general nonlinear multi-agent systems in the strict-feedback form. Secondly, different from the results in Refs.[20, 25, 30], neither the virtual controller nor the observer-based protocol is imposed on the systems. Therefore, a novel and simple control law is proposed in this paper. Thirdly, contrary to the methods in Refs.[25-26, 28, 31], our consensus protocol is in a distributed fashion without using any global information, such as the eigenvalues of the corresponding Laplacian matrix or the agent’s own state information. Moreover, the directed topology is considered rather than undirected topology in Refs.[20-21].

    This paper is organized as follows. The problem statements and preliminaries including some definitions, assumptions and lemmas are illustrated in section 1. In section 2, we design the controller for the system, and stability analyses are provided to ensure the consensus of the system. Simulation results are presented in section 3. The paper ends with a conclusion in section 4.

    1 Problem Formulation and Preliminary

    In this section, we give a brief account of some graph theory basis and present the leader-following consensus problem.

    1.1 Notations

    We use the following properties of Kronecker product.

    (A?B)(C?D)=(AC)?(BD),
    (A+B)?C=(A?C)+(B?C),

    A?(B+C)=(A?B)+(A?C),
    ‖IN?A‖=‖A‖.

    1.2 Graph theory

    A brief introduction on graph theory will be shown next.Assuming that a node represents a agent, directed graphG(A)={V,E,A} represents the exchange of information between agents.V={vi,i=1, 2, …,N} is the set of nodes,E?V×Vis the set of edges,A=[aij]∈RN×Nis the weighted adjacency matrix for the graph andaij≥0. If there exists an edge from nodejto nodei,i.e., (vj,vi)∈E, thenaij>0. Assuming thataii=0 for alli∈Γ.Ni={j∈V(j,i)∈E} represents the set of neighbors of nodei, if the edge connecting the two nodes is directed, then graphGis a directed topology. Conversely, it is an undirected topology.

    1.3 Problem statement

    Consider a multi-agent system composed of one leader agent andN(N≥2) followers. The dynamics of theith (i=1, 2, …,N) agent can be described by the following differential equations in strict-feedback form

    (1)

    Dynamics of the leader node, labelled 0, is described in strict-feedback form as

    (2)

    Definition1[32]For any initial conditionxi(0),i=1, 2, …,N, the leader-following consensus of the systems(1)-(2) is achieved if there exists a control inputuisuch that

    The communication topology connecting the agent is considered to satisfy the assumption as below.

    Assumption 1 implies that all the follower nodes have access to the leader node either directly or indirectly through directed paths. Without such a assumption, there would be at least one follower node that is isolated or acted as a leader, making the synchronization among all of the nodes impossible.

    Themth order tracking error for nodeiis defined as

    di, m=xi, m-x0, m,i∈Γ,m=1, 2, …,n.

    Letdm=(d1, m,d2, m, …,dN, m),

    then

    di=[di, 1,di, 2, …,di, n]T=xi-x0∈Rn×1,

    D=[d1,d2, …,dN]T∈RNn×1,

    where

    xi=[xi, 1,xi, 2, …,xi, n]T∈Rn×1,

    x0=[x0, 1,x0, 2, …,x0, n]T∈Rn×1,

    xm=[x1, m,x2, m, …,xN, m]T∈RN×1,

    In this paper, we consider the scenario in which the individual nodes are connected through a digraph. A particular node can access the state information of its neighbor nodes only. The neighborhood synchronization error is defined as

    Algebraic derivation manipulations of systems (1)-(2) lead to

    Let

    ei=[ei, 1,ei, 2, …,ei, n]T∈Rn×1,m=1, 2, …,n.

    where

    U=u1,u2, …,uNT∈RN,

    Let

    where

    A0=[-r1, -r2, …, -rn-1]T,

    K=[r1,r2, …,rn]T,C=(1, 0, …, 0),

    G=[0, …, 0, 1]T,

    fi=[fi, 1,fi, 2, …,fi, n]T∈Rn×1,

    f0=[f0, 1,f0, 2, …,f0, n]T∈Rn×1,i=1, 2, …,N,His a Hurwitz matrix.

