• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solubility and partial molar volume of diacetone-D-glucoseand its derivatives in supercritical carbon dioxide

    2019-04-04 02:38:36YANGHaijianBANBinruWANGShengXULingxiaoWANGLihua
    關(guān)鍵詞:溶解度超臨界摩爾

    YANG Haijian,BAN Binru,WANG Sheng,XU Lingxiao,WANG Lihua

    (College of Chemistry and Materials Science,South-Central University for Nationalities,Wuhan 430074,China)

    Abstract A series of diacetone-D-glucose(compound 1)derivatives,(diacetone-D-glucose methyl oxalate(compound 2),diacetone-D-glucose ethyl oxalate(compound 3),diacetone-D-glucose methyl malonate(compound 4),were designed and synthesized as carbon dioxide(CO2)-philic compounds for the measurement and correlation of their solubilities in supercritical carbon dioxide(scCO2). The cloud point was measured at different temperatures of 313,323,333 K over the pressure range of 8.0 to 13.6 MPa,then the solubility data were calculated and correlated by five different theoretical semi-empirical models(Chrastil,KJ,SS,MST,JCF). The results showed satisfactory agreements with the experimental data,with the JCF model providing the best fitness,which gave out the lowest average absolute relative deviation(AARD)from 3.13% to 6.22%. Furthermore,the partial molar volumes of these four compounds in the supercritical phase were also calculated according to the Kumar and Johnston theory,with the value between -6479.51 and -630.65 cm3·mol-1.

    Keywords supercritical carbon dioxide; diacetone-D-glucose derivatives; solubility; correlation; partial molar volume

    Over the past decades,supercritical fluids(SCFs)have been widely utilized in various applications,such as dyeing,food,catalytic and enzymatic reactions,and so forth[1-4]. Among all kinds of SCFs,scCO2is the most investigated and employed SCF because of its non-toxic,non-flammable chemical inertness,abundant and variable density,higher diffusion coefficient,lower viscosity and reasonable accessible critical constants[5-8]. The properties of scCO2are between liquid and gas and have much higher diffusivity and lower viscosity than that of liquid and much stronger solvent power than that of gas[9].Due to its inherent physical properties,carbon dioxide is a non-polar molecule of low polarizability and low dielectric constant,which limits the solubility of many polar compounds. To overcome the drawbacks of lower solubility,one solution suggested is to introduce some CO2-philic compounds into the scCO2system. Up to now,most efficient CO2-philic compounds are fluorides and silicones. Unfortunately,fluorides are very expensive and toxic; silicone- functioned amphiphiles require relatively high pressure to generate a single-phase solution in scCO2. So the design and synthesis of new nonfluorous CO2-philic compounds have become a challeng[10,11].

    According to the literatures and based on our research results,substituted hydrocarbons with ether and alkyl group carbonyl groups,especially carbonyl group with suitable length,are easily available,comparably economical,and well dispersive in scCO2,and thus used as desirable alternatives to fluorinated compounds. In present work,we have designed and synthesized three new CO2-philic compounds which contained the carbonyl group and alky group as CO2-philic moieties via the simple modification of diacetone-D-glucose(compound1). Then the solubilities of diacetone-D-glucose and its three derivatives,i.e.,diacetone-D-glucose methyl oxalate(compound2),diacetone-D-glucose ethyl oxalate(compound3),diacetone-D-glucose methyl malonate(compound4) were investigated in scCO2at different temperatures(313,323,333 K)and pressures(8.0-13.6 MPa).

    The mathematical modeling of the solubility data is essential to get a better understanding of the dissolution phenomenon in scCO2,as well as to predict the solubility at variously interested pressures and temperatures,which continuously update the development of scCO2technology[12,13]. Therefore,it is necessary to propose a semi-empirical model based on theoretical deduction to predict the solubility of compounds in scCO2accurately. Hence,in this work,the experimental solubility data were correlated by five different theoretical semi-empirical models(Chrastil,KJ,SS,MST,and JCF models). Furthermore,the partial molar volumes of diacetone-D-glucose and three diacetone-D-glucose derivatives in scCO2were also calculated according to the Kumar and Johnston theory.

    1 Experimental

    1.1 Chemicals and experimental apparatus

    Methylchloroglyoxylate,ethyl chlorocarbony formate and methyl malonyl chloride(Alfa Aesar Chem. Co.); Diacetone-D-glucose(98%,Shanghai Darui Finechemical Co.);Triethylamine(99.5%,J&K Chemica Co.);Tetrahydrofuran [THF,Sinopharm Chemical Reagent Co. Ltd(China)]; Carbon dioxide(99.99%,mass fraction,Wuhan Steel Co.,used as a fluid).

    A CO2delivery pump(JASCO PU-CO2)was used to cool and deliver CO2fluid and a back-pressure regulator(JASCO BP-1580-81)was used to keep the pressure in the range of 0 to 30.0 MPa. The temperature was controlled using a temperature controller jacket with an accuracy of0.01 K. NMR experiments were performed on a Bruker Al-400 MHz instrument using TMS as an internal standard. IR spectra were recorded on a Perkin-Elmer 2000 FT-IR spectrometer. Elemental analysis was conducted on a PE 2400 series II CHNS/O elemental analyzer.

