• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Experiment of Non-circular Combined Gear Train Beating-up Mechanism

    2019-04-09 01:49:22CHENJiannengYUChennanTONGLinWANGYingXIAXudongZHAOXiong

    CHEN Jianneng (), YU Chennan(),TONG Lin ( ),WANG Ying ( ), XIA Xudong (), ZHAO Xiong ( )

    1 College of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China 2 Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China

    Abstract: The most important performance of a beating-up mechanism is that the dwelling time of the sley must ensure the completion of the weft insertion. To meet this requirement, a new non-circular combined gear train beating-up mechanism which is composed of two-stage planetary gear trains is proposed. The first-stage is a Fourier planetary gear train and the second-stage is a non-circular planetary gear train. For designing of this new mechanism, the ideal kinematic equations of the sley are constructed first. Then the kinematic model of the first-stage Fourier planetary gear train is established and the reverse solution for the pitch curves of the second-stage non-circular gears is deduced. With a computer-aided design program, the influences of several important parameters on the pitch curves of the second-stage non-circular gears are analyzed, and a set of preferable structural parameters are obtained. Finally, a test bed of this mechanism is developed and the experimental results show that this new beating-up mechanism can achieve the designed dwelling time, namely it can meet the requirements of beating-up process.

    Key words: beating-up mechanism; Fourier gear; non-circular gear; planetary gear train; kinematic

    Introduction

    The function of the beating-up mechanism is to transform the constant rotation of the main shaft into the non-uniform swaying of the sley, by which the weft yarn weaved with the warp yarn to be fabric[1]. In order to ensure enough weft insertion time, the beating-up mechanism should be designed to keep the sley with enough dwelling time (dwelling time means in a rotation cycle of the main shaft, the sley should keep unmoved in the backmost position when the main shaft rotates some angle)[2]. At present, the conjugate cam beating-up mechanism is most widely used. It can meet any reasonable kinematic characteristics requirements of the sley by altering the profile curve of the conjugate cam[2-4]. However, the high requirement of the profile curve makes the design and manufacture of the conjugate cam very difficult. Meanwhile, with the wear of the conjugate cam, the accuracy of the beating-up mechanism will degrade[5]. Another widely used beating-up mechanism is the linkage beating-up mechanism. It is easy to be designed by optimum design method which can obtain optimal structural parameters[6]. However, the linkage beating-up mechanism can only achieve an approximate dwelling time. The four-linkage beating-up mechanism can only achieve about 70° approximate dwelling time[7]and the six-linkage beating-up mechanism achieves about 140°[8]. Meanwhile, the large rotational inertia of the linkage mechanisms will cause the loom vibrate greatly[9]. Guetal. used elliptical gears to enhance the dwelling time of the linkage beating-up mechanisms to 200°[10-11], but the dwelling time is still not enough.

    To overcome the shortages of the existing beating-up mechanisms, a non-circular combined gear train beating-up mechanism is proposed in this paper. The non-circular gear drive can achieve a non-uniform transmission requirement. The Fourier gear is a special non-circular gear with Fourier function pitch curve, which can provide more adjustable parameters to easily optimize the mechanical properties[12-13]. Thus, the non-circular gears including the Fourier gears are used to improve the transmission characteristics of the beating-up mechanism to achieve enough dwelling time. The ideal kinematic equations of the sley are constructed and the kinematic model of the beating-up mechanism is established. Subsequently, the influences of several important parameters on the pitch curves of the second-stage non-circular gears are analyzed. Moreover, a test bed of this mechanism is developed to test the working performance of this new mechanism.

    1 Non-circular Combined Gear Train Beating-up Mechanisms

    The structure of the non-circular combined gear train beating-up mechanism is shown in Fig. 1. The Fourier sun gear 3 is fixed on the rack. The Fourier planetary gear 6 and the non-circular planetary gear 7 are fixed on the planetary shaft 5 which is hinged with planetary carrier 1. The non-circular sun gear 8 and the cylindrical driving gear 9 are both fixed on the rockshaft 4. The cylindrical driven gear 10 and the sley 12 are both fixed on the rockshaft 11. The Fourier sun gear 3, the Fourier planetary gear 6 and the planetary carrier 1 compose the first-stage Fourier planetary gear train. The non-circular planetary gear 7, the non-circular sun gear 8 and the planetary carrier 1 compose the second-stage non-circular planetary gear train. The cylindrical driving gear 9 and the cylindrical driven gear 10 compose the amplification gear train. When the loom is working, the motor drives the main shaft 2 and the planetary carrier 1 to rotate at a uniform speed. With the rotation of the planetary carrier 1, the Fourier planetary gear 6 rolls around the Fourier sun gear 3 with a non-uniform auto-rotational speed by achieving the first-stage non-uniform transmission. With the rotation of the planetary carrier 1 and the non-circular sun gear 7, the non-circular sun gear 8 rotates at a non-uniform speed by achieving the second-stage non-uniform transmission. Then the motion of the non-circular sun gear 8 is transmitted to the sley by amplification gear train. Thus, the beating-up mechanism can transform the constant rotation of the main shaft into the intermittent non-uniform swing of the sley.

