• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Straightforward Direct Traction Boundary Integral Method for Two-Dimensional Crack Problems Simulation of Linear Elastic Materials

    2019-03-18 08:15:40ChaoZhangChunheYangShangweiWuXiaolongZhangandWenNie
    Computers Materials&Continua 2019年3期

    Chao Zhang,Chunhe Yang,Shangwei Wu ,Xiaolong Zhang, and Wen Nie

    Abstract:This paper presents a direct traction boundary integral equation method(DTBIEM) for two-dimensional crack problems of materials.The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces.The displacements and tractions were used as unknowns on the external boundary,while the relative crack opening displacement (RCOD) was chosen as unknowns on either side of crack surfaces to keep the single-domain merit.Only one side of the crack surfaces was concerned and needed to be discretized,thus the proposed method resulted in a smaller system of algebraic equations compared with the dual boundary element method (DBEM).A new set of crack-tip shape functions was constructed to represent the strain field singularity exactly,and the SIFs were evaluated by the extrapolation of the RCOD.Numerical examples for both straight and curved cracks are given to validate the accuracy and efficiency of the presented method.

    Keywords:Fracture mechanics,direct traction integral method,relative crack opening displacement,stress intensity factor.

    1 Introduction

    The boundary element method (BEM) has been a well-established numerical technique for many engineering problems in the past decades [Brebbia,Dominquez and Tassoulas(1991)].It has certain advantages over the domain-based method,such as the finite element method (FEM).The most significant feature of the BEM is that it only requires discretization of the boundary rather than the whole domain.For the crack simulation of linear elastic materials (e.g.rock materials),stress intensity factors (SIFs) play an important role in cracked structures.The high singularity of stresses near the crack-tip has been challenging for all the previous numerical methods,even FEM [Yan,Feng,Pan et al.(2014,2013); Rabczuk,Bordas and Zi (2010)] and BEM [Cruse (2012); Aliabadi(1997)].The conventional BEM encounters difficulties as the existence of degenerated

    geometries,which results in a singular system of equations.Some particular methods[Pan (1997)] have been proposed to overcome these difficulties,such as the Green’s function method [Snyder and Cruse (1975)],the multi-domain technique [Wang,Zheng,Miao et al.(2011); Miao and Wang (2005,2006)],the displacement discontinuity method(DDM) [Portela,Aliabadi and Rooke (1992)] and the dual reciprocity method (DRM)[Miao,Wang and Wang (2009a); Miao,He,Luo et al.(2012); Miao,Chen,Wang et al.(2014); Miao,Wang,Liao et al.(2009b); Ren,Zhuang and Rabczuk (2017); Ren,Zhuang,Cai et al.(2016)].For example,the Green’s function method can eliminate crack surface modelling and produces the results with an excellent accuracy.However,the method is limited to very simple crack geometries for which analytical Green’s function can be obtained [Konyukhov and Schweizerhof (2010); Rabczuk and Belytschko (2004);Rabczuk and Ren (2017)].The multi-domain technique introduces artificial boundaries to divide the problem of the domain into sub-regions,thus resulting in a large system of equations.The DDM utilizes the crack opening displacement (COD) as an unknown parameter,which can be used to calculate the stress intensity factors directly.Another promising method is the so-called dual boundary element method (DBEM).The DBEM employs both the displacement and the traction boundary integral equations.The displacement boundary integral equation is considered on the external boundary and one side of the crack surface,while the traction boundary integral equation is designated on the other crack surface to eliminate the singularity of the equation system.Singular integrals in DBEM are treated as Cauchy or Hadamard principal value integrals on piecewise smooth crack paths and can be evaluated accurately using the singularity subtraction method [Guiggiani (1998); Sur and Altiero (1988); Miao,Li,Lv et al.(2013); Lv,Miao and Zhu (2014)].In the DBEM formulation,displacements on both sides of the crack surface are considered as unknown.Thus,the resulting algebraic equations are doubled along the crack surface,which may be unnecessary for the evaluation of SIFs.Therefore,some improved single-domain BEM formulations are applied to the displacement integral equation on the external boundary.For the crack surfaces,the relative crack opening displacement (RCOD) [Ammons and Vable (1996); Chang and Mear (1996)] or the tangential derivative of the RCOD [Xie,Zhang,Huang et al.(2013)] can be chosen as unknowns therefore the traction boundary integral equation only needs to be considered on either side of crack surfaces.Recently,Mi et al.[Mi and Aliabadi (1994)] proposed a promising single-domain method named direct traction boundary integral method for three-dimensional crack problems.In this study,a direct traction boundary integral method for two-dimensional crack problems is presented as a complementary formulation.The traction boundary integral equation is applied to both the external boundary and either side of the crack surfaces.The displacements and tractions are used as unknowns on the external boundary,while the RCOD is chosen as unknowns on either side of crack surfaces to keep the single-domain merit.A new set of crack-tip shape functions is introduced to represent the strain field singularity exactly,and the SIFs are evaluated by the extrapolation of the RCOD.The outline of our study is as follows.In Section 2,the DTBIM formulations are described in detail.Section 3 explains the modelling strategy and crack-tip shape functions.The evaluation of the SIFs is illustrated in Section 4.Some numerical examples are listed in Section 5,and finally,the study ends with conclusions in Section 6.

