• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Jacobson-Bourbaki Correspondence Theorem for Noncommutative Rings

    2019-04-09 01:49:26FENGJiangchaoSHENRanZHANGJiangang

    FENG Jiangchao (), SHEN Ran ( )*, ZHANG Jiangang ()

    1 College of Science, Donghua University, Shanghai 201620, China 2 Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

    Abstract: In algebra, the Jacobson-Bourbaki theorem is especially useful for generalizations of the Galois theory of finite, normal and separable field extensions. It was obtained by Jacobson for fields and extended to division rings by Jacobson and Cartan who credited the result to unpublished work by Bourbaki. In 2005, the Jacobson-Bourbaki correspondence theorem for commutative rings was formulated by Winter. And this theorem for augmented rings was formulated by Kadison in 2012. In this paper, we prove the Jacobson-Bourbaki theorem for noncommutative rings which is finitely generated over their centers. We establish a bijective correspondence between the set of subdivisions which are right finite codimension in A and the set of Galois rings of the additive endomorphisms End A of A which is finitely generated over its center.

    Key words: noncommutative rings; Galois rings; simple module

    Introduction

    In mathematics, Galois theory provides a connection between field theory and group theory. Using Galois theory, certain problems in field theory can be reduced to group theory, which is in some sense simpler and better to be understood. The extension of Galois theory to normal extensions is called the Jacobson-Bourbaki correspondence. It is a correspondence between some subdivishion rings of a field and some subgroups of a Galois group by a correspondence between some subdivision rings of a division ring and some subalgebras of an algebra, instead of the correspondence between some subfields of a field and some subgroups of a Galois group. The Jacobson-Bourbaki theorem implies both the usual Galois correspondence for subfields of a Galois extension, and Jacobson’s Galois correspondence for subfields of a purely inseparable extension of exponent at most 1, see Refs.[4-9]. This theorem was successfully established by Nathan Jacobson and Henn Cartan which can be stated.

    Theorem1[7]LetEbe a field,Φthe set of subfieldsFofEof finite codimension inE, Δ the set of subringsLof the ring of endomorphisms of the additive group ofEsuch that

    (1)L?EIE, whereEIEis the set of multiplications inEby the elements ofE;

    (2)Las left vector space overEis finite dimensional.

    Auslanderetal. introduced the notion of Galois extension of a commutative ring[10-13]. Chaseetal. then adopted the Auslander-Goldman Galois extensions to generalize the classical Galois correspondence theorem from fields to commutative rings[13]. This theorem can be stated as follows.

    Winter[14]generalized the Jacobson-Bourbaki theorem from fields to commutative rings and established the Galois rings correspondence for commutative rings. This theorem is as follows.

    Theorem3[18]There exists a bijective correspondence

    between the set of subdivision rings ofAof finite codimension and the set of Galois rings ofA.

    Thoerem4[15]Let (A,D) be an augmented ring. There is a one-to-one correspondence between the set of division ringsFwithinA, whereFis a subring ofA, andAis a finite-dimensional right vector space asF, and the set of Galois subrings of EndA.

    NotationThe notation used here is fairly standard except where otherwise stated. LetImdenote the identity matrix ofmdimension. Theδijdenotes the Kronecker symbol. LetAdenote a noncommutative ring. LetFdenote a subdivision ring ofF. LetAFdenote thatAis a right vector space overF. Let [A∶F]rdenote the dimension ofAwhich is a right vector space overF. Let EndAdenote the additive homomorphism ring ofA. EndAFdenote all of linear tranformation ofAwhich is a right vector space overF.

    1 Preliminaries

    In this section, we give some definitions and a preliminary theorem[14].

    Definition1[14]LetAbe a noncommutative ring. An endomorphism ring ofAis a subringRof the ring EndAwhich containsAIA. Its centralizer is the subring

    AR={b∈A|r(ab)=r(a)b,r∈R,a∈A}.

    Definition2[14]LetAbe a noncommutative ring. An endomorphism ringRofAis irreducible ifAis a left simpleR-module.

    Definition3[14]LetAbe a noncommutative ring. An endomorphism ringRofAis a Galois ring ifRis an irreducible endomorphism ring which is a finitely generated leftAmodule.