    Fig.1 Structure of non-circular combined gear train beating-up mechanism

    2 Kinematic Equations of Sley

    For a beating-up mechanism, the sley must swing to the backmost position before the rapier head enters the shed. Therefore, the sley should keep unmoved when the main shaft rotates from 60° to 300°. In order to achieve about 240° absolute beating-up dwelling time, the ideal acceleration equation of the sley in interval [0,π] is established based on Hermite interpolation polynomials with 3 sections. It can be expressed as

    (1)

    wherehis the maximum positive beating-up acceleration,hxis the maximum negative beating-up acceleration which is calculated by Eq. (2),αis the rotary angle of main shaft,α1is the turning point of beating-up acceleration which is calculated by Eq.(3), andα2is the starting point of beating-up.

    (2)

    wheresmaxis the total beating-up displacement, andωis the angle velocity of the main shaft.

    (3)

    The velocity equation can be obtained by integrating the acceleration equation and the displacement equation can be obtained by integrating the velocity equation.

    Fig.2 Acceleration, velocity and displacement curves of the sley

    3 Kinematic Model of Non-circular Combined Gear Train Beating-Up Mechanisms

    The combined gear train in this new beating-up mechanism includes two-stage planetary gear trains. The first-stage is a Fourier planetary gear train and the second-stage is a non-circular planetary gear train. So the kinematic model is divided into two parts according to the structure.

    3.1 Kinematic model of first-stage Fourier planetary gear train

    As shown in Fig. 3, the Fourier gear 3 works as the sun gear and the conjugated Fourier non-circular gear 6 works as the planetary gear. With the rotation of the planetary carrier 1, the conjugated non-circular gear 6

    Fig.3 Conjugation of the first-stage Fourier gear train

    The pitch curve of the Fourier sun gear 3 is represented by

    (4)

    (5)

    According to the basic requirement of non-circular gear engagement, the following equations can be constructed

    r6=a-r3,

    (6)

    (7)

    (8)

    Equation (8) can be integrated for timetand it can then be written as

    (9)

    So the pitch curve of the conjugated non-circular planetary gear 6 can be given as

    (10)

    In order to ensure the pitch curve of the non-circular planetary gear 6 closed, the following equation must be observed

    (11)

    From Eq. (11), it can be seen that, the center distanceacan be solved by the numerical analysis method[14].

    3.2 Reverse solution for pitch curves of second-stage non-circular gears

    Fig.4 Conjugation of non-circular combined gear train

    According to the equationφ3=0, the following transmission ratio is calculated as

    1-f′(φ8)=1-i81,

    (12)

    (13)

    The distance between the main shaft 2 and the planetary shaft 5 is

    r3+r6=r7+r8=a.

    (14)

    From Eqs. (9),(12)and(14), the contact radius of non-circular planetary gear 7r7can be constructed

    (15)

    The pitch curve of the non-circular planetary gear 7 is constructed as

    (16)

    And the pitch curve of the conjugated non-circular sun gear 8 can be given as

    (17)

    whereφ8can be calculated based on the ideal kinematic equation of the sley. The kinematic model of the small cylindrical gear 10 is obtained by kinematic equations of sley. It can be written as

    (18)

    whereφ10is the rotary angle of small cylindrical gear 10 andris the height of sley. The kinematic model of the large cylindrical gear 9 and the non-circular sun gear 8 is obtained by the kinematic model of the gear 10. It can be written as

    (19)

    whereifis the transmission ratio of the amplification gear train.

    4 Computer-Aided Design Program and Influence Analysis of Parameters on the Pitch Curves of the Second-Stage Non-circular Gears

    4.1 Computer-aided design programs

    In order to facilitate the design of this new mechanism, a computer-aided design program with a user-friendly graphical user interface was compiled based on MATLAB, which is shown in Fig. 5.