    2 Direct traction boundary integral method

    Considering a finite domain Ωis surrounded by the boundary Γwith a crack as shown in Fig.1 whileΓ+and Γ-are the upper and lower crack surfaces,respectively.By differentiation of the displacement boundary integral equation,followed by the application of Hooke’s law,the traction boundary integral equation on a smooth boundary is given by:

    wheretiis the traction components andni(y)denotes theithcomponent of the unit outward normal to the boundary at source point.Dijk(x,y)andSijk(x,y)are linear combinations of derivatives of the Kelvin fundamental solutions,Uij(x,y)andTij(x,y),respectively.

    Figure1:A finite domain with a crack

    The detailed expressions are given as:

    whereris the distance between y andx.Eandvrepresent the Young’s modulus and Poisson’s ratio,respectively.niis the unit outward normal at the field pointxon the boundary andr,i=?r/?xi.

    Based on the traction equilibrium assumed on the crack surfaces and the properties of fundamental solutions,the following formula can be obtained.

    where x+and x-are points on the upper and lower crack surfaces,respectively.Substituting Eq.(4) into Eq.(1),the first term on the right side can be reduced as:

    Similarly,the second term on the right side in Eq.(1) can be rewritten as:

    whereuk(x+)anduk(x-)denote the displacements on the upper and lower crack surface,andΔuk(x)represents the components of RCOD,i.e.,Δuk(x) =uk(x+)-uk(x-).

    Substituting Eqs.(5) and (6) into Eq.(1),the traction boundary integral equation can be rewritten as:

    When the source point y is on the upper crack surface,using the relationshiptj(y) =t(y+)-t(y-) = 2t(y+),the traction boundary integral equation is modified as:

    Eqs.(7) and (8) constitute the base of the direct traction boundary integral method for crack problems.When the source point is located in the integration element,the integrand will become highly singular,usually be treated as Cauchy or Hadamard principal value integrals depending on different kernels.In this study,the singular subtraction method developed by Guiggiani is utilized to evaluate the singular integrals.The details of the singularity subtraction method can be found in Miao et al.[Miao,He,Luo et al.(2012)].It should be noted that in this method only either crack surface is involved and needs to be discretized.The proposed method results in a smaller system of algebraic equations compared with the DBEM and also the proposed integral equation cannot obtain the full solution.

    3 Modelling strategy

    The existence of the principal value integrals in the traction boundary integral equation imposes special restrictions on the choice of elements required for the discretization of crack surfaces.These restrictions are due to the continuity requirements of the field variables for the existence of Cauchy and Hadmard principal value integrals.For convenience and simplicity,discontinuous quadratic elements as shown in Fig.2 are used to discretize both the external boundary and the either crack surface.

    Figure2:Discontinuous quartic elements

    The crack tip is modelled with special crack-tip elements that exactly represent the strain field singularity 1/.A detailed deduction for the crack-tip element shape functions is given as follows,which is similar to the 3D crack-tip elements proposed by Miao et al.[Miao,Li,Lv et al.(2013)].It should be pointed that the previous “quarter-point”element represents the singularity by translating the middle point of quadratic element.The proposed special crack-tip element is constructed by including the singularity into the displacement approximate.Assuming the crack tip lies at the local coordinateξ=-1,the distancer= | x (ξ)-x (-1)| is proportion toξ+ 1 in local coordinate system.The RCODΔu over the element adjacent to the crack front can be written as:

    whereNi(ξ) are discontinuous quadratic shape functions.To accurately model the singularity,Eq.(9) should be modified as:

    The shape functionMi(ξ) should be of the form of:

    The shape functions in Eq.(11) must satisfyMi(ξj)=δij(i,j=1,2,3) for each collocation node,and a set of 3× 3linear system of equations can be obtained.By solving this system of equations,the shape functions for discontinuous crack-tip elements are obtained as:

    whereλis the parametric position of collocation nodes and0<λ<1 (see Fig.2).This formulation can represent exactly the strain field singularity,because

    Similarly,when the crack tip locates atξ= 1 ,the singular shape functions are given as:

    4 Stress intensity factor evaluation

    SIFs play an important role of characterizing fracture behavior in linear elastic fracture mechanics [Ghorashi,Valizadeh,Mohammadi et al.(2015); Areias,Msekh and Rabczuk(2016); Areias and Rabczuk (2017); Areias,Rabczuk and Dias-Da-Costa (2013)].Only the crack element on the discretized crack surface is employed to evaluate the SIF.In our implementation,the RCOD can be obtained directly from the algebraic system.Considering a local polar coordinate system centered at the crack tip,the SIFs can be expressed as follows:

    whereKIandKIIare the SIFs for the deformation modes I and II,Δunand Δutare the normal and tangent components of the RCOD,respectively.