    1.2 Procedure for solubility test in scCO2

    The experimental procedure described here is the common one and can be found elsewhere in literature[14-17]. A known amount of compounds being measured was introduced to a high-pressure view cell,which has a volume of 7.11 mL and withstands maximum pressure of 20 MPa,that was consisted of a stainless-steel block with two sapphire windows. The compound in the cell was stirred by a magneton,and the temperature was controlled to obtain near-equilibrium conditions using a constant-temperature water bath. At this point,the vessel was purged three times with low pressure CO2to remove traces of air. The CO2was delivered into the cell using the pump until the vessel was full of CO2at the desired initial pressure and temperature. Stirring was stopped for observation. The pressure was gradually increased(0.2 mL·min-1)until the compound/scCO2mixture began to form a single phase. Then the pressure was further increased until a completely transparent phase was present. The solution was stirred and let to equilibrate at these conditions for 2-3 h. Once this state was achieved the sample pressure was gradually(0.5 MPa every 10 min)lowered until the clear transparent one-phase solution turned hazy due to the Tyndall effect of the precipitated particles. This opalescence indicated the equilibrium condition,and the pressure was recorded as the cloud-point pressure. Then the pressure was increased gradually until the cloudy mixture became transparent again. At each condition,the experiment was repeated at least three times. The uncertainty of the cloud-point pressure was ±0.1 MPa. The cloud-point pressure and temperature were recorded to obtain the density of CO2from the website[15].

    1.3 Synthesis of diacetone-D-glucose derivatives(compounds 2-4)

    The diacetone-D-glucose derivatives were synthesized according to the method shown in
    Fig 1. Their structures have been determined by1H NMR,13C NMR,FT-IR,and elemental analysis.

    Fig.1 Synthetic route of compounds 2-4圖1 化合物2~4的合成路線

    Synthesis ofdiacetone-D-glucose methyl oxalate(compound2): Diacetone-D-glucose(1.3 g,5 mmol)was disolved in 25 mL fresh THF(40)in a 100 mL Schlenk flask under the atmosphere of nitrogen,and then oxalyl dichloride(3 mL,0.035 mol)in fresh THF(40 mL)was dropwise added into the solvent at 0 ℃ within 10 min. Then triethylamine(NEt3)(0.9 mL,10 mmol)was dropwise added to reaction system,the resulting mixture was stirred for 24 h at 70 ℃ and was then cooled to room temperature. After filtration and evaporation,the viscous liquid was dissolved with dichloromethane. Then the reaction mixture was sequentially washed with aqueous HCl(w=10%,mass fraction),saturated aqueous NaHCO3solution and distilled water,the organic phase then was dried over anhydrous sodium carbonate for 10 h. After evaporation under vacuum,the residue was purified by column chromatography on silica with petroleum ether: ethyl acetate(1∶3)as elute to afford compound 2(75% yield,GC purity > 99%)as pale yellow oil.1H NMR(400 MHz; CDCl3):δ1.32(t,J=14.1 Hz,8H),1.36-1.46(m,4H),3.36-3.52(m,3H),3.79(s,1H),4.07(m,J=13.1,8.7,3.7 Hz,2H),4.21-4.24(m,1H),4.59(s,1H),5.32(s,1H),5.89(s,1H).13C NMR(400 MHz; CDCl3):δ13.91(1C),26.24(1C),26.66(1C),41.10(1C),64.39(1C),68.47(1C),76.67(1C),76.99(1C),77.31(1C). 77.78(1C),79.27(1C),83.02(1C),99.99(1C),105.07(1C),112.46(1C). FT-IR [KBr,νmax(film)/cm-1]: 1755.4CO),1167.2(C—O—C). Elemental Anal. calcd for C15H22O9:C 52.02,H 6.40,O 41.58; found C 52.01,H 6.38,O 41.61%.

    Compounds3and4were obtained as pale yellow oil following the same procedure.

    Synthesis ofdiacetone-D-glucose ethyl oxalate(compound 3): Yield(78 %,GC purity > 99%).1H NMR(400 MHz; CDCl3):δ1.30-1.46(m,12H),1.53(d,J=16.0 Hz,3H),4.00-4.09(s,1H),4.13(s,1H),4.29(t,J=3.2 Hz,2H),4.37(m,J=6.9,5.3 Hz,2H),4.59(t,J=6.4 Hz,1H),5.42(s,1H),5.99(s,1H).13C NMR(400 MHz; CDCl3):δ13.85(1C),26.18(1C),26.77(1C),29.67(1C),30.89(1C),63.68(1C),68.05(1C),68.47(1C). 75.46(1C),76.70(1C),77.22(1C),77.33(1C),79.28(1C),85.15(1C). 104.93(1C),111.95(1C). FT-IR [KBr,νmax(film)/cm-1]: 1760.8(CO),1171.4(C—O—C). Elemental Anal. calcd for C16H24O9:C 53.33,H 6.71,O 39.96; found C 53.32,H 6.74,O 39.98.

    Synthesis ofdiacetone-D-glucose methyl malonate(compound4): Yield(70%,GC purity > 99%).1H NMR(400 MHz; CDCl3):δ1.30-1.50(m,12H),3.45(d,J=4.1 Hz,3H),3.78(q,J=13.4,11.0 Hz,2H),4.05-4.14(s,1H),4.07(d,J=19.8 Hz,2H),4.58(q,J=10.1,3.7 Hz,2H),5.32(s,1H),5.89(d,J=3.6 Hz,1H).13C NMR(400 MHz; CDCl3):δ25.87(1C),26.18(1C),40.45(1C),41.00(1C),48.65(1C),52.47(1C),63.86(1C),76.21(1C),76.24(1C),76.72(1C),77.03(1C),77.35(1C),79.28(1C),82.81(1C). 105.12(1C),112.71(1C). FT-IR [KBr,νmax(film)/cm-1]: 1750.6(CO),1161.4(C—O—C). Elemental Anal. calcd for:C16H24O9C 53.33,H 6.71,O 39.96,found: C 53.35,H 6.69,O 39.9.