    After inputting the parameters of movement rule of the given sley such as the beating-up starting angle, the beating-up total displacement, the maximum positive beating-up acceleration and the Fourier parameters,etc., the program can automatically calculate the displacement, velocity, and acceleration of the sley, the center distance, the maximum swing angle of sley,etc. The program can also draw the corresponding non-circular pitch curves and conduct the movement simulation of the beating-up mechanism.

    Fig.5 Computer-aided design program for the beating-up mechanism

    4.2 Influence analysis of Fourier parameters

    The influences of the first-stage Fourier parameters on the pitch curves of the second-stage non-circular gears are shown in Fig. 6. When the parametersa0,a2,b1,b2andm31are the same, the pitch curves of the second-stage non-circular gears corresponding to differenta1are shown in Fig. 6(a). It can be seen that with the increase ofa1, the concave extent of the pitch curves decreases, and meanwhile the center distance increases. However, the maximuma1should not be too large because the non-circular gear with excessively flat pitch curve has a large autobiographical speed change, which will affect the stability of the beating-up mechanism. When the parametersa0,a1,b1,b2andm31are the same, the pitch curves of the second-stage non-circular gears corresponding to differenta2are shown in Fig. 6(b) .With the increase ofa2, the concave extent of the pitch curves is also reduced and the center distance becomes slightly larger. It can also improve the curve flattening caused by the increase of parametera1. By adjusting other Fourier parameters, the decrease of the parameterm31also reduces the concave extent of pitch curve, butb1andb2have little influence on the pitch curve.

    (a)

    (b)

    Fig.6 Influences of the first-stage Fourier parameters on the shape of pitch curves of second-stage non-circular gears:(a)a1; (b)a2

    4.3 Influence analysis of amplification gear train ratio

    The maximum rotation angle of the non-circular gear 8 is determined by the amplification gear ratio trainif1. The larger the amplification gear train ratio, the smaller the rotary angle of the non-circular gear 8 is; conversely, the rotary angle of the non-circular gear 8 is greater. The variation of the pitch curve of the second-stage non-circular gears corresponding to differentif1are shown in Fig. 8. It can be seen that with the decrease ofif1, the convex angle of the pitch curve of the non-circular gear 8 becomes sharp, and the pitch curve of the non-circular gear 7 is enlarged. Whenif1=1.5, the concave of the pitch curve of the non-circular gear 7 is obvious. Because the pitch curve of the non-circular gear with excessive concave and convex cannot generate ideal tooth profiles, theif1must not be too small. However, the amplification gear train ratio should not be too large, because a large amplification gear ratio will cause larger transmission fluctuations.

    Fig.7 Influences of the amplification gear train ratio if1 on the shape of pitch curves of second-stage non-circular

    5 Kinematic Experiments

    With the computer-aided design program, a set of preferable structural parameters are obtained by adjusting the parameters and analyzing the pitch curves:a0=47 mm,a1=14 mm,a2=4 mm,b1=0,b2=0,m31=0.9 andif1=2. And the pitch curves of second-stage non-circular gears are shown in Fig. 8.

    Fig.8 Pitch curves of the preferable second-stage non-circular gears

    In order to further verify the working performance of the new beating-up mechanism, the test bed of this mechanism shown in Fig. 9 is established based on the preferable structural parameters.

    Fig.9 Beating-up mechanism test bed

    5.1 Kinematic experiment methods

    Fig.10 Experiment result processing interface

    Two marking points in the beating-up mechanism are selected. The beating-up motion of this new mechanism is recorded by the high-speed camera, as shown in Fig. 10. The recorded video results can be processed by using video analysis software Blaster’s MAS. The two marking points are connected in astraight line, and the position of the line is tracked until the main shaft finishes a rotation cycle. The data of position change of the line are imported into MATLAB, and then the obtained experimental displacement and velocity curves are compared with theoretical curves.

    5.2 Analysis of kinematic experiment results

    It can be seen from Fig. 11 that the experimental curves and theoretical curves of the sley are basically consistent, although some fluctuations exist in the experimental beating-up curve. The fluctuation is caused by errors in the manufacture of the non-circular gears, the video analysis and the transmission error of the test bed. Hence, it can prove that the reverse kinematic model of this beating-up mechanism deduced is correct, and the new mechanism can be used for actual working.