    Figure3:Crack-tip boundary element

    By means of a linear extrapolation from pointsP2andP3as depicted in Fig.3,the SIFs can be evaluated by

    whereKP2andKP3are the SIFs evaluated by Eq.(15) at pointsPandP,respectively,23andrP2andrP3denote the distance to the crack tip from pointsP2andP3.

    The proposed method is based on the crack tip element,and compared with other methods,such as the J contour integral and M domain integral,is easier to implement.

    5 Numerical examples

    5.1 Rectangular plate with a central slant crack

    The first example considers a rectangular plate with a central slant crack in Miao et al.[Miao and Wang (2006)],as depicted in Fig.4.The width of the plate is denoted by 2wand the height by 2h.The crack has the length 2awith slant angle ofθ.The plate is loaded with a uniform tractiont,symmetrically applied at the ends.The ratio between the height and the width of the plate ish/w=2.To compare with results of the DBEM,a mesh of 30 quadratic boundary elements was used,in which 6 discontinuous elements were uniformly distributed on the either crack side.As only one crack surface was needed to be discretized,the mesh in this example was 6 elements less than that of the DBEM.

    Figure4:Rectangular plate with a central slant crack (h/ w =2)

    Table1:Normalized SIFs for a central slant crack in a rectangular plate(h/ w =2, θ = 4 5°) [Portela,Aliabadi and Rooke (1992)]

    First,the angleθwas set as 45°.The accurate results at Tab.1 for this problem were published by Murakami et al.[Lv,Miao and Zhu (2014)].Five cases were considered witha/w=0.2~0.6,respectively.The results obtained are presented in Tab.1,as well as the results of the DBEM obtained by the displacement extrapolation method.The results are superior to those of the DBEM.Whena/w=0.6,the result is not accurate possibly due to the coarse mesh.The mesh refinement and convergence study were performed.It was found that if the mesh is refined around the crack,the results would be more accurate.For consistent and comparisons with the results in Portela et al.[Portela,Aliabadi and Rooke (1992)],the same mesh were employed without any refinement.Then,the graph of variation of normalized SIFs with slant angleθfrom 0° to 60° witha/w=0.2 was plotted as shown in Fig.5.From Fig.5,it can be observed thatKIdecreases along with the increase ofθand reaches the maximum value atθ= 0°.On the other hand,KIIfirstly increases and then decreases,which is in accordance with Laham et al.[Laham and Branch (1999)].

    Figure5:Variation of stress intensity factors along with θ (a/ w =0.2)

    5.2 Rectangular plate with a single edge crack

    The second example considers a rectangular plate with a single edge crack as shown in Fig.6.The width of the plate isw,with a height of 2hand a length of the edge crackawith a slant angle ofθ.The plate is subjected to the action of a uniform tractiont,symmetrically applied at the ends.In order to compare with the results of the DBEM,a horizontal edge crack (θ= 0°) was considered withh/w=0.5.Five cases were considered,witha/w = 0.2~0.6,in which 2,3,4,5 and 6 discontinuous quadratic boundary elements were utilized to discretize the crack surface,respectively.A total of 24 discontinuous quadratic boundary elements were used to discretize the external boundary.

    Table2:Normalized SIF KI/(t )for a single horizontal edge crack in a rectangular plate (θ = 0 °) [Portela,Aliabadi and Rooke (1992)]

    Table2:Normalized SIF KI/(t )for a single horizontal edge crack in a rectangular plate (θ = 0 °) [Portela,Aliabadi and Rooke (1992)]

    /a w Our results DBEM Reference 0.2 1.468 1.618 1.488 0.3 1.693 2.014 1.848 0.4 2.120 2.537 2.324 0.5 2.813 3.292 3.010 0.6 3.977 4.558 4.152

    Figure6:Rectangular plate with a single edge crack (h/ w =0.5)

    The results obtained with the proposed method and the DBEM are presented in Tab.2.In the table,the reference solutions were published by Civelek and Erdogan [Irwin,Paris and Tada (2000)].From Tab.2,it can be seen that the results for the edge crack are less accurate than those of the central crack as shown in the first example.In contrast,the proposed method results are more accurate and conservative compared with DBEM results.the graph of variation of normalized stress intensity factors with slant angleθfrom 0° to 55° witha/wequal to 0.2 was plotted as shown in Fig.7.From Fig.7,it can be observed thatKIdecreases along withθ,andKIIfirst increases and then decreases,which is similar to the central slant crack.