    The following theorem is a very important preliminary theorem which is called the Jacobson-Chevalley density theorem.

    Theorem5[7-8,17-18]LetRbe a ring. LetMbe a left simpleR-module,Dd=EndRM. If {x1,x2, …,xm} ?Mis a rightD-linearly independence set and {y1,y2, …,ym}?M. Then there existsr∈Rsuch thatr(x1)=y1,r(x2)=y2, …,r(xm)=ym.

    It is easy to see the following facts from the above theorem.

    (1)D=EndRMis a division ring by Schur’s lemma.

    (2)Mis a rightD-module by (rx)f=r(x)ffor allx∈M,r∈R,f∈D.

    (3) IfMis a ring, then, obviously,MRis equal toD=EndRM.

    2 Main Results

    Firstly, we give two important lemmas.

    Lemma1LetBbe a commutative subring of noncommutative ringA, andAis finitely generated as a leftB-module.Ris an endomorphism ring such thatR=As1+As2+…+Asn. Supposing thatRcontainsr1r2…rmandAcontainse1e2…emsuch thatri(ek)=δik(1≤i,k≤m). Then there is a positive integer numberMsuch thatm≤M.

    ProofAccording to the conditions, we can set up

    R=Bs1+Bs2+…+Bsn.

    (1)

    Letsj(ek)=djk,

    By Eq. (1), we have

    CD=Im.

    Definedφby

    φ(x1,x2, …,xm)=

    (x1,x2, …,xm)C,(x1,x2, …,xm∈A)

    Obviously,φis injective.

    Next, we prove thatnis a upper level ofm. If not, we suppose thatm>n, without loss of generality, we can assumem=n+1.

    If martixChas a nonzeron×nminor, without loss of generality, we assume that the nonzeron×nminor is in the top-left ofC. Then, forl=1, 2, …,n, we have

    whereAijis the algebraic cofactor of the element in theith row and thejth column.

    Hence,

    This is a contradiction to the injectivity ofφsince

    (A1 n+1,A2 n+1, …,An n+1,An+1 n+1)≠(0, 0, …, 0, 0).

    So alln×nminors ofCare zero.

    SinceCis not zero, letdbe the maximal positive integer number such that all of the (d+1)×(d+1) minors ofCare zero but there exists a nonzerod×dminor ofC.

    Without loss of generality, we assume that the nonzerod×dminor is in the top-left ofC.

    Then, forl=1, 2,…,d, we have

    Obviously,

    This is also a contradiction to the injectivity ofφsince

    (A1 d+1,A2 d+1, …,Ad d+1,Ad+1 d+1, 0, …, 0)≠(0, …, 0).

    Hencem×n. Letn=M, then the Lemma holds.

    Lemma2LetBbe a commutative subring of noncommutative ringAandAis finitely generated as a rightB-module.Ris a endomorphism ring such that

    R=As1+As2+…+Asn.

    Supposing thatRcontainsr1r2…rmandAcontainse1e2…emsuch thatri(ek)=δik(1≤i,k≤m). Then there is a positive integerMsuch thatm≤M.

    ProofWriting

    and applying both sides toekleads to

    (2)

    Letsj(ek)=djk,

    By Eq.(2), we have

    CD=Im.

    Definedφ:Bm→Anbyφ(X)=DX,X∈Bm.

    Obviously,φis a rightBmodule injective homomorphism.

    Letα1,α2, …,αmbe the standard base of rightBmoduleBm, andβ1,β2, …,βMthe generators of rightBmoduleAnsinceAis a finitely generated rightBmodule.

    Let

    andf:Bm→Bndefined by

    f(X)=TX,X∈Bm.

    IfTX=0, then

    φ((α1,α2, …,αm)X)=(β1,β2, …,βM)TX=0.

    Sinceφis injective,α1,α2, …,αmis the standard base of rightBmoduleBm.

    We have,

    (α1,α2, …,αm)X=0,X=0.

    Hence,f:Bm→Bnis a rightBmodule injective homomorphism. Similar to the proof of Lemma 1, we have a positive integerMsuch thatm≤M.