    (a) Velocity experimental curve

    (b) Velocity theoretical curve

    (c) displacement experimental curve

    (d) Displacement theoretical curve

    Fig.11 Experimental and theoretical curves of the sley

    6 Conclusions

    (1) A new non-circular combined gear train beating-up mechanism is proposed to transform the constant rotation of the main shaft into the intermittent non-uniform swing of the sley. The non-circular combined gear train is composed by the first-stage Fourier planetary gear train and the second-stage non-circular planetary gear train. The ideal kinematic equations of the sley are established based on Hermite interpolation polynomials that can ensure the mechanism achieve enough dwelling beating-up time.

    (2) The influences of the Fourier parameters and the amplification gear train ratio on the pitch curves of the second-stage non-circular gears are analyzed based on the kinematic model of this beating-up mechanism. The results showed that the Fourier parametersa1,a2and the amplification gear ratioif1are too small or too large which will cause the pitch curve in a poor shape. Based on the influence analysis, a set of preferable structural parameters are obtained:a0=47 mm,a1=14 mm,a2=4 mm,b1=0,b2=0,m31=0.9 andif1=2.

    (3) A test bed based on the preferable structural parameters was developed. The experimental results are basically identical with the theoretical analysis, which indicates the reverse solution model for the pitch curves of the second-stage non-circular gears is correct. And it also indicates that the new mechanism can be used for actual working.