    2 Results and Discussion

    2.1 Solubility results of compounds 1-4 in scCO2

    The reliability of the experimental apparatus and procedures[16]has been confirmed in our previous work[20]. After confirming that our procedures were able to measure solubilities accurately,the solubilities of compounds1-4were proceeded with measuring in scCO2. The solubilities of these compounds in scCO2were determined at temperatures of 313,323,333 K and pressure of 8.0 to 13.6 MPa. The experimental results average value were shown inTab.1.
    Fig.2 showed the comparison of solubility′s experimental and the calculated values for compounds1-4in scCO2at 313,323 and 333 K,which indicated that at the same temperature,the solubilities of these compounds increased with increasing pressure. Nevertheless,at the same pressure,the solubilities of these compounds declined with increasing temperature. It was mainly because the density of CO2decreased with the increasing temperature,and the solvent power of scCO2was stronger at lower temperatures. The results also showed that these compounds were all soluble at readily accessible temperatures and pressures. At the same temperature,the solubility sequence was observed as compound2>3>4>1(Fig.3). The modified compounds2-4showed better solubility than compound1in scCO2. It could be attributed to the CO2-philic carbonyl and ether groups,which are helpful to enhance the interaction of solute-solvent. The solubility of compound2is greater than compound3,which might be attributed to the molar mass difference,i.e.,for similar molecule structures,lower molar mass exhibits better solubility in scCO2[6]. For the structurally similar compounds3and4,compound3is more soluble than compound4in scCO2. This may be because the inserted methylene between two carbonyls moderated the CO2-philic ability of compound4.

    Tab.1 Solubility at temperature(T),density(ρ),molar fraction(x)for compounds 1-4a 表1 化合物1~4在不同溫度、密度、摩爾分?jǐn)?shù)下的溶解度

    aStandard uncertaintiesuareu(T)= 0.1 K,u(P)= 0.1 MPa,ur(ρ)= 0.02,andur(x)=0.03

    Fig.2 Comparison of solubility experimental and calculated values for compounds 1-4 in supercritical CO2 at different temperatures圖2 化合物1~4在不同溫度下在超臨界CO2中的溶解度實(shí)驗(yàn)值和計(jì)算值的比較

    Fig.3 Solubility of compounds1-4 at 313 K 圖3 化合物1~4在313 K時(shí)的溶解度

    2.2 The chrastil model

    As one of the most frequently-used and traditional density-based models,theChrastil[12,14]model relates the solute solubility(S,g·L-1)in scCO2,the density of scCO2(ρ,g·L-1),and temperature(T,K)as equation(1):

    (1)

    whereA1-A3are the adjustable parameters which could be estimated from experimental solubility data in scCO2.

    In this article,to justify the selection of the correlation models on a more easily comparable basis,S(g·L-1solute/scCO2)in the Chrastil model is transformed tox(mole fraction solubility of solute),and the parameters of the model are redefined.Scould be calculated by equation(2):

    (2)

    wherexis the molar fraction of the solute,M1andM2are the molecular weights of CO2and the solute(g·mol-1),respectively.

    Combining equations(1)and(2),equation(3)was obtained as following:

    (3)

    The term 1-xapproximately equals 1 because the mole fraction solubility of the solutexis much smaller than 1. In addition,the termA0-ln(M2/M1)can be redefined as a new association parameterA1. Therefore,equation(3)becomes:

    lnx=A1lnρ+A2/T+A3.

    (4)

    The average absolute relative deviation(AARD)between experimental data and calculated value obtained from the Chrastil model could be calculated using the following formula equation(5):

    (5)

    wherenis the number of experimental data points,andxi,calandxi,expare the calculated and experimental value of the mole fraction solubility of the solute,respectively.

    The results of the solubility data correlation using the Chrastil model were shown in
    Tab.2.
    Fig.4 exhibited the plots of lnxversus lnρa(bǔ)s the result of correlation. The values of AARD were in the range 5.52%-7.18%.

    Tab.2 Correlated results of five different theoretical semi-empirical models for the solubility data 表2 5種不同半經(jīng)驗(yàn)?zāi)P屠碚撊芙舛认嚓P(guān)數(shù)據(jù)

    aCorrelations:Chrastil(lnS=A1lnρ+A2/T+A3),KJ(lnx=B1ρ+B2/T+B3),SS[lnx=(C1+C2/T)lnρ+C3/T+C4],

    MST[Tln(xP)=D1ρ+D2T+D3],JCF(lnx=E1P+E2P2+E3PT+E4T/P+E5lnρ+E6)

    Fig.4 Plots of lnx versus lnρ for compounds 1-4 using the Chrastil,SS and JCF models at 313,323,333 K圖4 313,323,333 K下用Chrastil,SS,JCF模型擬合化合物1~4的lnx與lnρ 值關(guān)聯(lián)曲線

    2.3 The KJ model

    According to Kumar and Johnston′s theory[11],there′s a linear correlation between lnxand lnρ,and in some cases between lnxandρ,which are system-dependent,and neither can be validly generalized. So similar to equation(1),the linear expression between lnxandρcould be given as equation(6):

    (6)

    whereB1-B3are adjustable parameters,in which the parameterB1is the same as the parameterA1of the Chrastil model,defined asΔHtotal/R.