    Figure7:Variation of stress intensity factors along with θ (a/ w =0.2)

    5.3 Circular/Elliptical arc crack in infinite domain

    The last example considers about curved cracks.First,a circular arc crack in infinite domain is taken into account as depicted in Fig.8.The radius of the circle isR=1.0and 2θdenotes the central angle of the circular arc crack.Unit vertical traction is applied at infinity.The circular arc crack is discretized into 3 discontinuous quadratic boundary elements each 15 degrees.The exact solutions can be found in Civelek et al.[Civelek and Erdogan (1982)] as follows.Assumingθvaries from 15-75 degrees,the results obtained for the SIFs are listed in Tab.3.It can be seen from Table 3 that the results are in high agreement with the exact solutions.

    Table3:SIFs for a circular arc crack in infinite domain under vertical traction

    Then,a semi-elliptical arc crack in infinite domain as shown in Fig.9 is taken as another example.aandbdenote the semi-major and semi-minor axis,respectively.Unit horizontal traction is applied at infinity.Whena/bvaries from 0.5 to 10,the results for the normalized SIFs are plotted in Fig.10.Results have the same trend with the results reported by Narendran et al.[Narendran and Cleary (1984)].

    Figure8:Circular arc crack in infinite domain under vertical traction

    Figure9:Semi-Elliptical arc crack in infinite domain under horizontal traction

    Figure10:Normalized SIFs for a semi-elliptical arc crack in infinite domain under horizontal traction

    6 Conclusions

    In this study,a direct traction boundary integral method for two-dimensional crack problems was presented as an alternative single-domain formulation.The traction boundary integral equation was collocated on both the external boundary and either side of the crack surfaces.The displacements and tractions were used as unknowns on the external boundary,while the RCOD was chosen as unknowns on either side of crack surfaces to keep the single-domain properly.Only one side of the crack surfaces was concerned and needed to be discretized.The proposed method resulted in a smaller system of algebraic equations compared with the DBEM.The existence of the principal integrals in the traction equation required continuity of the strain at the collocation node,thus both the external boundary and either of the crack surfaces were discretized with discontinuous quadratic boundary elements.For the crack-tips,a new set of shape functions was utilized to represent the strain field singularity exactly,and the SIFs were evaluated by the extrapolation of the RCOD.Both straight and curved cracks were taken as numerical examples,and the results of the presented method showed a lower Normalized SIFs,compared with those of the DBEM.It can be concluded that,the proposed method which is based on the crack tip element,is very straightforward in compared with other methods,such as the J contour integral and M domain integral.

    In addition,applications of the BIEs to nonlinear problems need domain integrals or translating the domain integrals into boundary,which would be complicated and timeconsuming.Therefore,the BIEs is an optimal choice only for linear elastic fracture problem.Besides,the extension of applications to three dimensional will be considered in the future.Also,authors will investigate the detailed comparisons with the scaled boundary finite element method [Song,Ooi and Natarajan (2017)].

    Acknowledgement:This work was supported by The National Key R & D Program of China (Grant No.2017YFC0804601),the National Natural Science Foundation of China(No.51741410),Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences (Grant No.Z017017).