    国产亚洲午夜精品一区二区久久 | videos熟女内射| 国产探花在线观看一区二区| 看免费成人av毛片| 午夜福利在线在线| 日本猛色少妇xxxxx猛交久久| 婷婷六月久久综合丁香| 午夜久久久久精精品| videos熟女内射| 国产在线男女| 80岁老熟妇乱子伦牲交| 国产免费又黄又爽又色| 极品教师在线视频| 嘟嘟电影网在线观看| 国产精品一二三区在线看| 久久人人爽人人片av| 超碰97精品在线观看| 亚洲精品乱码久久久v下载方式| 别揉我奶头 嗯啊视频| 国产久久久一区二区三区| 午夜精品国产一区二区电影 | 少妇裸体淫交视频免费看高清| 97精品久久久久久久久久精品| 欧美一级a爱片免费观看看| av天堂中文字幕网| 日韩三级伦理在线观看| 亚洲高清免费不卡视频| 国产亚洲av片在线观看秒播厂 | 嫩草影院精品99| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 午夜福利高清视频| 国产视频首页在线观看| 又爽又黄无遮挡网站| 中文资源天堂在线| 亚洲成人中文字幕在线播放| 午夜亚洲福利在线播放| 中文字幕亚洲精品专区| 老司机影院毛片| 久久99热这里只有精品18| 午夜福利视频精品| 真实男女啪啪啪动态图| 中文天堂在线官网| 床上黄色一级片| 国产精品嫩草影院av在线观看| 校园人妻丝袜中文字幕| 99热6这里只有精品| 午夜免费观看性视频| 中文天堂在线官网| 一级a做视频免费观看| 成年人午夜在线观看视频 | 亚洲欧美成人综合另类久久久| 69av精品久久久久久| 久久久久久久大尺度免费视频| 一个人看视频在线观看www免费| 自拍偷自拍亚洲精品老妇| 中国国产av一级| 韩国av在线不卡| 联通29元200g的流量卡| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件| 午夜福利成人在线免费观看| 精品不卡国产一区二区三区| 久久久国产一区二区| av女优亚洲男人天堂| 成人综合一区亚洲| 国产亚洲5aaaaa淫片| 欧美性感艳星| 欧美3d第一页| 国产精品1区2区在线观看.| 草草在线视频免费看| 嫩草影院入口| 亚洲国产精品国产精品| 人妻夜夜爽99麻豆av| 爱豆传媒免费全集在线观看| 欧美一区二区亚洲| 中国国产av一级| 69av精品久久久久久| 日韩欧美精品免费久久| 亚洲综合精品二区| 丰满少妇做爰视频| 国产片特级美女逼逼视频| 国产精品久久久久久精品电影小说 | 成人无遮挡网站| 午夜爱爱视频在线播放| 别揉我奶头 嗯啊视频| 国产又色又爽无遮挡免| 不卡视频在线观看欧美| 精品酒店卫生间| 自拍偷自拍亚洲精品老妇| 国产欧美另类精品又又久久亚洲欧美| 国产精品爽爽va在线观看网站| 嫩草影院入口| 国产精品久久久久久久久免| 人妻一区二区av| 亚洲真实伦在线观看| 噜噜噜噜噜久久久久久91| 成年人午夜在线观看视频 | 日韩国内少妇激情av| 久久热精品热| 99久久精品热视频| 国产综合精华液| 在线免费观看不下载黄p国产| 国产中年淑女户外野战色| 麻豆av噜噜一区二区三区| 干丝袜人妻中文字幕| 日本一本二区三区精品| 亚洲,欧美,日韩| 永久网站在线| 搡女人真爽免费视频火全软件| 男女视频在线观看网站免费| 国产探花在线观看一区二区| 日本色播在线视频| av国产久精品久网站免费入址| 精品久久久久久久久久久久久| 一级毛片黄色毛片免费观看视频| 丰满乱子伦码专区| 久久久久久久大尺度免费视频| 国产精品一区二区在线观看99 | 蜜桃久久精品国产亚洲av| 99视频精品全部免费 在线| 日韩三级伦理在线观看| 免费看av在线观看网站| 精品国产露脸久久av麻豆 | 精品久久久久久久久久久久久| 国内精品美女久久久久久| 久久久久久国产a免费观看| 51国产日韩欧美| 欧美人与善性xxx| 亚洲国产高清在线一区二区三| 1000部很黄的大片| 噜噜噜噜噜久久久久久91| 嘟嘟电影网在线观看| 老司机影院毛片| 天堂√8在线中文| 久久精品国产亚洲网站| 国产白丝娇喘喷水9色精品| 爱豆传媒免费全集在线观看| 国产单亲对白刺激| 天堂中文最新版在线下载 | 69人妻影院| 精品人妻一区二区三区麻豆| 成人毛片a级毛片在线播放| 99九九线精品视频在线观看视频| 真实男女啪啪啪动态图| 天天躁夜夜躁狠狠久久av| 久久精品久久久久久噜噜老黄| 亚洲美女视频黄频| 丝瓜视频免费看黄片| 亚洲在线观看片| h日本视频在线播放| 国产亚洲5aaaaa淫片| 国产黄a三级三级三级人| 欧美性感艳星| 精品欧美国产一区二区三| 亚洲人成网站高清观看| 久久国产乱子免费精品| 日韩亚洲欧美综合| 国产精品人妻久久久久久| 26uuu在线亚洲综合色| 一本久久精品| 内射极品少妇av片p| 免费av毛片视频| 国产亚洲最大av| 极品教师在线视频| 欧美三级亚洲精品| 久久久精品94久久精品| 中文字幕人妻熟人妻熟丝袜美| 久久久久久九九精品二区国产| 亚洲av一区综合| 久久久久久久久久久丰满| ponron亚洲| 日本爱情动作片www.