    Thenei, mcan be collectively described as

    Assumption2There exists a nonnegative constantl, and the nonlinear dynamicsf(x) satisfies the Lipschitz condition as follows.

    ‖f(a)-f(b)‖≤l‖a-b‖, ?a,b∈Rm.

    2 Controller Design

    In this section, based on the local state information of neighborhood agents, we propose the following distributed protocol to each follower.

    ui=

    (3)

    whereK=[r1,r2, …,rn]T,r1,r2, …,rnare designed constants and chosen such thatsn+r1sn-1+…+rn-1s+rnis a Hurwitz polynomial, and it can be collectively described as

    Theorem1Consider the followers and the leader whose dynamics are respectively described by systems(1) and(2). Considering the Assumptions 1 and 2, the consensus of the equations(1)-(2) is achieved under the protocol if there exist a positive definite matrixPthat makes the following condition hold.

    HTP+PH=-I,

    and

    ProofChoose the Lyapunov function as follows.

    whereP>0. DifferentiatingV(t) yields that

    ET(IN?P)(IN?H)E-ET(IN?P)(IN?G)(L+B)U+

    ET(IN?(PH))E-ET(IN?(PG))(L+B)U+

    According to Assumption 2 and Lemma 1, we have

    whereVz(Z) is a positive definite function.

    3 Simulation and Results Analyses

    Consider a three-node digraphGand a leader node described in Fig. 1. Obviously, Assumption 1 is satisfied.

    The dynamics of the leader node is described as follows.

    The follower nodes are described by the second-order nonlinear systems.

    The initial states are chosen as follows.

    x0=[1, -1]T,x1=[0.5, 0]T,x2=[-1.5, 0.5]T,x3=[-0.5, 1]T.

    From Fig. 1, we write down the adjacency matrices and the corresponding Laplacian matrix as

    Then, we can obtainHandPas

    And

    K=[2, 1]T,C=(1, 0).

    Furthermore, we have the singular values ofPand 2-norm ofKandC. Hence,

    In this simulation demonstration, we choose the design parameters as follows:r1=2,r2=1 such thatHis a Hurwitz matrix, and Assumption 2 and Theorem 1 hold. The simulation results are presented in Figs.2-5.

    Fig. 2 State trajectories of xi, 1

    As shown in Fig. 4 and Fig. 5, it is proven that, under the distributed control laws defined by Eq.(3), the leader is followed by the three agents asymptotically and a desired tracking control performance is obtained.

    The simulation results show the effectiveness of the distributed consensus control scheme proposed in this paper.

    Fig. 3 State trajectories of xi, 2

    Fig. 4 Evolution of position error di, 1

    Fig. 5 Evolution of position error di, 2

    4 Conclusions

    In this paper, the leader-following consensus with the strict-feedback form is introduced and investigated for a type of multi-agent systems with some nonlinear dynamics under the directed topology. The distributed controller is proposed and ensures system’s stability, and the control signal is well defined. Future work will consider consensus with the communication delay and switching topology.