    The results of the solubility data correlation using the KJ model were shown in
    Tab.2.
    Fig.5 exhibited the plots oflnxversusρa(bǔ)s the result of correlation. The values of AARD were in the range 5.52%-9.12%.

    Fig.5 Plots oflnx versus ρ for compounds 1-4 using the KJ model at 313,323,333 K圖5 313,323,333 K下用KJ模型擬合化合物1~4的lnx和 ρ 值的關(guān)聯(lián)曲線

    2.4 The SS model

    The temperature effects on the solubility were discussed by Sung and Shim[4],the SS model pointed out that in the log-log plot the solubility isotherms were linear,whereas their slopes were decreasing with increasing temperature. Therefore,the KJ model was modified by taking the temperature effects into account as the following equation(7):

    (7)

    whereC1-C4are adjustable parameters.

    The results of the solubility data correlation using the SS model were also shown in
    Tab.2.
    Fig.3 exhibited the plots oflnxversus lnρa(bǔ)s the result of correlation. The values of AARD were in the range 4.49%-7.21%.

    2.5 The MST model

    Méndez-Santiago and Teja[2]proposed a density-based model,which comes from the linear relationship betweenTlnDandρ,derived from the theory of dilute solutions:

    (8)

    Tln(xP)=D1ρ+D2T+D3,

    (9)

    whereD1-D3are adjustable parameters.

    The results of the solubility data correlation using the MST model were shown in
    Tab.2.
    Fig.5 exhibited the plots ofTln(xP)versusρa(bǔ)s the result of correlation. The values of AARD were in the range 5.26%-9.17%.

    Fig.6 Plots of T ln(xP)versus ρ for compounds 1-4 using the MST model at 313,323,333 K圖6 313,323,333 K下用MST模型擬合化合物1~4的T ln(xP)和 ρ 值的關(guān)聯(lián)曲線

    2.6 The JCF model

    Considering the nonlinear relationship betweenlnxand the pressure in isothermal conditions,the nonlinear relationship between lnxand the temperature in isobaric conditions,and the linear relationship between lnxand lnρin a certain range of pressure and temperature,Jouyban et al[14]proposed another density-based model,which can be written as equation(10):

    (10)

    whereE1-E6are adjustable parameters.

    The results of the solubility data correlation using the JCF model were shown in
    Tab.2.
    Fig.3 exhibited the plots oflnxversus lnρa(bǔ)s the result of correlation. The values of AARD were in the range 3.13%-6.22%. The results showed that the JCF model was in good agreement with experimental solubility data although it is rarely used[18-20].

    2.7 Comparison of five semi-empirical models

    As shown in
    Tab.2,all the AARD values of these models are below 10%,which indicated that the application of these models to correlate the solubility were successful. Among these models,the JCF model gave the best fit to the solubility data with the AARD value of 4.23(compound1),3.13(compound2),6.22(compound3),3.46(compound4). The JCF model has six parameters,and that is why it provides the best results and has not been more often used now.

    In order to better compare different models,the mean AARD values of each model and their corresponding standard deviation(SD)have been calculated in this work,and the results can be observed in
    Fig.7.

    Fig.7 Mean AARD(solid box)of each model with their corresponding SD圖7 每種模型的平均AARD(實(shí)體箱)及對(duì)應(yīng)的SD

    As a result,the number of added parameters in the JCF model has a significant effect on the predictive capability of the model,which is consistent with the result in
    Fig.7. The KJ model(lnxvsρ)is similar to the Chrastil model with three adjustable parameters. Compared with the Chrastil model,the fitness is worse. Nevertheless,it can be improved by the SS model,which reduces mean AARD from 7.13% to 5.66% and SD from 1.33% to 0.98%(Fig.7). The SS model(lnxvs lnρ+ lnρ/T)has four adjustable parameters,which also improve the accuracy of the expression of the density′s function in the KJ model. The MST model [Tln(xP)vsρ] is shown to give the relatively poor correlated results with mean AARD of 6.77% and SD of 1.49%(Fig.7),perhaps because of the oversimplified treatments used to derive this model.

    In general,the results indicated that the modified models gave out better fitness than the original models. Moreover,the models that have similar semi-logarithmic solubility-density relationships(the KJ and MST models)showed worse correlated results,while the models that have the log-log solubility-density relationships(the JCF and SS models)had better correlated results,except the Chrastil model.

    2.8 Estimation of the partial molar volumes of the solutes

    The partial molar volumes of the solutes are crucial parameters for the solubility evaluation of solutes inSCFs. Since the corresponding data of partial molar volumes of our compounds1-4have not been found from the previous reports,it is useful and meaningful for other scientists to refer to our data in the future. The partial molar volumes of the four compounds can be calculated with the theory reported by Kumar and Johnston[11]:

    (11)

    (12)

    Tab.3 indicated that the partial molar volume for each solute decreased as temperature increased. Moreover,the partial molar volumes of solute in scCO2were negative values,possibly ascribed to the reason that a mole solute molecule was aggregated by a multitude of solvent molecules,which can be expressed by the following equation(13):

    Solute +nsolventSolute(solvent)n,

    (13)

    wherenranges from 10 to 50.