    国产黄色视频一区二区在线观看| 中文字幕人妻丝袜制服| 黑人巨大精品欧美一区二区蜜桃| 人妻人人澡人人爽人人| 精品第一国产精品| 极品人妻少妇av视频| 精品熟女少妇八av免费久了| 制服诱惑二区| 久久精品久久久久久噜噜老黄| 欧美日韩一级在线毛片| 国产国语露脸激情在线看| 黄色a级毛片大全视频| 久久国产精品影院| 国产主播在线观看一区二区 | 国产亚洲午夜精品一区二区久久| 下体分泌物呈黄色| 日韩精品免费视频一区二区三区| 男女下面插进去视频免费观看| 十分钟在线观看高清视频www| 亚洲中文日韩欧美视频| 亚洲少妇的诱惑av| 亚洲欧美精品自产自拍| 国产成人欧美在线观看 | 青青草视频在线视频观看| 一级毛片 在线播放| 精品熟女少妇八av免费久了| 国产一区二区在线观看av| 啦啦啦在线观看免费高清www| 七月丁香在线播放| svipshipincom国产片| 亚洲欧美日韩高清在线视频 | 欧美成狂野欧美在线观看| 少妇的丰满在线观看| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产一区二区精华液| 久久精品aⅴ一区二区三区四区| 无遮挡黄片免费观看| 国产真人三级小视频在线观看| 国产91精品成人一区二区三区 | 国产日韩欧美在线精品| 热99国产精品久久久久久7| 王馨瑶露胸无遮挡在线观看| 黄色毛片三级朝国网站| 中文字幕av电影在线播放| 制服人妻中文乱码| 看十八女毛片水多多多| a级片在线免费高清观看视频| a级片在线免费高清观看视频| videosex国产| 天天躁夜夜躁狠狠久久av| 91国产中文字幕| 日本vs欧美在线观看视频| 欧美人与性动交α欧美精品济南到| 免费在线观看影片大全网站 | 婷婷色av中文字幕| av电影中文网址| 亚洲自偷自拍图片 自拍| 亚洲精品中文字幕在线视频| 日韩 亚洲 欧美在线| 久久人人爽人人片av| 亚洲国产成人一精品久久久| videos熟女内射| 亚洲视频免费观看视频| 国产精品九九99| 亚洲激情五月婷婷啪啪| 免费人妻精品一区二区三区视频| 成人国产av品久久久| videosex国产| 久久久久国产一级毛片高清牌| 中文字幕精品免费在线观看视频| 欧美黑人精品巨大| 亚洲人成电影观看| 免费一级毛片在线播放高清视频 | av片东京热男人的天堂| 久久久久视频综合| 欧美另类一区| 免费在线观看视频国产中文字幕亚洲 | 久久免费观看电影| 国产成人一区二区三区免费视频网站 | 青春草亚洲视频在线观看| 国产免费一区二区三区四区乱码| 亚洲中文字幕日韩| 一本一本久久a久久精品综合妖精| 中国美女看黄片| 国产一区亚洲一区在线观看| 午夜久久久在线观看| 国产免费又黄又爽又色| 免费黄频网站在线观看国产| 久久国产精品男人的天堂亚洲| 亚洲欧美色中文字幕在线| 午夜影院在线不卡| 19禁男女啪啪无遮挡网站| 中文字幕人妻丝袜制服| 别揉我奶头~嗯~啊~动态视频 | 亚洲成国产人片在线观看| 日本猛色少妇xxxxx猛交久久| 亚洲欧美中文字幕日韩二区| 99re6热这里在线精品视频| 日本午夜av视频| 91精品伊人久久大香线蕉| 亚洲图色成人| 亚洲av欧美aⅴ国产| 国产人伦9x9x在线观看| 亚洲av综合色区一区| www.av在线官网国产| 一区二区av电影网| 久久99热这里只频精品6学生| 亚洲欧美激情在线| www.自偷自拍.com| 亚洲精品国产一区二区精华液| 爱豆传媒免费全集在线观看| 国产视频首页在线观看| 日韩一区二区三区影片| 在线观看免费高清a一片| 男女边吃奶边做爰视频| 日本av手机在线免费观看| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区久久| 国产精品久久久久久精品古装| h视频一区二区三区| 国产免费现黄频在线看| 18在线观看网站| 国产97色在线日韩免费| 秋霞在线观看毛片| 国产成人一区二区在线| 18禁裸乳无遮挡动漫免费视频| 亚洲一区中文字幕在线| 亚洲精品美女久久av网站| 视频区图区小说| 日韩免费高清中文字幕av| av欧美777| 亚洲人成电影观看| 女人爽到高潮嗷嗷叫在线视频| 日本欧美视频一区| 久9热在线精品视频| 好男人视频免费观看在线| 搡老岳熟女国产| 色精品久久人妻99蜜桃| 亚洲精品乱久久久久久| 亚洲国产精品一区二区三区在线| 美女午夜性视频免费| 成人免费观看视频高清| 精品人妻熟女毛片av久久网站| 老司机影院毛片| 香蕉丝袜av| 99久久精品国产亚洲精品| 国产成人a∨麻豆精品| 日日夜夜操网爽| 久久久久网色| 97在线人人人人妻| 国产一区二区激情短视频 | 