    In the following theorem, we generalize Galois ring correspondence theorem from commutative rings to noncommutative rings which is finitely generated over their centers.

    Theorem6LetBbe a commutative subring of noncommutative ringA, andAis finitely generated as a left (right)B-module.Ris a Galois ring ofA. Then,F=ARis a subdivision ring ofAof right finite codimension andR=EndAF.

    ProofSinceRis a Galois ring ofA, EndRA=AR=Fis a division ring. Lete1,e2, …,emis a linearly independent team. SinceAis a leftRsimple module andD=EndRAis a division ring, so by the Jacobson-Chevalley density theorem, there existr1,r2, …,rm∈Rsuch thatriek=δik(1≤i,k≤m) andr1,r2, …,rmis leftAlinearly independent.

    By Lemma 1 and Lemma 2, we havem≤Mfor some positive integer number, which means thatAFhave a maximum linearly independent team, may as well still be set ase1,e2, …,em. HenceAFis a finite dimension right vector space overFande1,e2, …,emis a maximum linearly independent team ofAF.

    Obviously,

    Ar1?Ar2?…?Arm?R.

    Next, for everyf∈EndAF,fis defined byf(e1)=a1,f(e2)=a2, …,f(em)=am. Hence,

    f=a1r1+a2r2+…+amrm.

    So, we have

    EndAF?Ar1?Ar2?…?Arm?R.

    It follows that

    R=EndAF.

    Corollary1LetBbe a commutative subring of noncommutative ringAandAis a finitely generated left (right)B-module.Ris a Galois ring ofA. Then,Ris a free leftAmodule of finite rank.

    ProofObviously, by Theorem 6, we haveR=EndAF. SoRis a free leftAmodule of finite rank.

    The following theorem is the inverse of the Theorem 6.

    Theorem7LetBbe a commutative subring of noncommutative ringAandAis a finitely generated left (right)B-module.F=ARis a subdivision ring ofAof right finite codimension. ThenF=AEnd AF.

    ProofLetR=EndAFandF′=AR. Obviously,

    F?F′.

    SinceAis finite dimension right vector space overF, for everyx∈A,y∈A, there existsf∈Rsuch that

    y=f(x).

    Hence,Ris a Galois ring ofA. So, by Theorem 6, we have

    R=EndAF′=EndAF.

    IfFF′, then

    F′=F?b2F?…?btF,

    and

    A=F?b2F?…?btF?…?bmF
    (t≥2,m≥2,b2∈F′,b2, …,bm∈AF).

    Then, by the Jacobson-Chevalley density theorem, there exists an elementr∈Rsuch that

    r(1)=1,r(b2)=…=r(bm)=0.

    Then, because ofR=EndAF′, we have

    0=r(b2)=r(1)b2=b2.

    This is a contradiction. Hence,

    F=F′=AEnd AF.

    Theorem8LetAbe a noncommutative ring which is finitely generated over its center. Then there exists a bijective correspondence

    F→R≡EndAF,R→F≡AR

    between the set of subdivision rings ofAof right finite codimension and the set of Galois ringsRofA.

    ProofLetBbe the center ofA. Then, by Theorem 6 and Theorem 7, we have a bijective correspondence

    F→R≡EndAF,R→F≡AR

    between the set of subdivision rings ofAof right finite codimension and the set of Galois rings ofA.

    3 Conclusions

    In this paper, we prove the Jacobson-Bourbaki theorem for noncommutative rings which is finitely generated over their centers. We establish a bijective correspondence between the set of subdivisions which are right finite codimension inA, and the set of Galois rings of the additive endomorphismsAofAwhich is finitely generated over its center. We generalize the Jacobson-Bourbaki theorem to some extent. But it is an open problem for the general noncommutative rings yet.