    Tab.3 Results of the calculation of partial molar using Kumar-Johnston theory for compounds 1-4a

    Fig.8 Plots of lnx versus lnρr for compounds 1-4 at 313,323,333 K圖8 313,323,333 K下化合物1~4的lnx和lnρr 值的關(guān)聯(lián)曲線

    3 Conclusion

    This study presented novel solubility data fordiacetone-D-glucose and three synthesized diacetone-D-glucose derivatives at the temperature(313,323,333 K)over the pressure range(8.0 to 13.6 MPa). The solubilities of the four compounds increased with the rising of pressure in isothermal conditions,whereas decreased with the increase of temperature in isobaric conditions. The experimental data of the four compounds were correlated using five different theoretical semi-empirical models(Chrastil,KJ,SS,MST,and JCF). Good agreements between the calculated and the experimental values were obtained for all the models. In general,the SS and JCF models as the modification of models correlated the solubility data were better than the other three original models. The results indicated that in any case the JCF model is shown to be the best model because it has more adjustable parameters of temperature and pressure. In addition,the partial molar volumes of the four compounds in scCO2were calculated by employing solubility data which use the theory developed by Kumar and Johnston.

    猜你喜歡
    溶解度超臨界摩爾
    “溶解度曲線”考點(diǎn)擊破
    超臨界CO2在頁巖氣開發(fā)中的應(yīng)用研究進(jìn)展
    云南化工(2021年5期)2021-12-21 07:41:20
    戰(zhàn)場(chǎng)上的雕塑家——亨利摩爾
    西方摩爾研究概觀
    溶解度曲線的理解與應(yīng)用例析
    CO2捕集的吸收溶解度計(jì)算和過程模擬
    600MW超臨界機(jī)組熱經(jīng)濟(jì)性定量分析
    溶解度計(jì)算錯(cuò)誤種種和對(duì)策
    1200MW等級(jí)超超臨界機(jī)組可行性研究
    超臨界CO2增稠劑研究進(jìn)展
    斷塊油氣田(2012年5期)2012-03-25 09:53:51
    国产欧美日韩综合在线一区二区| 多毛熟女@视频| 国产精品欧美亚洲77777| 欧美人与性动交α欧美软件| 久久久久久久国产电影| 久久精品国产清高在天天线| 亚洲av第一区精品v没综合| 国产av又大| 中出人妻视频一区二区| 国产亚洲欧美98| 18禁裸乳无遮挡免费网站照片 | 久久国产精品大桥未久av| 亚洲三区欧美一区| 色播在线永久视频| 99国产精品一区二区蜜桃av | 亚洲一区高清亚洲精品| 久久国产乱子伦精品免费另类| 午夜免费成人在线视频| 亚洲国产毛片av蜜桃av| 少妇被粗大的猛进出69影院| 欧美黄色片欧美黄色片| 女人久久www免费人成看片| 久久中文字幕一级| 大型av网站在线播放| 欧美日韩成人在线一区二区| 99香蕉大伊视频| 亚洲成a人片在线一区二区| 久久久国产一区二区| xxxhd国产人妻xxx| 亚洲成人免费电影在线观看| 日韩欧美一区二区三区在线观看 | 午夜日韩欧美国产| 中文字幕制服av| 亚洲av美国av| 中文欧美无线码| 久久ye,这里只有精品| 国产精品国产高清国产av | 欧美久久黑人一区二区| 黄色成人免费大全| 一区二区日韩欧美中文字幕| cao死你这个sao货| 精品午夜福利视频在线观看一区| 超碰成人久久| 久久国产精品男人的天堂亚洲| 久久中文字幕人妻熟女| 极品人妻少妇av视频| 黄色毛片三级朝国网站| 少妇粗大呻吟视频| 黄色视频不卡| 麻豆国产av国片精品| 久久热在线av| 亚洲成人免费电影在线观看| 亚洲男人天堂网一区| 亚洲人成电影观看| av天堂久久9| 国产精品免费视频内射| avwww免费| 一夜夜www| 