    午夜两性在线视频| 我的亚洲天堂| 一级毛片精品| 欧美日本中文国产一区发布| 丁香六月欧美| 亚洲免费av在线视频| 夜夜爽天天搞| 国产不卡av网站在线观看| 国产真人三级小视频在线观看| 久久精品熟女亚洲av麻豆精品| 1024香蕉在线观看| 中文字幕另类日韩欧美亚洲嫩草| tocl精华| 777米奇影视久久| 午夜91福利影院| 亚洲五月色婷婷综合| 每晚都被弄得嗷嗷叫到高潮| 久久精品熟女亚洲av麻豆精品| 免费观看人在逋| 免费观看a级毛片全部| 成年女人毛片免费观看观看9 | 欧洲精品卡2卡3卡4卡5卡区| 久久国产亚洲av麻豆专区| 亚洲午夜精品一区,二区,三区| 欧美亚洲日本最大视频资源| 黄色女人牲交| 免费观看人在逋| 国产成人免费观看mmmm| 啦啦啦视频在线资源免费观看| 欧美日韩精品网址| 精品国产一区二区三区四区第35| 亚洲久久久国产精品| 久久人妻熟女aⅴ| 国产av又大| 精品欧美一区二区三区在线| 欧美性长视频在线观看| 久热爱精品视频在线9| 嫩草影视91久久| 人妻 亚洲 视频| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 久久久久久久久免费视频了| 老司机亚洲免费影院| 免费在线观看影片大全网站| 成人亚洲精品一区在线观看| 欧美乱妇无乱码| 这个男人来自地球电影免费观看| 91大片在线观看| 日韩免费高清中文字幕av| 黑人巨大精品欧美一区二区蜜桃| 午夜福利视频在线观看免费| 久久狼人影院| 搡老乐熟女国产| 90打野战视频偷拍视频| 美女高潮到喷水免费观看| 国产一区二区三区在线臀色熟女 | 欧美色视频一区免费| 两性夫妻黄色片| 日韩视频一区二区在线观看| www.999成人在线观看| 精品国产国语对白av| 亚洲一区高清亚洲精品| 久久久久视频综合| 熟女少妇亚洲综合色aaa.| av网站在线播放免费| 中文字幕最新亚洲高清| 怎么达到女性高潮| svipshipincom国产片| 欧美精品av麻豆av| av国产精品久久久久影院| 怎么达到女性高潮| 窝窝影院91人妻| 咕卡用的链子| 免费久久久久久久精品成人欧美视频| 自拍欧美九色日韩亚洲蝌蚪91| 99热国产这里只有精品6| 中文欧美无线码| 一夜夜www| 在线天堂中文资源库| 欧美黄色淫秽网站| 捣出白浆h1v1| 精品国产一区二区三区四区第35| 精品一品国产午夜福利视频| 手机成人av网站| 久久国产亚洲av麻豆专区| 成人精品一区二区免费| 午夜福利影视在线免费观看| 中文字幕av电影在线播放| 一本一本久久a久久精品综合妖精| 他把我摸到了高潮在线观看| 国产精品久久久av美女十八| 老熟女久久久| 国产精品亚洲一级av第二区| 亚洲国产欧美网| 啪啪无遮挡十八禁网站| 日韩欧美免费精品| 亚洲av第一区精品v没综合| 99国产精品99久久久久| 十八禁人妻一区二区| 欧美日韩乱码在线| 19禁男女啪啪无遮挡网站| 99精品欧美一区二区三区四区| 18禁观看日本| 热re99久久精品国产66热6| 午夜激情av网站| 9191精品国产免费久久| 国产日韩一区二区三区精品不卡| 国产成人啪精品午夜网站| 亚洲人成伊人成综合网2020| 嫁个100分男人电影在线观看| 女人久久www免费人成看片| 精品一品国产午夜福利视频| 人妻 亚洲 视频| 久久国产精品大桥未久av| 波多野结衣一区麻豆| 黑人猛操日本美女一级片| 又黄又爽又免费观看的视频| 久久亚洲精品不卡| 亚洲精华国产精华精| 亚洲情色 制服丝袜| 欧美精品亚洲一区二区| 欧美在线黄色| 免费人成视频x8x8入口观看| 淫妇啪啪啪对白视频| 