在线观看www视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 波野结衣二区三区在线| 51午夜福利影视在线观看| 色综合欧美亚洲国产小说| 亚洲欧美清纯卡通| 亚洲国产欧美日韩在线播放| 成年动漫av网址| 久久中文字幕一级| 国产国语露脸激情在线看| 天堂8中文在线网| 亚洲中文日韩欧美视频| 欧美精品亚洲一区二区| 亚洲精品一区蜜桃| 精品人妻熟女毛片av久久网站| 1024视频免费在线观看| 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜一区二区| 成人国产av品久久久| 中国国产av一级| 国产高清视频在线播放一区 | 精品久久蜜臀av无| 欧美精品啪啪一区二区三区 | 波野结衣二区三区在线| 丰满迷人的少妇在线观看| 久久人人97超碰香蕉20202| 国产成人精品久久久久久| 精品第一国产精品| 精品国产一区二区三区四区第35| 后天国语完整版免费观看| 午夜福利影视在线免费观看| 久久久久精品人妻al黑| 极品人妻少妇av视频| 欧美精品亚洲一区二区| 成年人免费黄色播放视频| 精品久久蜜臀av无| 久久久久久免费高清国产稀缺| 老司机影院毛片| 欧美少妇被猛烈插入视频| 晚上一个人看的免费电影| 男女之事视频高清在线观看 | 欧美日韩国产mv在线观看视频| 亚洲天堂av无毛| 两个人看的免费小视频| 久久精品久久久久久久性| 久久久国产欧美日韩av| 亚洲九九香蕉| 亚洲伊人久久精品综合| 免费av中文字幕在线| 午夜福利影视在线免费观看| 乱人伦中国视频| 十八禁网站网址无遮挡| 又大又爽又粗| 在线观看国产h片| 9热在线视频观看99| 精品人妻在线不人妻| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 日韩电影二区| 亚洲免费av在线视频| 亚洲成人免费电影在线观看 | 亚洲国产欧美网| 赤兔流量卡办理| 日韩制服骚丝袜av| 亚洲三区欧美一区| 香蕉丝袜av| 久久综合国产亚洲精品| 日韩欧美一区视频在线观看| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 老司机影院毛片| 中文字幕最新亚洲高清| 精品视频人人做人人爽| e午夜精品久久久久久久| 97精品久久久久久久久久精品| 午夜福利在线免费观看网站| 精品一区二区三区av网在线观看 | 一本久久精品| 搡老岳熟女国产| 亚洲专区国产一区二区| 晚上一个人看的免费电影| 国产午夜精品一二区理论片| 人人妻人人澡人人爽人人夜夜| 国产成人影院久久av| 国产精品三级大全| 免费日韩欧美在线观看| av线在线观看网站| 欧美激情 高清一区二区三区| 51午夜福利影视在线观看| 久久久精品国产亚洲av高清涩受| 亚洲av片天天在线观看| 亚洲图色成人| 夫妻性生交免费视频一级片| 最新在线观看一区二区三区 | 亚洲av成人不卡在线观看播放网 | 国产精品一区二区在线不卡| 日韩电影二区| 亚洲av男天堂| 嫩草影视91久久| 国产精品国产三级专区第一集| 国产在视频线精品| 90打野战视频偷拍视频| 国产99久久九九免费精品| 一区二区日韩欧美中文字幕| 啦啦啦在线观看免费高清www| 18禁观看日本| 日本午夜av视频| 一级a爱视频在线免费观看| 黑丝袜美女国产一区| 欧美日韩视频高清一区二区三区二| 欧美97在线视频| 久久这里只有精品19| 午夜激情av网站| 久久毛片免费看一区二区三区| 精品国产一区二区久久| 国产成人欧美| 视频在线观看一区二区三区| 国产精品久久久久久精品电影小说| 国产男女超爽视频在线观看| 久久精品久久精品一区二区三区| h视频一区二区三区| 国产熟女午夜一区二区三区| 狂野欧美激情性bbbbbb| 天天操日日干夜夜撸| 王馨瑶露胸无遮挡在线观看| www.av在线官网国产| av天堂久久9| 久久狼人影院| 99精品久久久久人妻精品| 人人妻人人添人人爽欧美一区卜| 亚洲 国产 在线| 少妇裸体淫交视频免费看高清 | 国产97色在线日韩免费| 九草在线视频观看| 人成视频在线观看免费观看| av又黄又爽大尺度在线免费看| a级毛片黄视频| 国产精品久久久人人做人人爽| 亚洲精品日韩在线中文字幕| 少妇猛男粗大的猛烈进出视频| 久久人人97超碰香蕉20202| 人妻一区二区av| 国产精品成人在线| 欧美久久黑人一区二区| 999久久久国产精品视频| 国产免费现黄频在线看| 一本—道久久a久久精品蜜桃钙片| 亚洲成人免费电影在线观看 | 欧美久久黑人一区二区| 丝袜喷水一区| 成人国产av品久久久| 人妻人人澡人人爽人人| 天天添夜夜摸| 