    欧美日韩乱码在线| 日韩人妻精品一区2区三区| 自线自在国产av| 无限看片的www在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲一码二码三码区别大吗| 亚洲av美国av| 欧美精品高潮呻吟av久久| 亚洲精品中文字幕在线视频| 757午夜福利合集在线观看| 777米奇影视久久| 天天操日日干夜夜撸| 99热只有精品国产| av中文乱码字幕在线| 99国产极品粉嫩在线观看| 美女视频免费永久观看网站| 久久精品亚洲精品国产色婷小说| 成熟少妇高潮喷水视频| 视频区图区小说| 久久亚洲真实| 99国产精品一区二区蜜桃av | 亚洲免费av在线视频| 国产欧美日韩综合在线一区二区| 一区二区三区精品91| 1024视频免费在线观看| 19禁男女啪啪无遮挡网站| 久久香蕉精品热| 欧美 亚洲 国产 日韩一| 亚洲专区字幕在线| 女性被躁到高潮视频| 成人三级做爰电影| 天天操日日干夜夜撸| 成人免费观看视频高清| 国产午夜精品久久久久久| 欧美午夜高清在线| 亚洲欧美激情在线| 久久精品国产综合久久久| 窝窝影院91人妻| 视频区图区小说| 电影成人av| 五月开心婷婷网| 久久精品熟女亚洲av麻豆精品| 婷婷成人精品国产| 欧美人与性动交α欧美软件| 黄片播放在线免费| 国产精品亚洲av一区麻豆| 人人妻人人澡人人看| 亚洲av熟女| 久久中文字幕一级| 亚洲av第一区精品v没综合| 亚洲av熟女| 免费观看人在逋| 国产欧美日韩一区二区三| 国产成人系列免费观看| 国产又色又爽无遮挡免费看| 丰满的人妻完整版| 日韩精品免费视频一区二区三区| 免费在线观看影片大全网站| 亚洲色图av天堂| 亚洲国产精品合色在线| 亚洲欧美日韩另类电影网站| 看片在线看免费视频| 淫妇啪啪啪对白视频| 久久青草综合色| 国产精品一区二区在线不卡| www.精华液| 夫妻午夜视频| 亚洲一区高清亚洲精品| 亚洲一卡2卡3卡4卡5卡精品中文| 女警被强在线播放| 成人国语在线视频| 一级片'在线观看视频| 欧美人与性动交α欧美精品济南到| 免费观看人在逋| 19禁男女啪啪无遮挡网站| 国产精品久久久人人做人人爽| 极品少妇高潮喷水抽搐| 亚洲成人免费电影在线观看| 亚洲精品成人av观看孕妇| 国产一区二区三区视频了| 午夜精品国产一区二区电影| 无遮挡黄片免费观看| 麻豆乱淫一区二区| 一边摸一边抽搐一进一出视频| 亚洲精品久久午夜乱码| www日本在线高清视频| 中文亚洲av片在线观看爽 | 99re6热这里在线精品视频| 欧美激情 高清一区二区三区| 美女高潮到喷水免费观看| 露出奶头的视频| 午夜福利在线免费观看网站| 国产有黄有色有爽视频| 精品国产一区二区三区久久久樱花| 精品国产乱码久久久久久男人| 国产亚洲欧美在线一区二区| 久久久久久久午夜电影 | 中文字幕另类日韩欧美亚洲嫩草| 性色av乱码一区二区三区2| 免费人成视频x8x8入口观看| 一进一出抽搐动态| 亚洲免费av在线视频| 91麻豆av在线| 91老司机精品| 色播在线永久视频| 日韩欧美国产一区二区入口| 国产三级黄色录像| 交换朋友夫妻互换小说| 久久天躁狠狠躁夜夜2o2o| 后天国语完整版免费观看| 国产成人一区二区三区免费视频网站| 18禁裸乳无遮挡动漫免费视频| 操出白浆在线播放| 18禁裸乳无遮挡免费网站照片 | 无遮挡黄片免费观看| 80岁老熟妇乱子伦牲交| 国产成人精品在线电影| 男女床上黄色一级片免费看| 日韩精品免费视频一区二区三区| 99re在线观看精品视频| 丰满的人妻完整版| 亚洲熟妇中文字幕五十中出 | 91精品三级在线观看| 成人免费观看视频高清| 国产成人精品在线电影| 