大码成人一级视频| 免费日韩欧美在线观看| 亚洲欧美色中文字幕在线| 日本a在线网址| 精品一区二区三区四区五区乱码| 亚洲av成人一区二区三| 国产在线一区二区三区精| 国产欧美日韩精品亚洲av| 在线观看免费日韩欧美大片| 国产精品一区二区免费欧美| 又紧又爽又黄一区二区| 91麻豆精品激情在线观看国产 | 在线播放国产精品三级| 在线免费观看的www视频| 亚洲av电影在线进入| 日本wwww免费看| 91在线观看av| 久久久国产欧美日韩av| 亚洲av熟女| 国产成人免费观看mmmm| 久久久国产一区二区| 一区二区三区精品91| 欧美不卡视频在线免费观看 | 老司机在亚洲福利影院| 真人做人爱边吃奶动态| 天天躁日日躁夜夜躁夜夜| 97人妻天天添夜夜摸| 亚洲 国产 在线| 精品视频人人做人人爽| 91成年电影在线观看| 久久天躁狠狠躁夜夜2o2o| 精品国产一区二区久久| 久久久久精品国产欧美久久久| 中文字幕高清在线视频| 亚洲欧美日韩另类电影网站| 婷婷精品国产亚洲av在线 | 狂野欧美激情性xxxx| 欧美乱色亚洲激情| 天天躁狠狠躁夜夜躁狠狠躁| 欧美精品人与动牲交sv欧美| 国产高清国产精品国产三级| 动漫黄色视频在线观看| 国产欧美亚洲国产| 国产成人一区二区三区免费视频网站| 国产在视频线精品| 国产精品久久久av美女十八| 老司机影院毛片| 色婷婷av一区二区三区视频| 久久精品亚洲熟妇少妇任你| 成年动漫av网址| 亚洲一码二码三码区别大吗| 国产精品 欧美亚洲| 在线观看免费视频日本深夜| 亚洲,欧美精品.| 中文欧美无线码| 高潮久久久久久久久久久不卡| 亚洲国产欧美日韩在线播放| 成人免费观看视频高清| 日本撒尿小便嘘嘘汇集6| 高清欧美精品videossex| 国产xxxxx性猛交| av网站免费在线观看视频| 大片电影免费在线观看免费| 欧美日韩精品网址| 深夜精品福利| 69精品国产乱码久久久| 欧美日韩国产mv在线观看视频| 人人妻,人人澡人人爽秒播| 丝袜美腿诱惑在线| 一级片'在线观看视频| 在线十欧美十亚洲十日本专区| 巨乳人妻的诱惑在线观看| 亚洲av熟女| 伦理电影免费视频| 悠悠久久av| 90打野战视频偷拍视频| 亚洲成国产人片在线观看| 国产精品乱码一区二三区的特点 | 嫩草影视91久久| 香蕉丝袜av| 中出人妻视频一区二区| 侵犯人妻中文字幕一二三四区| 久久精品国产清高在天天线| 国产欧美日韩一区二区精品| 男男h啪啪无遮挡| tube8黄色片| 大型av网站在线播放| av一本久久久久| 欧美精品亚洲一区二区| www.999成人在线观看| 亚洲欧美激情综合另类| 777久久人妻少妇嫩草av网站| 久久久精品免费免费高清| 两性夫妻黄色片| 啦啦啦视频在线资源免费观看| 婷婷精品国产亚洲av在线 | 丰满饥渴人妻一区二区三| 岛国毛片在线播放| 国产精品亚洲av一区麻豆| 欧美不卡视频在线免费观看 | 免费人成视频x8x8入口观看| 免费观看精品视频网站| 无遮挡黄片免费观看| 在线观看午夜福利视频| 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 亚洲五月天丁香| 亚洲色图综合在线观看| 久久狼人影院| 后天国语完整版免费观看| 午夜91福利影院| 午夜福利乱码中文字幕| 中文字幕人妻熟女乱码| 99国产精品一区二区三区| 欧美老熟妇乱子伦牲交| 夜夜夜夜夜久久久久| 欧美日韩精品网址| 国产午夜精品久久久久久| 久久精品亚洲av国产电影网| 欧美另类亚洲清纯唯美| 久久久久国内视频| 日韩欧美一区视频在线观看| 久久国产精品男人的天堂亚洲| 91成年电影在线观看| 午夜精品久久久久久毛片777| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 在线观看免费视频日本深夜| 两个人免费观看高清视频| 国产成人精品久久二区二区91| 欧美丝袜亚洲另类 | 成年版毛片免费区| 国产亚洲av高清不卡| 每晚都被弄得嗷嗷叫到高潮| 一级a爱视频在线免费观看| 手机成人av网站| 国产精品99久久99久久久不卡| 久久国产精品影院| 欧美成人午夜精品| 老司机靠b影院| 丰满的人妻完整版| 亚洲av日韩精品久久久久久密| 国产成人精品无人区| 在线观看午夜福利视频| 久久久久精品国产欧美久久久| 精品国产国语对白av| 精品福利观看| 亚洲精品国产区一区二| 国产xxxxx性猛交| 1024香蕉在线观看| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 母亲3免费完整高清在线观看| 99精品在免费线老司机午夜| 成人国产一区最新在线观看| 国产一区二区激情短视频| 老司机福利观看| 国产免费男女视频| 美女视频免费永久观看网站| 日韩视频一区二区在线观看| 亚洲免费av在线视频| 亚洲国产欧美网| 免费在线观看影片大全网站| 成在线人永久免费视频| 高清毛片免费观看视频网站 | 老司机影院毛片| x7x7x7水蜜桃| 一边摸一边做爽爽视频免费| 欧美日本中文国产一区发布| 亚洲avbb在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产精品九九99| x7x7x7水蜜桃| 身体一侧抽搐| videosex国产| 两人在一起打扑克的视频| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 香蕉国产在线看| 久久精品亚洲熟妇少妇任你| 在线永久观看黄色视频| 日韩人妻精品一区2区三区| 日韩欧美在线二视频 | 国产色视频综合| 夜夜躁狠狠躁天天躁| 精品人妻1区二区| 免费观看人在逋| 亚洲第一欧美日韩一区二区三区| 亚洲中文字幕日韩| 女性生殖器流出的白浆| 国产成人精品久久二区二区91| 黄色毛片三级朝国网站| 丝瓜视频免费看黄片| 香蕉丝袜av| 国产成人精品无人区| 成人精品一区二区免费| 成人国产一区最新在线观看| 一夜夜www| 亚洲成国产人片在线观看| 欧美不卡视频在线免费观看 | 精品国产美女av久久久久小说| 大型av网站在线播放| 91大片在线观看| 超碰97精品在线观看| 老汉色av国产亚洲站长工具| 欧美人与性动交α欧美精品济南到| 女性被躁到高潮视频| 成人免费观看视频高清| 精品久久久久久电影网| 香蕉久久夜色| 国产午夜精品久久久久久| 国产片内射在线| 欧美亚洲日本最大视频资源| 亚洲国产欧美一区二区综合| 9191精品国产免费久久| 热99久久久久精品小说推荐| 久久精品91无色码中文字幕| 又黄又爽又免费观看的视频| 久久人妻福利社区极品人妻图片| 老司机福利观看| 国产成人免费无遮挡视频| 久久精品国产亚洲av香蕉五月 | 高清av免费在线| 国产在线一区二区三区精| 性色av乱码一区二区三区2| 熟女少妇亚洲综合色aaa.| av网站在线播放免费| 久久婷婷成人综合色麻豆| 中文字幕人妻丝袜制服| 正在播放国产对白刺激| 高清欧美精品videossex| 久久香蕉国产精品| 亚洲情色 制服丝袜| ponron亚洲| 亚洲中文av在线| 成人18禁在线播放| www.自偷自拍.com| 免费观看a级毛片全部| 9热在线视频观看99| 日韩三级视频一区二区三区| e午夜精品久久久久久久| 国产在视频线精品| 亚洲熟妇熟女久久| 香蕉丝袜av| 久久国产精品人妻蜜桃| 亚洲片人在线观看| 狂野欧美激情性xxxx| 一边摸一边做爽爽视频免费| 亚洲av欧美aⅴ国产| 我的亚洲天堂| 欧美精品高潮呻吟av久久| 日本一区二区免费在线视频| 欧美精品啪啪一区二区三区| 免费女性裸体啪啪无遮挡网站| 午夜成年电影在线免费观看| 亚洲一区二区三区不卡视频| 免费黄频网站在线观看国产| 日本vs欧美在线观看视频| 欧美成人午夜精品| 国产精品 国内视频| 多毛熟女@视频| 天天影视国产精品| 高清黄色对白视频在线免费看| 精品久久久精品久久久| 老汉色av国产亚洲站长工具| 高潮久久久久久久久久久不卡| 美女午夜性视频免费| 免费观看a级毛片全部| 在线国产一区二区在线| 亚洲欧美精品综合一区二区三区| 午夜精品国产一区二区电影| 黑人巨大精品欧美一区二区mp4| 又黄又爽又免费观看的视频| 午夜免费成人在线视频| 精品乱码久久久久久99久播| 无人区码免费观看不卡| www日本在线高清视频| 久久精品国产清高在天天线| 欧美日韩视频精品一区| 窝窝影院91人妻| 精品国产亚洲在线| 老熟女久久久| 国产av精品麻豆| 人人妻人人澡人人看| 欧美久久黑人一区二区| www日本在线高清视频| 国产午夜精品久久久久久| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美日韩高清在线视频| 国产一区在线观看成人免费| 国产免费av片在线观看野外av| 欧美日韩精品网址| 亚洲成人国产一区在线观看| 很黄的视频免费| 亚洲精品av麻豆狂野| ponron亚洲| 国产精品香港三级国产av潘金莲| 亚洲国产欧美一区二区综合| 老司机福利观看| 女人被躁到高潮嗷嗷叫费观| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 国产免费男女视频| 国产在线一区二区三区精| 国产精品久久视频播放| 制服人妻中文乱码| 久久国产精品影院| 午夜福利欧美成人| 香蕉国产在线看| 国产片内射在线| 十八禁高潮呻吟视频| 亚洲精品中文字幕一二三四区| 久久久久国产一级毛片高清牌| 身体一侧抽搐| 久久国产精品大桥未久av| 又大又爽又粗| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 午夜视频精品福利| 99re在线观看精品视频| 亚洲aⅴ乱码一区二区在线播放 | 1024视频免费在线观看| 在线观看免费高清a一片| 亚洲精品一卡2卡三卡4卡5卡| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 亚洲 欧美一区二区三区| av视频免费观看在线观看| avwww免费| 亚洲欧美激情综合另类| 黑人猛操日本美女一级片| 极品人妻少妇av视频| 99国产精品99久久久久| 91成人精品电影| 性色av乱码一区二区三区2| 婷婷丁香在线五月| 丰满人妻熟妇乱又伦精品不卡| 成年人午夜在线观看视频| 国产高清国产精品国产三级| 动漫黄色视频在线观看| 久久中文字幕人妻熟女| 久久影院123| 啦啦啦免费观看视频1| 国产精品 国内视频| 亚洲va日本ⅴa欧美va伊人久久| 国产男女超爽视频在线观看| √禁漫天堂资源中文www| 欧美日韩av久久| 美女高潮喷水抽搐中文字幕| 色综合欧美亚洲国产小说| 午夜视频精品福利| 国产欧美亚洲国产| 国产高清videossex| 国产亚洲av高清不卡| 亚洲精品美女久久av网站| 国产精品永久免费网站| 久久久久久免费高清国产稀缺| 少妇被粗大的猛进出69影院| 高清毛片免费观看视频网站 | 国产欧美日韩一区二区三| 啪啪无遮挡十八禁网站| 99国产精品99久久久久| 自线自在国产av| 精品国产一区二区三区久久久樱花| 国产麻豆69| 91九色精品人成在线观看| 午夜免费成人在线视频| 