咕卡用的链子| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲中文字幕日韩| 免费高清在线观看视频在线观看| 国产亚洲av高清不卡| 人成视频在线观看免费观看| 亚洲精品日本国产第一区| 欧美日韩综合久久久久久| av在线播放精品| 18禁国产床啪视频网站| 亚洲欧洲精品一区二区精品久久久| 国产精品麻豆人妻色哟哟久久| 久久这里只有精品19| 美女视频免费永久观看网站| 制服诱惑二区| 欧美亚洲日本最大视频资源| 欧美精品一区二区免费开放| 亚洲精品第二区| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| tube8黄色片| 性少妇av在线| 精品亚洲成国产av| 久久这里只有精品19| 亚洲精品国产av蜜桃| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 久9热在线精品视频| 性色av一级| 欧美亚洲 丝袜 人妻 在线| 国产精品免费视频内射| 男的添女的下面高潮视频| 亚洲自偷自拍图片 自拍| 最近中文字幕2019免费版| 国产1区2区3区精品| 看免费成人av毛片| 91精品伊人久久大香线蕉| 黄色一级大片看看| 91精品国产国语对白视频| www.999成人在线观看| 欧美大码av| 国产午夜精品一二区理论片| 青春草亚洲视频在线观看| 热99久久久久精品小说推荐| 欧美另类一区| a级片在线免费高清观看视频| av一本久久久久| 成人午夜精彩视频在线观看| 男女国产视频网站| 黄片小视频在线播放| 国产人伦9x9x在线观看| 人妻一区二区av| 亚洲情色 制服丝袜| 蜜桃在线观看..| 中文字幕最新亚洲高清| 欧美黑人欧美精品刺激| 久久精品久久精品一区二区三区| 五月开心婷婷网| 亚洲,一卡二卡三卡| 啦啦啦 在线观看视频| 黄色怎么调成土黄色| 在线精品无人区一区二区三| 亚洲情色 制服丝袜| 欧美黄色片欧美黄色片| 脱女人内裤的视频| 国产欧美亚洲国产| 99久久综合免费| videosex国产| 婷婷色综合www| 精品国产乱码久久久久久男人| 一本久久精品| 99国产精品一区二区蜜桃av | 午夜av观看不卡| 热re99久久精品国产66热6| 久久性视频一级片| 午夜视频精品福利| 精品国产一区二区久久| 无遮挡黄片免费观看| 爱豆传媒免费全集在线观看| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 亚洲精品久久成人aⅴ小说| 日本猛色少妇xxxxx猛交久久| 久热这里只有精品99| 丰满人妻熟妇乱又伦精品不卡| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| 高清视频免费观看一区二区| 国产1区2区3区精品| 久久女婷五月综合色啪小说| 超碰成人久久| 天天操日日干夜夜撸| 国产黄色视频一区二区在线观看| 国产精品成人在线| 成年av动漫网址| 亚洲av成人精品一二三区| 亚洲av在线观看美女高潮| 少妇人妻久久综合中文| 国产成人系列免费观看| 亚洲国产中文字幕在线视频| 欧美激情 高清一区二区三区| 国产成人av激情在线播放| 成年人免费黄色播放视频| 91精品伊人久久大香线蕉| 大陆偷拍与自拍| 亚洲精品国产av成人精品| 大话2 男鬼变身卡| 97精品久久久久久久久久精品| 免费人妻精品一区二区三区视频| 午夜视频精品福利| e午夜精品久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 欧美国产精品一级二级三级| 99re6热这里在线精品视频| 黄色毛片三级朝国网站| 你懂的网址亚洲精品在线观看| 国产老妇伦熟女老妇高清| 久久天躁狠狠躁夜夜2o2o | 国产国语露脸激情在线看| 亚洲精品在线美女| 国产免费现黄频在线看| 亚洲精品美女久久久久99蜜臀 | 久热爱精品视频在线9| 欧美激情高清一区二区三区| 91精品国产国语对白视频| 国产又色又爽无遮挡免| 午夜老司机福利片| 丰满饥渴人妻一区二区三| 天天操日日干夜夜撸| 精品少妇内射三级| 免费看不卡的av| 一级片'在线观看视频| 韩国精品一区二区三区| 亚洲美女黄色视频免费看| 久久亚洲精品不卡| 99精品久久久久人妻精品| 秋霞在线观看毛片| 久久精品aⅴ一区二区三区四区| 美女脱内裤让男人舔精品视频| 中文字幕最新亚洲高清| 久久精品国产a三级三级三级| 免费人妻精品一区二区三区视频| 又黄又粗又硬又大视频| 久久鲁丝午夜福利片| 欧美国产精品一级二级三级| 亚洲第一av免费看| 国产成人91sexporn| 