又紧又爽又黄一区二区| 一进一出好大好爽视频| 欧美亚洲 丝袜 人妻 在线| 精品国内亚洲2022精品成人 | 老汉色∧v一级毛片| 80岁老熟妇乱子伦牲交| 十八禁人妻一区二区| 怎么达到女性高潮| 国产深夜福利视频在线观看| 国产精品一区二区在线观看99| 国产精品成人在线| 女人爽到高潮嗷嗷叫在线视频| 韩国精品一区二区三区| 俄罗斯特黄特色一大片| 久久这里只有精品19| 一本综合久久免费| 欧美av亚洲av综合av国产av| 性色av乱码一区二区三区2| 国产精华一区二区三区| 国产日韩一区二区三区精品不卡| 一进一出抽搐gif免费好疼 | 天堂动漫精品| e午夜精品久久久久久久| 夜夜夜夜夜久久久久| 少妇猛男粗大的猛烈进出视频| 少妇粗大呻吟视频| 欧美日韩中文字幕国产精品一区二区三区 | 90打野战视频偷拍视频| 欧美丝袜亚洲另类 | 亚洲av日韩精品久久久久久密| 制服诱惑二区| 国产精品乱码一区二三区的特点 | 黄片大片在线免费观看| 欧美日韩视频精品一区| 91老司机精品| 黄片大片在线免费观看| 成人手机av| 亚洲黑人精品在线| 男人操女人黄网站| xxxhd国产人妻xxx| 欧美成人午夜精品| 欧美精品高潮呻吟av久久| 亚洲av成人av| 亚洲熟妇熟女久久| 香蕉国产在线看| 日本wwww免费看| 国产有黄有色有爽视频| 女人高潮潮喷娇喘18禁视频| 午夜福利视频在线观看免费| 黄色女人牲交| www.熟女人妻精品国产| 国产高清国产精品国产三级| 久久人人爽av亚洲精品天堂| 国产激情久久老熟女| 亚洲欧美日韩高清在线视频| 视频区图区小说| 日本wwww免费看| 欧美日韩亚洲国产一区二区在线观看 | 欧美黄色淫秽网站| 不卡一级毛片| 建设人人有责人人尽责人人享有的| 97人妻天天添夜夜摸| 日日爽夜夜爽网站| 婷婷丁香在线五月| av天堂久久9| 99久久综合精品五月天人人| 日韩一卡2卡3卡4卡2021年| 国产高清国产精品国产三级| 色综合婷婷激情| 亚洲色图综合在线观看| 色综合欧美亚洲国产小说| 成人黄色视频免费在线看| 天天添夜夜摸| 精品少妇久久久久久888优播| 老司机亚洲免费影院| 在线国产一区二区在线| 亚洲一区二区三区不卡视频| 亚洲av成人一区二区三| 韩国av一区二区三区四区| 人人妻人人添人人爽欧美一区卜| 精品无人区乱码1区二区| 精品无人区乱码1区二区| 久久久国产成人精品二区 | 日本精品一区二区三区蜜桃| 日韩三级视频一区二区三区| 免费高清在线观看日韩| 高清黄色对白视频在线免费看| 女人久久www免费人成看片| 啦啦啦 在线观看视频| 欧美激情高清一区二区三区| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美激情综合另类| 日韩一卡2卡3卡4卡2021年| 咕卡用的链子| 精品国产美女av久久久久小说| 国产黄色免费在线视频| 亚洲精品av麻豆狂野| 亚洲精品中文字幕在线视频| 久久久精品免费免费高清| 久99久视频精品免费| 夫妻午夜视频| 黄色成人免费大全| 免费少妇av软件| 亚洲五月婷婷丁香| 国产成人免费无遮挡视频| 日本五十路高清| 欧美日韩乱码在线| 成年女人毛片免费观看观看9 | a级毛片黄视频| 日韩欧美一区视频在线观看| 久久午夜亚洲精品久久| 久久精品国产综合久久久| 日韩 欧美 亚洲 中文字幕| 交换朋友夫妻互换小说| 国产精品电影一区二区三区 | 丝袜人妻中文字幕| 国产aⅴ精品一区二区三区波| 99久久人妻综合| 51午夜福利影视在线观看| 天堂中文最新版在线下载| 伦理电影免费视频| 国产99白浆流出| 亚洲av电影在线进入| 