久久国产精品大桥未久av| 亚洲视频免费观看视频| 国产蜜桃级精品一区二区三区 | 日本撒尿小便嘘嘘汇集6| 亚洲aⅴ乱码一区二区在线播放 | 三上悠亚av全集在线观看| 一区二区三区激情视频| 亚洲专区字幕在线| 国产精品国产高清国产av | 69av精品久久久久久| 精品免费久久久久久久清纯 | 国产精品欧美亚洲77777| 黑人欧美特级aaaaaa片| 国产在视频线精品| 热99国产精品久久久久久7| 久久 成人 亚洲| 王馨瑶露胸无遮挡在线观看| 国产精品国产高清国产av | 免费看十八禁软件| 免费不卡黄色视频| 午夜成年电影在线免费观看| 欧美成人免费av一区二区三区 | 亚洲午夜理论影院| 美国免费a级毛片| 无限看片的www在线观看| 国产欧美日韩一区二区三区在线| av在线播放免费不卡| 精品一品国产午夜福利视频| 在线天堂中文资源库| 国产av精品麻豆| 在线观看免费日韩欧美大片| 热99re8久久精品国产| 国产精品 欧美亚洲| av网站在线播放免费| 亚洲精品国产一区二区精华液| 国产男女内射视频| 美女扒开内裤让男人捅视频| 美女扒开内裤让男人捅视频| 国产成人啪精品午夜网站| svipshipincom国产片| svipshipincom国产片| av一本久久久久| 丰满迷人的少妇在线观看| 黄色怎么调成土黄色| 日日摸夜夜添夜夜添小说| 啦啦啦视频在线资源免费观看| 在线观看免费高清a一片| 一区二区三区国产精品乱码| 韩国av一区二区三区四区| 精品久久久精品久久久| 无限看片的www在线观看| 色婷婷久久久亚洲欧美| 精品福利观看| 成人特级黄色片久久久久久久| 国产99白浆流出| 午夜影院日韩av| 一级a爱片免费观看的视频| 亚洲熟妇熟女久久| 日韩大码丰满熟妇| 国产成人欧美在线观看 | 久久久国产欧美日韩av| 婷婷精品国产亚洲av在线 | 久久香蕉激情| 后天国语完整版免费观看| 欧美人与性动交α欧美精品济南到| 国产极品粉嫩免费观看在线| 国产欧美日韩综合在线一区二区| 女警被强在线播放| 首页视频小说图片口味搜索| 亚洲avbb在线观看| 久久ye,这里只有精品| 午夜免费鲁丝| 91精品国产国语对白视频| 亚洲欧美一区二区三区久久| 无限看片的www在线观看| 成年版毛片免费区| 丝袜在线中文字幕| 在线观看一区二区三区激情| 亚洲欧美色中文字幕在线| 五月开心婷婷网| 久热这里只有精品99| 国产精品综合久久久久久久免费 | 两个人免费观看高清视频| a级片在线免费高清观看视频| www.999成人在线观看| 成人亚洲精品一区在线观看| 叶爱在线成人免费视频播放| cao死你这个sao货| 国产成人影院久久av| 午夜精品久久久久久毛片777| 精品无人区乱码1区二区| 91麻豆av在线| 制服人妻中文乱码| 在线观看免费高清a一片| 又黄又粗又硬又大视频| 亚洲一码二码三码区别大吗| 国产精华一区二区三区| 欧美精品一区二区免费开放| 久久精品国产a三级三级三级| 我的亚洲天堂| videos熟女内射| 不卡av一区二区三区| 久久久国产一区二区| 欧美人与性动交α欧美精品济南到| 午夜免费观看网址| 精品亚洲成国产av| 午夜精品国产一区二区电影| 老熟妇乱子伦视频在线观看| 看免费av毛片| 法律面前人人平等表现在哪些方面| 一二三四社区在线视频社区8| 亚洲成人免费av在线播放| 久热这里只有精品99| 亚洲国产毛片av蜜桃av| 国产亚洲精品久久久久久毛片 | xxxhd国产人妻xxx| 91精品国产国语对白视频| 亚洲色图av天堂| 午夜精品国产一区二区电影| a级片在线免费高清观看视频| 亚洲成人国产一区在线观看| 在线永久观看黄色视频| 