亚洲国产成人一精品久久久| 欧美精品一区二区免费开放| av线在线观看网站| 免费久久久久久久精品成人欧美视频| 亚洲男人天堂网一区| 91精品国产国语对白视频| 免费观看人在逋| 亚洲欧美一区二区三区国产| 欧美人与性动交α欧美精品济南到| 亚洲国产精品国产精品| 亚洲精品国产一区二区精华液| 男女无遮挡免费网站观看| 欧美日韩亚洲国产一区二区在线观看 | 飞空精品影院首页| 亚洲欧美一区二区三区黑人| 人人澡人人妻人| 另类亚洲欧美激情| 久久久久国产一级毛片高清牌| 午夜免费成人在线视频| 日韩伦理黄色片| 飞空精品影院首页| 欧美精品一区二区免费开放| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线| 国产精品一国产av| 一边摸一边做爽爽视频免费| 中国美女看黄片| 97精品久久久久久久久久精品| 满18在线观看网站| 精品国产国语对白av| 成年人免费黄色播放视频| 看免费av毛片| 国产精品二区激情视频| 国产免费视频播放在线视频| 99精国产麻豆久久婷婷| 女性被躁到高潮视频| 亚洲激情五月婷婷啪啪| 亚洲欧美激情在线| 欧美成狂野欧美在线观看| 男人爽女人下面视频在线观看| 男女边摸边吃奶| 亚洲成人免费电影在线观看 | 九色亚洲精品在线播放| 又大又爽又粗| 一二三四在线观看免费中文在| 黑丝袜美女国产一区| 美国免费a级毛片| 性色av乱码一区二区三区2| av不卡在线播放| av视频免费观看在线观看| 欧美国产精品一级二级三级| 1024香蕉在线观看| 欧美另类一区| 精品人妻1区二区| 一本色道久久久久久精品综合| 国产野战对白在线观看| 成人国产av品久久久| 大片电影免费在线观看免费| 国产精品久久久av美女十八| 国产国语露脸激情在线看| 亚洲av综合色区一区| 操出白浆在线播放| 男人舔女人的私密视频| 欧美精品一区二区免费开放| 女人被躁到高潮嗷嗷叫费观| 操出白浆在线播放| 亚洲国产欧美日韩在线播放| 别揉我奶头~嗯~啊~动态视频 | 黄网站色视频无遮挡免费观看| 青草久久国产| 每晚都被弄得嗷嗷叫到高潮| 亚洲伊人久久精品综合| 18禁观看日本| 国产精品 国内视频| 精品少妇久久久久久888优播| 一区福利在线观看| 国产精品亚洲av一区麻豆| 日本欧美视频一区| 日韩伦理黄色片| 国产视频一区二区在线看| 18在线观看网站| 免费在线观看影片大全网站 | 咕卡用的链子| 香蕉丝袜av| 丝袜美足系列| 国产av精品麻豆| 精品久久久精品久久久| 在线看a的网站| 丝袜脚勾引网站| 亚洲黑人精品在线| 国产精品久久久久久精品电影小说| 成人午夜精彩视频在线观看| 午夜久久久在线观看| 考比视频在线观看| 久久午夜综合久久蜜桃| 尾随美女入室| 黑人猛操日本美女一级片| 两个人免费观看高清视频| 丰满人妻熟妇乱又伦精品不卡| 热99久久久久精品小说推荐| 搡老乐熟女国产| 91精品三级在线观看| 真人做人爱边吃奶动态| 国产精品av久久久久免费| 欧美精品啪啪一区二区三区 | 亚洲精品美女久久久久99蜜臀 | 免费看十八禁软件| 97在线人人人人妻| 人人澡人人妻人| 亚洲国产精品一区二区三区在线| 国产欧美日韩一区二区三区在线| 国产亚洲午夜精品一区二区久久| 亚洲av电影在线进入| 日韩一区二区三区影片| 各种免费的搞黄视频| 国产一区二区三区综合在线观看| 国产老妇伦熟女老妇高清| 日本一区二区免费在线视频| 亚洲人成网站在线观看播放| 一本久久精品| 日本午夜av视频| 国产主播在线观看一区二区 | 亚洲精品自拍成人| 国产日韩欧美亚洲二区| 我的亚洲天堂| 美女大奶头黄色视频| av天堂在线播放| 黑人猛操日本美女一级片| 99re6热这里在线精品视频| 国产成人精品久久二区二区免费| 成年美女黄网站色视频大全免费| 免费高清在线观看视频在线观看| 欧美 亚洲 国产 日韩一| 免费看十八禁软件| 18禁观看日本| 大片电影免费在线观看免费| 80岁老熟妇乱子伦牲交| 在线观看国产h片| 一二三四社区在线视频社区8| 亚洲精品av麻豆狂野| av有码第一页| 亚洲中文日韩欧美视频| 色网站视频免费| 亚洲一区中文字幕在线| 香蕉丝袜av| 视频区图区小说| 亚洲av在线观看美女高潮| 国产成人91sexporn| 巨乳人妻的诱惑在线观看| 欧美日韩亚洲国产一区二区在线观看 | 777米奇影视久久| 黄片小视频在线播放| 美女福利国产在线| 亚洲欧美一区二区三区黑人| 欧美成人午夜精品| bbb黄色大片| 国产又爽黄色视频| 久久影院123| 欧美激情极品国产一区二区三区| 一级毛片我不卡| 欧美日韩视频精品一区| 少妇被粗大的猛进出69影院| 欧美 亚洲 国产 日韩一|