一级片'在线观看视频| 亚洲三区欧美一区| 国产欧美日韩精品亚洲av| 国产欧美日韩综合在线一区二区| 一区二区三区国产精品乱码| 欧美亚洲日本最大视频资源| 精品电影一区二区在线| 天堂动漫精品| 亚洲色图av天堂| 天天躁夜夜躁狠狠躁躁| 深夜精品福利| 中国美女看黄片| 欧美日韩视频精品一区| 夜夜夜夜夜久久久久| 国产精品一区二区免费欧美| 女人爽到高潮嗷嗷叫在线视频| 亚洲精品成人av观看孕妇| 午夜福利视频在线观看免费| 欧美黄色片欧美黄色片| videosex国产| 国产精华一区二区三区| 免费久久久久久久精品成人欧美视频| 免费在线观看日本一区| 国产精品国产高清国产av | av有码第一页| 老鸭窝网址在线观看| 别揉我奶头~嗯~啊~动态视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲午夜理论影院| 水蜜桃什么品种好| 久久久久久人人人人人| 久久中文看片网| 欧美在线一区亚洲| 人人妻人人添人人爽欧美一区卜| 国产不卡一卡二| 99精国产麻豆久久婷婷| 午夜久久久在线观看| 亚洲伊人色综图| 久久久久久久精品吃奶| 亚洲av成人一区二区三| 99精品欧美一区二区三区四区| 欧美黄色淫秽网站| 老汉色∧v一级毛片| 成在线人永久免费视频| 99久久综合精品五月天人人| 激情视频va一区二区三区| 日韩视频一区二区在线观看| 国产aⅴ精品一区二区三区波| 亚洲三区欧美一区| 精品国产乱码久久久久久男人| 成人影院久久| 中文字幕色久视频| 高清av免费在线| 欧美日韩一级在线毛片| 久久精品国产99精品国产亚洲性色 | 精品国产美女av久久久久小说| 亚洲精品中文字幕一二三四区| 成年人黄色毛片网站| 国产精品一区二区在线不卡| 女性被躁到高潮视频| 久久久国产欧美日韩av| 免费在线观看日本一区| 欧美日韩精品网址| 亚洲精品中文字幕在线视频| 999久久久精品免费观看国产| 一进一出抽搐gif免费好疼 | 色尼玛亚洲综合影院| 正在播放国产对白刺激| 高潮久久久久久久久久久不卡| 美国免费a级毛片| 在线十欧美十亚洲十日本专区| 午夜影院日韩av| 久久中文字幕一级| 久久久久久久午夜电影 | 在线av久久热| 校园春色视频在线观看| 国产精品电影一区二区三区 | av中文乱码字幕在线| 日韩视频一区二区在线观看| 日本一区二区免费在线视频| 精品卡一卡二卡四卡免费| 久久久精品区二区三区| 黄片小视频在线播放| 十八禁人妻一区二区| 欧美另类亚洲清纯唯美| 亚洲国产精品合色在线| 另类亚洲欧美激情| 亚洲精品国产精品久久久不卡| 母亲3免费完整高清在线观看| 免费久久久久久久精品成人欧美视频| 一二三四在线观看免费中文在| 一进一出好大好爽视频| a在线观看视频网站| 多毛熟女@视频| 黄色成人免费大全| 午夜影院日韩av| 国产精品久久久久久人妻精品电影| 性少妇av在线| 亚洲欧美一区二区三区久久| 国产一区有黄有色的免费视频| 男女免费视频国产| 欧美一级毛片孕妇| 一边摸一边抽搐一进一出视频| 亚洲片人在线观看| 啪啪无遮挡十八禁网站| 亚洲欧美日韩高清在线视频| 9191精品国产免费久久| 男人舔女人的私密视频| 捣出白浆h1v1| 国产精品 国内视频| 久久草成人影院| 亚洲欧美一区二区三区久久| 丰满饥渴人妻一区二区三| av在线播放免费不卡| 色94色欧美一区二区| 国产精品成人在线| 成年女人毛片免费观看观看9 | 久久久久久久久免费视频了| 水蜜桃什么品种好| 亚洲片人在线观看| 国产免费av片在线观看野外av| 久久精品91无色码中文字幕| 搡老乐熟女国产| 国产乱人伦免费视频| 