国产一卡二卡三卡精品| 亚洲美女黄片视频| 搡老岳熟女国产| 久久精品aⅴ一区二区三区四区| 黄片小视频在线播放| 久久国产精品大桥未久av| a在线观看视频网站| 超色免费av| 亚洲一区高清亚洲精品| 淫妇啪啪啪对白视频| av网站在线播放免费| 亚洲在线自拍视频| 亚洲在线自拍视频| 国精品久久久久久国模美| 夜夜夜夜夜久久久久| 亚洲色图 男人天堂 中文字幕| 老司机午夜十八禁免费视频| 99热网站在线观看| 免费在线观看日本一区| 九色亚洲精品在线播放| 亚洲少妇的诱惑av| 国产精品二区激情视频| 欧美精品人与动牲交sv欧美| 久久久国产一区二区| 人妻丰满熟妇av一区二区三区 | 亚洲精品av麻豆狂野| 亚洲欧美精品综合一区二区三区| 嫩草影视91久久| 一区二区日韩欧美中文字幕| 99精国产麻豆久久婷婷| 在线观看午夜福利视频| 亚洲精品乱久久久久久| 久久人妻av系列| a级毛片黄视频| 久久国产乱子伦精品免费另类| 国产一区二区三区综合在线观看| 久久精品91无色码中文字幕| 色综合欧美亚洲国产小说| 91在线观看av| 少妇粗大呻吟视频| 亚洲精品一二三| 啪啪无遮挡十八禁网站| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕最新亚洲高清| 色婷婷久久久亚洲欧美| 精品人妻1区二区| 美女高潮喷水抽搐中文字幕| 免费观看人在逋| 99精国产麻豆久久婷婷| 大香蕉久久成人网| 久久午夜亚洲精品久久| 很黄的视频免费| 大码成人一级视频| 久久久久国产一级毛片高清牌| а√天堂www在线а√下载 | 久9热在线精品视频| 在线观看免费日韩欧美大片| 久久性视频一级片| 国产区一区二久久| 啦啦啦在线免费观看视频4| 国产免费男女视频| 不卡一级毛片| 热99久久久久精品小说推荐| 亚洲性夜色夜夜综合| 国产熟女午夜一区二区三区| 成熟少妇高潮喷水视频| 夫妻午夜视频| 亚洲情色 制服丝袜| 午夜91福利影院| 黄色成人免费大全| 欧美亚洲日本最大视频资源| 十八禁高潮呻吟视频| 成年动漫av网址| 中文字幕人妻丝袜一区二区| 午夜福利在线免费观看网站| 亚洲九九香蕉| 精品国产乱码久久久久久男人| 麻豆av在线久日| 久久草成人影院| 一级毛片高清免费大全| 老司机亚洲免费影院| 侵犯人妻中文字幕一二三四区| 久久久久久久国产电影| 另类亚洲欧美激情| 叶爱在线成人免费视频播放| 亚洲一码二码三码区别大吗| 亚洲成国产人片在线观看| 午夜日韩欧美国产| 身体一侧抽搐| 亚洲少妇的诱惑av| 99国产精品免费福利视频| 啪啪无遮挡十八禁网站| 国产人伦9x9x在线观看| 国产精品99久久99久久久不卡| 国产精品久久久av美女十八| 久久中文字幕人妻熟女| 老司机午夜福利在线观看视频| 色播在线永久视频| 亚洲精品在线观看二区| 99在线人妻在线中文字幕 | 欧美日韩视频精品一区| 免费不卡黄色视频| xxx96com| 在线十欧美十亚洲十日本专区| 婷婷精品国产亚洲av在线 | 十分钟在线观看高清视频www| 91九色精品人成在线观看| 婷婷精品国产亚洲av在线 | 在线观看免费高清a一片| 日韩免费av在线播放| 国产三级黄色录像| 大型av网站在线播放| 日本撒尿小便嘘嘘汇集6| 我的亚洲天堂| 亚洲精品国产区一区二| 99re在线观看精品视频| 亚洲av成人av| 这个男人来自地球电影免费观看| 久久久国产成人精品二区 | 中出人妻视频一区二区| a级毛片黄视频| 少妇被粗大的猛进出69影院| 久久天躁狠狠躁夜夜2o2o| 中出人妻视频一区二区| 麻豆成人av在线观看| a级片在线免费高清观看视频| 欧美在线一区亚洲| 免费在线观看亚洲国产| 