在线观看| 国产色爽女视频免费观看| 男人舔奶头视频| 国产高清有码在线观看视频| 成人午夜精彩视频在线观看| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| 黄色一级大片看看| 国产精品爽爽va在线观看网站| 99热这里只有精品一区| 天天躁夜夜躁狠狠久久av| 国精品久久久久久国模美| 丝瓜视频免费看黄片| 久久久久久九九精品二区国产| 国精品久久久久久国模美| 日韩视频在线欧美| 日韩欧美精品v在线| 97热精品久久久久久| 啦啦啦韩国在线观看视频| 国产 一区精品| 亚洲四区av| 国产精品99久久久久久久久| 2018国产大陆天天弄谢| 亚洲不卡免费看| 成人毛片60女人毛片免费| 69人妻影院| 青春草视频在线免费观看| 国产一区二区三区av在线| 国产在视频线精品| 黄色一级大片看看| 国产精品日韩av在线免费观看| 亚洲av电影不卡..在线观看| 亚洲精品aⅴ在线观看| 日本爱情动作片www.在线观看| 亚洲在线自拍视频| 只有这里有精品99| 国产精品一区www在线观看| 少妇高潮的动态图| 免费看美女性在线毛片视频| av专区在线播放| 亚洲欧洲国产日韩| 免费看av在线观看网站| 91午夜精品亚洲一区二区三区| 欧美成人a在线观看| 99久久精品一区二区三区| 亚洲欧洲国产日韩| 成人二区视频| 亚洲精品乱码久久久久久按摩| av卡一久久| 国产淫语在线视频| 一级毛片 在线播放| 秋霞在线观看毛片| 午夜福利在线在线| 啦啦啦中文免费视频观看日本| 国产免费又黄又爽又色| 久久久久久伊人网av| 天堂俺去俺来也www色官网 | 日韩av免费高清视频| 极品教师在线视频| 国产亚洲5aaaaa淫片| 久久国内精品自在自线图片| 看十八女毛片水多多多| 欧美日韩视频高清一区二区三区二| 国产成人精品一,二区| av免费观看日本| 成人av在线播放网站| 国产黄片美女视频| 日本爱情动作片www.在线观看| 啦啦啦韩国在线观看视频| 热99在线观看视频| 久久草成人影院| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 国产毛片a区久久久久| 国国产精品蜜臀av免费| av在线老鸭窝| 免费av毛片视频| 超碰97精品在线观看| 纵有疾风起免费观看全集完整版 | 人妻一区二区av| 亚洲熟妇中文字幕五十中出| 色尼玛亚洲综合影院| 街头女战士在线观看网站| 亚洲最大成人手机在线| 亚洲av二区三区四区| 深爱激情五月婷婷| 波多野结衣巨乳人妻| 最近最新中文字幕免费大全7| 超碰97精品在线观看| 久久久久久九九精品二区国产| 欧美xxxx黑人xx丫x性爽| 熟妇人妻久久中文字幕3abv| 噜噜噜噜噜久久久久久91| 亚洲av成人精品一区久久| 精品久久久久久久久亚洲| 亚洲欧美中文字幕日韩二区| 大话2 男鬼变身卡| 99久久精品国产国产毛片| 少妇高潮的动态图| 久久97久久精品| 80岁老熟妇乱子伦牲交| 国产成人福利小说| 日韩av在线免费看完整版不卡| 久久精品久久精品一区二区三区| 国产午夜精品论理片| 2018国产大陆天天弄谢| 日韩视频在线欧美| 亚洲国产欧美在线一区| 亚洲av成人精品一区久久| 国产精品av视频在线免费观看| 国产视频内射| 亚洲真实伦在线观看| 成年人午夜在线观看视频 | av在线播放精品| 日韩在线高清观看一区二区三区| 麻豆国产97在线/欧美| 老女人水多毛片| 五月伊人婷婷丁香| 欧美成人精品欧美一级黄| 亚洲精品久久久久久婷婷小说| 男人和女人高潮做爰伦理| 亚洲色图av天堂| 国产综合精华液| 国产在线男女| a级毛片免费高清观看在线播放| 男女那种视频在线观看| 高清日韩中文字幕在线| 精品99又大又爽又粗少妇毛片| av播播在线观看一区| av线在线观看网站| 1000部很黄的大片| 五月天丁香电影| 国产熟女欧美一区二区| 久久久久九九精品影院| 欧美日韩综合久久久久久| 欧美激情在线99| 国产伦一二天堂av在线观看| 