丰满的人妻完整版| 1024视频免费在线观看| 欧美成人免费av一区二区三区 | 国产精品 欧美亚洲| 亚洲国产精品合色在线| 成年动漫av网址| 亚洲一区二区三区欧美精品| 人人澡人人妻人| 999久久久国产精品视频| 岛国毛片在线播放| 亚洲国产毛片av蜜桃av| 一个人免费在线观看的高清视频| 女人精品久久久久毛片| 老司机在亚洲福利影院| 深夜精品福利| 欧美在线一区亚洲| 久久精品国产99精品国产亚洲性色 | 99久久99久久久精品蜜桃| 午夜影院日韩av| 19禁男女啪啪无遮挡网站| 一进一出抽搐动态| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕在线视频| 日本黄色日本黄色录像| 欧美日韩一级在线毛片| 黄色毛片三级朝国网站| 国产精品综合久久久久久久免费 | 免费日韩欧美在线观看| 国产精品久久久av美女十八| 一区二区日韩欧美中文字幕| 亚洲黑人精品在线| 欧美成人免费av一区二区三区 | 国产精品98久久久久久宅男小说| 日韩视频一区二区在线观看| 脱女人内裤的视频| 露出奶头的视频| 国精品久久久久久国模美| 国产91精品成人一区二区三区| 大片电影免费在线观看免费| 国产亚洲精品第一综合不卡| 久久精品国产99精品国产亚洲性色 | 一进一出抽搐gif免费好疼 | 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 天天操日日干夜夜撸| av电影中文网址| 亚洲精品粉嫩美女一区| 久久ye,这里只有精品| tube8黄色片| 亚洲熟女精品中文字幕| 水蜜桃什么品种好| 男女免费视频国产| 丰满人妻熟妇乱又伦精品不卡| 91麻豆精品激情在线观看国产 | 香蕉国产在线看| 亚洲精品中文字幕在线视频| 精品国产一区二区久久| 中文字幕av电影在线播放| 黄色视频不卡| 欧美乱码精品一区二区三区| 日韩视频一区二区在线观看| 咕卡用的链子| 天天添夜夜摸| 久久青草综合色| 国产淫语在线视频| 一进一出好大好爽视频| 国产色视频综合| 男人舔女人的私密视频| 精品国产一区二区久久| 啦啦啦免费观看视频1| 黑人猛操日本美女一级片| 深夜精品福利| 精品国产国语对白av| а√天堂www在线а√下载 | 一区二区三区精品91| 午夜视频精品福利| e午夜精品久久久久久久| 国产不卡一卡二| 国产aⅴ精品一区二区三区波| 在线天堂中文资源库| 色综合婷婷激情| 精品国产乱码久久久久久男人| 精品福利观看| 欧美色视频一区免费| 精品人妻1区二区| 老司机午夜福利在线观看视频| 日韩精品免费视频一区二区三区| 91老司机精品| 一个人免费在线观看的高清视频| 激情在线观看视频在线高清 | 极品少妇高潮喷水抽搐| √禁漫天堂资源中文www| 黄片小视频在线播放| 99国产精品99久久久久| 99国产精品一区二区蜜桃av | bbb黄色大片| 亚洲美女黄片视频| 国产高清国产精品国产三级| videosex国产| 女性被躁到高潮视频| 久久精品亚洲av国产电影网| 99国产极品粉嫩在线观看| 亚洲精品国产一区二区精华液| 亚洲av美国av| 好看av亚洲va欧美ⅴa在| 天堂中文最新版在线下载| 一边摸一边做爽爽视频免费| 在线观看日韩欧美| 国产xxxxx性猛交| 中文字幕最新亚洲高清| 久久香蕉国产精品| 不卡av一区二区三区| 亚洲人成电影观看| 午夜免费成人在线视频| 高清在线国产一区| videosex国产| 水蜜桃什么品种好| 国产精品美女特级片免费视频播放器 | 又黄又粗又硬又大视频| 91九色精品人成在线观看| 亚洲欧美一区二区三区黑人| 