亚洲情色 制服丝袜| ponron亚洲| 90打野战视频偷拍视频| 操美女的视频在线观看| 国产精品久久久久成人av| 国产精品香港三级国产av潘金莲| 午夜亚洲福利在线播放| 国产精品亚洲av一区麻豆| 国产人伦9x9x在线观看| 亚洲色图av天堂| 日韩欧美三级三区| 美女 人体艺术 gogo| 欧美性长视频在线观看| 欧美黑人精品巨大| 亚洲人成电影观看| 一级毛片女人18水好多| 国产男靠女视频免费网站| 69av精品久久久久久| 窝窝影院91人妻| 精品久久久久久,| 又大又爽又粗| 在线观看免费高清a一片| 免费看a级黄色片| 精品国产乱码久久久久久男人| 欧美另类亚洲清纯唯美| 成人特级黄色片久久久久久久| 天堂√8在线中文| 视频区图区小说| 超碰成人久久| av视频免费观看在线观看| 亚洲精华国产精华精| 夫妻午夜视频| 午夜激情av网站| 黄片小视频在线播放| 黄色片一级片一级黄色片| 不卡av一区二区三区| 国产xxxxx性猛交| 国产av精品麻豆| 两性夫妻黄色片| 伦理电影免费视频| 欧美 亚洲 国产 日韩一| 成人特级黄色片久久久久久久| 欧美黑人欧美精品刺激| 日本一区二区免费在线视频| 99国产精品一区二区三区| 日韩欧美一区二区三区在线观看 | 国产单亲对白刺激| 欧美精品亚洲一区二区| 日本黄色日本黄色录像| 99热网站在线观看| 一级黄色大片毛片| 一进一出好大好爽视频| 国产成人影院久久av| xxxhd国产人妻xxx| 国产深夜福利视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品99久久99久久久不卡| av在线播放免费不卡| 久久久久久久久久久久大奶| 夫妻午夜视频| 亚洲欧美激情在线| 国产91精品成人一区二区三区| 日韩人妻精品一区2区三区| 久久久久久亚洲精品国产蜜桃av| 啦啦啦视频在线资源免费观看| tube8黄色片| 亚洲精华国产精华精| 夜夜躁狠狠躁天天躁| 亚洲午夜精品一区,二区,三区| 巨乳人妻的诱惑在线观看| 丝袜美腿诱惑在线| 成人国语在线视频| 国精品久久久久久国模美| av免费在线观看网站| 久久久国产欧美日韩av| 他把我摸到了高潮在线观看| 久9热在线精品视频| 王馨瑶露胸无遮挡在线观看| 日韩一卡2卡3卡4卡2021年| 波多野结衣一区麻豆| 美国免费a级毛片| 国产91精品成人一区二区三区| 国产国语露脸激情在线看| 国产乱人伦免费视频| 久久久国产精品麻豆| 在线播放国产精品三级| 国产深夜福利视频在线观看| 亚洲一区二区三区欧美精品| 黄片播放在线免费| 极品少妇高潮喷水抽搐| 高清毛片免费观看视频网站 | 亚洲av熟女| 男女高潮啪啪啪动态图| www.自偷自拍.com| 欧美日韩成人在线一区二区| 国产免费男女视频| 国产午夜精品久久久久久| 黑人猛操日本美女一级片| 亚洲专区中文字幕在线| 母亲3免费完整高清在线观看| 国产精品电影一区二区三区 | 日韩一卡2卡3卡4卡2021年| 国产亚洲av高清不卡| 欧美激情高清一区二区三区| 亚洲色图综合在线观看| 男女床上黄色一级片免费看| 午夜成年电影在线免费观看| 精品亚洲成a人片在线观看| 国产精品久久视频播放| 亚洲av成人一区二区三| 国产蜜桃级精品一区二区三区 | 欧美日韩黄片免| 一级片免费观看大全| 精品卡一卡二卡四卡免费| 欧美激情 高清一区二区三区| 大码成人一级视频| 嫩草影视91久久| 欧美精品一区二区免费开放| 手机成人av网站| 免费高清在线观看日韩| 免费观看精品视频网站| 国产精品香港三级国产av潘金莲| 很黄的视频免费| 国产无遮挡羞羞视频在线观看| 天堂中文最新版在线下载| 