国产精品女同一区二区软件| 国产伦一二天堂av在线观看| 超碰av人人做人人爽久久| 天堂av国产一区二区熟女人妻| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 色综合亚洲欧美另类图片| 欧美极品一区二区三区四区| 最新中文字幕久久久久| 亚洲av不卡在线观看| 中文欧美无线码| 99热6这里只有精品| 国产爱豆传媒在线观看| 乱系列少妇在线播放| 永久网站在线| 久久久久九九精品影院| 免费观看av网站的网址| 午夜免费激情av| 三级男女做爰猛烈吃奶摸视频| 国产大屁股一区二区在线视频| 欧美bdsm另类| 亚洲精品国产av蜜桃| 国产午夜精品久久久久久一区二区三区| 免费黄色在线免费观看| 亚洲精品视频女| 水蜜桃什么品种好| 男女啪啪激烈高潮av片| 国产中年淑女户外野战色| 国产永久视频网站| 一级黄片播放器| 中文字幕av成人在线电影| 在现免费观看毛片| 日本黄大片高清| 国产精品久久久久久av不卡| 美女被艹到高潮喷水动态| 91午夜精品亚洲一区二区三区| 国产黄片美女视频| 草草在线视频免费看| 日本一二三区视频观看| 男女那种视频在线观看| 亚洲精品自拍成人| 偷拍熟女少妇极品色| 精品久久久久久成人av| 边亲边吃奶的免费视频| 最近中文字幕高清免费大全6| 成人综合一区亚洲| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| 天天一区二区日本电影三级| xxx大片免费视频| 男人狂女人下面高潮的视频| 一级毛片黄色毛片免费观看视频| 成人漫画全彩无遮挡| 午夜久久久久精精品| 人人妻人人澡欧美一区二区| 亚洲综合精品二区| 久久久久久久久久成人| 又粗又硬又长又爽又黄的视频| 久久久久久久国产电影| 九九久久精品国产亚洲av麻豆| 内地一区二区视频在线| 高清日韩中文字幕在线| 午夜精品一区二区三区免费看| 国产成年人精品一区二区| 国产成人精品一,二区| 国产成人免费观看mmmm| 婷婷色av中文字幕| 欧美高清成人免费视频www| 岛国毛片在线播放| 国产亚洲午夜精品一区二区久久 | 国产精品伦人一区二区| 寂寞人妻少妇视频99o| 观看美女的网站| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲5aaaaa淫片| 毛片女人毛片| 黄色一级大片看看| 丰满乱子伦码专区| 日韩欧美国产在线观看| 亚洲精品,欧美精品| 2021少妇久久久久久久久久久| 亚洲在久久综合| 九色成人免费人妻av| 内地一区二区视频在线| 婷婷色麻豆天堂久久| 久久久久九九精品影院| 亚洲最大成人中文| 狂野欧美激情性xxxx在线观看| 老女人水多毛片| av免费观看日本| 少妇人妻精品综合一区二区| 精品不卡国产一区二区三区| 青青草视频在线视频观看| 亚洲精品国产av蜜桃| 蜜臀久久99精品久久宅男| 午夜福利在线观看吧| 99re6热这里在线精品视频| 激情五月婷婷亚洲| 精品国内亚洲2022精品成人| 精品国产三级普通话版| 91精品国产九色| 国内少妇人妻偷人精品xxx网站| 色播亚洲综合网| 欧美人与善性xxx| av一本久久久久| 又黄又爽又刺激的免费视频.| 午夜福利高清视频| 美女内射精品一级片tv| 亚洲无线观看免费| 一级毛片 在线播放| 一级av片app| 国产精品综合久久久久久久免费| 久久午夜福利片| 高清视频免费观看一区二区 | 美女高潮的动态| 国产精品久久久久久久电影| 日本免费a在线| 亚洲在线自拍视频| 黄片无遮挡物在线观看| 成人无遮挡网站| 精品少妇黑人巨大在线播放| 一级片'在线观看视频| 伊人久久国产一区二区| 国产av在哪里看| 久99久视频精品免费| 人人妻人人澡人人爽人人夜夜 | 午夜激情福利司机影院| 欧美最新免费一区二区三区| 乱人视频在线观看| 国产日韩欧美在线精品| 国产精品av视频在线免费观看| 婷婷色av中文字幕| 三级国产精品欧美在线观看| 能在线免费看毛片的网站| 欧美激情久久久久久爽电影| 亚洲最大成人av| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件| 午夜激情福利司机影院| 亚洲电影在线观看av| 一个人免费在线观看电影| kizo精华| 99久久中文字幕三级久久日本| 亚洲精品第二区| 天堂中文最新版在线下载 | 亚洲精品乱久久久久久| 欧美日韩亚洲高清精品| 日日啪夜夜撸| 免费黄色在线免费观看| 大话2 男鬼变身卡| 国产午夜福利久久久久久| 