日韩欧美一区二区三区在线观看 | 免费在线观看影片大全网站| 大型av网站在线播放| 亚洲综合色网址| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻熟女aⅴ| 亚洲精品久久午夜乱码| 亚洲精品在线观看二区| 久久九九热精品免费| 一级黄色大片毛片| 人妻 亚洲 视频| 多毛熟女@视频| 韩国精品一区二区三区| 99久久精品国产亚洲精品| 天天影视国产精品| 国产aⅴ精品一区二区三区波| 午夜激情av网站| 欧美在线黄色| 亚洲精品国产一区二区精华液| 亚洲精品久久成人aⅴ小说| 精品无人区乱码1区二区| 日韩成人在线观看一区二区三区| 99久久综合精品五月天人人| a级片在线免费高清观看视频| 亚洲第一欧美日韩一区二区三区| 在线永久观看黄色视频| 成人国语在线视频| www.自偷自拍.com| 午夜福利视频在线观看免费| 99国产精品一区二区蜜桃av | 啦啦啦免费观看视频1| 久久九九热精品免费| 色尼玛亚洲综合影院| 悠悠久久av| 黄频高清免费视频| 中文字幕高清在线视频| 他把我摸到了高潮在线观看| 免费观看a级毛片全部| 亚洲成人免费电影在线观看| 久久人人爽av亚洲精品天堂| 18禁国产床啪视频网站| 亚洲国产中文字幕在线视频| 欧美黑人欧美精品刺激| 久久久久精品国产欧美久久久| 十八禁高潮呻吟视频| 久久久国产一区二区| 免费看a级黄色片| 国产激情久久老熟女| 波多野结衣av一区二区av| 免费久久久久久久精品成人欧美视频| 亚洲片人在线观看| 免费久久久久久久精品成人欧美视频| 一进一出好大好爽视频| 黑人猛操日本美女一级片| 精品亚洲成a人片在线观看| 99久久国产精品久久久| 亚洲自偷自拍图片 自拍| 久久精品国产清高在天天线| 深夜精品福利| 俄罗斯特黄特色一大片| 国产高清国产精品国产三级| 他把我摸到了高潮在线观看| 99热国产这里只有精品6| 久热爱精品视频在线9| 大型av网站在线播放| 色播在线永久视频| 在线天堂中文资源库| 国内久久婷婷六月综合欲色啪| 亚洲专区中文字幕在线| 欧美日韩视频精品一区| 久久国产精品影院| 国产精品一区二区在线观看99| 午夜福利在线免费观看网站| 国产精品久久电影中文字幕 | 日韩大码丰满熟妇| av一本久久久久| 久久久国产欧美日韩av| 国产成人av教育| 侵犯人妻中文字幕一二三四区| 丝袜人妻中文字幕| 男男h啪啪无遮挡| 久久天堂一区二区三区四区| 天天操日日干夜夜撸| 91麻豆av在线| 午夜激情av网站| 黑丝袜美女国产一区| 我的亚洲天堂| 大型黄色视频在线免费观看| 色94色欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 手机成人av网站| 日韩精品免费视频一区二区三区| 亚洲九九香蕉| 淫妇啪啪啪对白视频| 咕卡用的链子| av电影中文网址| 国产淫语在线视频| 黄色片一级片一级黄色片| 国产精品1区2区在线观看. | 欧洲精品卡2卡3卡4卡5卡区| 国产精品国产高清国产av | 国产97色在线日韩免费| av不卡在线播放| 国产不卡一卡二| 久久精品人人爽人人爽视色| 成人国语在线视频| 一级a爱视频在线免费观看| 久久久久久久午夜电影 | 精品久久久久久久久久免费视频 | 亚洲国产精品合色在线| 国产真人三级小视频在线观看| 女性生殖器流出的白浆| 两人在一起打扑克的视频| 757午夜福利合集在线观看| 91麻豆精品激情在线观看国产 | 法律面前人人平等表现在哪些方面| 男女午夜视频在线观看| 精品福利永久在线观看| 国产激情久久老熟女| 欧美亚洲日本最大视频资源| 精品国产一区二区三区久久久樱花| 久久久久视频综合| 日韩成人在线观看一区二区三区| 69精品国产乱码久久久| 老司机福利观看| xxx96com| 捣出白浆h1v1| 日本黄色日本黄色录像| 久久精品人人爽人人爽视色| 一a级毛片在线观看| 黄色成人免费大全| 丁香欧美五月| 欧美激情极品国产一区二区三区| 中亚洲国语对白在线视频| 国产男女内射视频| 变态另类成人亚洲欧美熟女 | 在线十欧美十亚洲十日本专区| 亚洲中文字幕日韩| 在线观看一区二区三区激情| 成年人黄色毛片网站| 精品高清国产在线一区| videos熟女内射| 亚洲av日韩精品久久久久久密| 精品免费久久久久久久清纯 | 欧美一级毛片孕妇| 欧美 亚洲 国产 日韩一| 国产主播在线观看一区二区| 亚洲七黄色美女视频| av网站在线播放免费| 曰老女人黄片| 99re6热这里在线精品视频| av在线播放免费不卡| 日韩有码中文字幕| 成年版毛片免费区| 亚洲精品中文字幕在线视频| 成年动漫av网址| 国产1区2区3区精品| 少妇被粗大的猛进出69影院| 国产精品 欧美亚洲| 国产成人系列免费观看| 中文欧美无线码| 大型av网站在线播放| 狂野欧美激情性xxxx| 99热网站在线观看| 久久午夜综合久久蜜桃| 午夜91福利影院| 久久亚洲精品不卡| 免费女性裸体啪啪无遮挡网站| 亚洲成av片中文字幕在线观看| 午夜精品国产一区二区电影| av超薄肉色丝袜交足视频| 夫妻午夜视频| 亚洲熟女毛片儿| 美女国产高潮福利片在线看| 日日摸夜夜添夜夜添小说| 欧美一级毛片孕妇| 50天的宝宝边吃奶边哭怎么回事| 国产野战对白在线观看| 嫩草影视91久久| 90打野战视频偷拍视频| 欧美日韩一级在线毛片| 日日摸夜夜添夜夜添小说| 成年动漫av网址| 在线观看免费日韩欧美大片| 91大片在线观看| 亚洲国产欧美日韩在线播放| 亚洲熟妇熟女久久| 国产麻豆69| 欧美人与性动交α欧美软件| 99国产精品免费福利视频|