国产99白浆流出| 夜夜夜夜夜久久久久| 少妇被粗大的猛进出69影院| 国产在线精品亚洲第一网站| 国产一区二区三区在线臀色熟女 | 他把我摸到了高潮在线观看| 丁香六月欧美| 精品福利永久在线观看| 午夜精品国产一区二区电影| 18禁裸乳无遮挡动漫免费视频| 热99久久久久精品小说推荐| 国产成人免费无遮挡视频| 亚洲国产精品一区二区三区在线| 麻豆乱淫一区二区| 操美女的视频在线观看| 80岁老熟妇乱子伦牲交| 中文字幕高清在线视频| 亚洲五月天丁香| 大型黄色视频在线免费观看| 法律面前人人平等表现在哪些方面| 日本黄色日本黄色录像| 成年人午夜在线观看视频| 欧美色视频一区免费| 亚洲欧美色中文字幕在线| 国产在线精品亚洲第一网站| 中文字幕人妻丝袜制服| 久热爱精品视频在线9| 黄色片一级片一级黄色片| 在线观看一区二区三区激情| 两个人看的免费小视频| 一个人免费在线观看的高清视频| 在线观看66精品国产| 欧美日韩一级在线毛片| av欧美777| 国产1区2区3区精品| 欧美精品人与动牲交sv欧美| 国产高清视频在线播放一区| 国产亚洲欧美精品永久| 久久久久精品人妻al黑| 欧美激情久久久久久爽电影 | 久久99一区二区三区| 久久婷婷成人综合色麻豆| 中出人妻视频一区二区| 国产一区二区三区综合在线观看| 久久久久国产精品人妻aⅴ院 | 日韩成人在线观看一区二区三区| 黄片播放在线免费| 中文字幕另类日韩欧美亚洲嫩草| 欧美日韩黄片免| 91麻豆av在线| 久久久久精品人妻al黑| 成年版毛片免费区| 久久久精品国产亚洲av高清涩受| 精品国产美女av久久久久小说| 亚洲色图综合在线观看| 母亲3免费完整高清在线观看| 久久人人97超碰香蕉20202| √禁漫天堂资源中文www| 国产免费现黄频在线看| 亚洲精品一卡2卡三卡4卡5卡| 精品无人区乱码1区二区| 91麻豆精品激情在线观看国产 | 欧美在线黄色| 免费一级毛片在线播放高清视频 | 在线看a的网站| 午夜视频精品福利| 黑人猛操日本美女一级片| 国产精品自产拍在线观看55亚洲 | 亚洲免费av在线视频| 深夜精品福利| 成年人午夜在线观看视频| 一进一出抽搐动态| 午夜免费观看网址| 国产精品久久久久成人av| 久9热在线精品视频| 精品国产一区二区三区四区第35| 看片在线看免费视频| 久久久久国内视频| 欧美精品高潮呻吟av久久| 高潮久久久久久久久久久不卡| 69av精品久久久久久| 999久久久国产精品视频| 在线播放国产精品三级| 亚洲性夜色夜夜综合| 建设人人有责人人尽责人人享有的| 成年女人毛片免费观看观看9 | 国产在线精品亚洲第一网站| 亚洲精品中文字幕一二三四区| 国产欧美日韩一区二区三区在线| 在线播放国产精品三级| 中文字幕人妻丝袜制服| 老熟妇仑乱视频hdxx| 国产高清videossex| 大陆偷拍与自拍| 天堂俺去俺来也www色官网| 婷婷丁香在线五月| 色94色欧美一区二区| 日本黄色视频三级网站网址 | 日本黄色日本黄色录像| 欧美精品亚洲一区二区| 十分钟在线观看高清视频www| 捣出白浆h1v1| 少妇 在线观看| 少妇的丰满在线观看| 亚洲精品美女久久av网站| 亚洲欧美精品综合一区二区三区| 国产区一区二久久| 黄色视频不卡| 午夜两性在线视频| 亚洲综合色网址| 成人免费观看视频高清| 国产亚洲一区二区精品| 婷婷丁香在线五月| 午夜福利在线免费观看网站| 欧美日韩黄片免| 丰满人妻熟妇乱又伦精品不卡| 少妇裸体淫交视频免费看高清 | av欧美777| 好看av亚洲va欧美ⅴa在| 别揉我奶头~嗯~啊~动态视频| 欧美午夜高清在线| 女性被躁到高潮视频| 性少妇av在线|