精品人妻偷拍中文字幕| 最后的刺客免费高清国语| 日韩成人伦理影院| 午夜激情久久久久久久| 午夜久久久久精精品| 草草在线视频免费看| 国产精品蜜桃在线观看| 日日啪夜夜撸| 婷婷色av中文字幕| 国产免费一级a男人的天堂| 国产精品久久视频播放| 免费无遮挡裸体视频| 视频中文字幕在线观看| 国产成人午夜福利电影在线观看| 天堂√8在线中文| 国产一区有黄有色的免费视频 | 97在线视频观看| 99久久人妻综合| 国内揄拍国产精品人妻在线| 极品教师在线视频| 夜夜看夜夜爽夜夜摸| 免费高清在线观看视频在线观看| 日韩亚洲欧美综合| 黄色日韩在线| 青青草视频在线视频观看| 99久久精品一区二区三区| 日韩av免费高清视频| 欧美潮喷喷水| 丰满人妻一区二区三区视频av| 又爽又黄a免费视频| 亚洲精品日韩在线中文字幕| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 色综合色国产| 一二三四中文在线观看免费高清| 亚洲最大成人中文| 一夜夜www| 国产伦在线观看视频一区| 99九九线精品视频在线观看视频| kizo精华| 91久久精品国产一区二区三区| 日韩欧美一区视频在线观看 | 美女黄网站色视频| 晚上一个人看的免费电影| av免费观看日本| 啦啦啦啦在线视频资源| 边亲边吃奶的免费视频| 最后的刺客免费高清国语| 国产精品.久久久| 一级毛片电影观看| 亚洲人成网站高清观看| 在线观看一区二区三区| 99热全是精品| 亚洲国产高清在线一区二区三| 午夜老司机福利剧场| 国产男女超爽视频在线观看| 午夜福利视频精品| 久久久久久九九精品二区国产| 特大巨黑吊av在线直播| 五月玫瑰六月丁香| 日韩国内少妇激情av| 亚洲av免费高清在线观看| 亚洲欧美日韩无卡精品| 国产 一区 欧美 日韩| 舔av片在线| 欧美区成人在线视频| 麻豆乱淫一区二区| 亚洲av成人精品一二三区| 久久这里有精品视频免费| 成人午夜高清在线视频| 1000部很黄的大片| 久久久久久久国产电影| 有码 亚洲区| 精品酒店卫生间| 久99久视频精品免费| 日韩精品有码人妻一区| 天堂av国产一区二区熟女人妻| 少妇猛男粗大的猛烈进出视频 | 天堂√8在线中文| 日本熟妇午夜| 成人性生交大片免费视频hd| 男女下面进入的视频免费午夜| 可以在线观看毛片的网站| 国产免费视频播放在线视频 | av又黄又爽大尺度在线免费看| 亚洲欧美成人精品一区二区| 国产在视频线精品| 亚洲乱码一区二区免费版| 日本一本二区三区精品| 国产黄片视频在线免费观看| 亚洲精品aⅴ在线观看| 狠狠精品人妻久久久久久综合| 2018国产大陆天天弄谢| 女人久久www免费人成看片| 国产淫片久久久久久久久| 少妇被粗大猛烈的视频| 成人午夜精彩视频在线观看| 一区二区三区免费毛片| 国产三级在线视频| 国产成人a区在线观看| 久久精品久久精品一区二区三区| 91久久精品电影网| 亚洲久久久久久中文字幕| 亚洲国产欧美人成| 久久久久久久久久人人人人人人| 少妇熟女欧美另类| 久久久久久久久久黄片| 国内精品一区二区在线观看| 日韩 亚洲 欧美在线| 国产成人91sexporn| 国产精品不卡视频一区二区| 午夜老司机福利剧场| 欧美日韩在线观看h| 国产探花在线观看一区二区| 国产成人a∨麻豆精品| 日产精品乱码卡一卡2卡三| 又黄又爽又刺激的免费视频.| 欧美性猛交╳xxx乱大交人| 肉色欧美久久久久久久蜜桃 | 女人久久www免费人成看片| 在线免费观看不下载黄p国产| 我的女老师完整版在线观看| 一个人看视频在线观看www免费| 亚洲国产精品成人久久小说| 亚洲欧美成人综合另类久久久| 18+在线观看网站| 毛片女人毛片| 久久久久精品久久久久真实原创| 午夜免费男女啪啪视频观看| 午夜福利视频1000在线观看| 欧美日韩精品成人综合77777| 一级毛片aaaaaa免费看小| 久久午夜福利片| 日韩欧美精品v在线| 久久精品熟女亚洲av麻豆精品 | 久久鲁丝午夜福利片| 国产麻豆成人av免费视频| 国产精品国产三级国产av玫瑰| 久久久久国产网址| 少妇熟女欧美另类| 欧美精品国产亚洲| 免费无遮挡裸体视频| 天堂俺去俺来也www色官网 | videos熟女内射| 嫩草影院新地址| 亚洲精品自拍成人| 国产成人a区在线观看| 男女视频在线观看网站免费| 2022亚洲国产成人精品| 欧美一级a爱片免费观看看| 性插视频无遮挡在线免费观看| 中文欧美无线码| 国产激情偷乱视频一区二区| 最后的刺客免费高清国语| 亚洲av国产av综合av卡|