免费观看精品视频网站| 欧美午夜高清在线| 老司机午夜福利在线观看视频| 老熟妇仑乱视频hdxx| 欧美日韩成人在线一区二区| 一边摸一边抽搐一进一出视频| 精品久久久久久久毛片微露脸| 亚洲情色 制服丝袜| 久久精品熟女亚洲av麻豆精品| 精品久久久久久电影网| 欧美 日韩 精品 国产| a在线观看视频网站| 久久国产精品影院| 又大又爽又粗| 亚洲欧美激情在线| 18在线观看网站| 美女国产高潮福利片在线看| 国产精品一区二区在线观看99| xxxhd国产人妻xxx| 久久精品国产亚洲av香蕉五月 | 国产精品98久久久久久宅男小说| 亚洲人成77777在线视频| 在线播放国产精品三级| 搡老岳熟女国产| 日本vs欧美在线观看视频| 国产一区二区三区视频了| 欧美在线一区亚洲| 一本大道久久a久久精品| 日韩熟女老妇一区二区性免费视频| 国产aⅴ精品一区二区三区波| 免费黄频网站在线观看国产| 久久香蕉激情| 国产精品亚洲一级av第二区| 国产成人精品久久二区二区91| 中文字幕高清在线视频| 91麻豆精品激情在线观看国产 | 一级作爱视频免费观看| 女同久久另类99精品国产91| 欧美在线一区亚洲| 热99国产精品久久久久久7| 黄色视频,在线免费观看| 国精品久久久久久国模美| 99精品欧美一区二区三区四区| 精品第一国产精品| 欧美午夜高清在线| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 欧美日本中文国产一区发布| 人人澡人人妻人| 亚洲成av片中文字幕在线观看| 欧美大码av| 国产91精品成人一区二区三区| 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 精品午夜福利视频在线观看一区| 亚洲成人免费av在线播放| 可以免费在线观看a视频的电影网站| 伊人久久大香线蕉亚洲五| 制服诱惑二区| 国产亚洲精品久久久久久毛片 | 国产1区2区3区精品| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 精品人妻在线不人妻| www.精华液| 国产精品久久久人人做人人爽| 伦理电影免费视频| 国产91精品成人一区二区三区| 制服人妻中文乱码| 男女床上黄色一级片免费看| 免费观看精品视频网站| 亚洲精品粉嫩美女一区| 怎么达到女性高潮| 欧美日本中文国产一区发布| xxxhd国产人妻xxx| 大香蕉久久网| 一级毛片高清免费大全| 久久久久久久午夜电影 | 最近最新中文字幕大全电影3 | 久热爱精品视频在线9| 亚洲av欧美aⅴ国产| 99国产精品一区二区三区| 极品教师在线免费播放| 高清欧美精品videossex| 大型av网站在线播放| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 国产av精品麻豆| 丝袜美足系列| 捣出白浆h1v1| 人妻丰满熟妇av一区二区三区 | 69av精品久久久久久| 岛国在线观看网站| 欧美在线一区亚洲| 在线十欧美十亚洲十日本专区| 国内毛片毛片毛片毛片毛片| 色综合婷婷激情| 人人妻人人澡人人爽人人夜夜| 少妇猛男粗大的猛烈进出视频| 大香蕉久久网| 窝窝影院91人妻| 国产三级黄色录像| 精品卡一卡二卡四卡免费| 国产精品一区二区在线观看99| 精品卡一卡二卡四卡免费| 亚洲性夜色夜夜综合| 搡老熟女国产l中国老女人| 免费观看人在逋| 亚洲国产精品合色在线| 精品福利永久在线观看| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看| 亚洲专区国产一区二区| 国产成人影院久久av|