• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic Trust Model Based on Service Recommendation in Big Data

    2019-03-18 08:15:52GangWangandMengjuanLiu
    Computers Materials&Continua 2019年3期

    GangWangandMengjuanLiu

    Abstract:In big data of business service or transaction,it is impossible to provide entire information to both of services from cyber system,so some service providers made use of maliciously services to get more interests.Trust management is an effective solution to deal with these malicious actions.This paper gave a trust computing model based on service-recommendation in big data.This model takes into account difference of recommendation trust between familiar node and stranger node.Thus,to ensure accuracy of recommending trust computing,paper proposed a fine-granularity similarity computing method based on the similarity of service concept domain ontology.This model is more accurate in computing trust value of cyber service nodes and prevents better cheating and attacking of malicious service nodes.Experiment results illustrated our model is effective.

    Keywords:Trust model,recommendation trust,content similarity,ontology,big data.

    1 Introduction

    Trust-based security system has been an important research field nowadays since trust management was proposed by Blaze et al.[Blaze,Feigenbaum and Lacy (1996)] in 1996.When big data went into our life,work environment and physical world,trust management about big data service became an important issue [David and Ongand(2016); Liu,Dong,Ota et al.(2016); Siddiqa,Hashem,Yaqoob et al.(2016)].Trust management involves a lot of fields,and some scholars have already been going studies in these issues and proposed a series of trust models in accordance with different application systems.Zhang et al.observed that “trust model was separated into policybased and reputation-based models in terms of management mechanism in e-commerce environment” [Zhang,Cheng,Jiang et al.(2008); Nejdl,Olmedilla and Winslett (2004);Chu,Feigenbaum,LaMacchia et al.(1997)].Trust model was separated into two trust models based on centralization and distribution in a view of structure [Yu and Singh(2002); Resnick and Zeckhauser (2002); Zacharia,Moukas and Maes (2000)].Li et al.proposed “PeerTrustModel:an electronic community based on local reputation under P2P environment” [Li and Liu (2004)].Dou [Dou,Wang,Jia et al.(2004)] proposed “a global trust model that is intended to overcome the lack of security of literature” [Zhang,Cheng,Jiang et al.(2008)].Literature [Li,Jing,Xiao et al.(2007); Jin,Zhang,Qu et al.(2008)] investigated a similarity-based added-weight trust model that can help solving the problem of malicious nodes cheating.

    From these literatures’ reviews,we found that they all lacked to consider difference among different services.In addition,we also found that existing trust models lacked fine granularity computing,so it is difficult to distinguish service difference among different service providers,and difference among different services of the same service provider.We proposed a dynamic trust model based on service recommendation in big data.The other parts of this paper are organized as follows:Section 2 is dynamic Trust model.Section 3 is concept similarity computing of trade goods (or services) domain ontology and trust model algorithm.Section 4 is simulation experiment and result analysis.Final section is next works and conclusions.

    2 Dynamic trust model

    For clearly illustrating own model,we firstly gave a few related concepts as follows.

    Definition 1.Service requestor (service receiver) is to get services from network service provider.

    Definition 2.Service provider is to provide services for network service receivers.

    Definition 3.Node that recommends information to Service requestor is called recommendation node,and then they are classified to direct familiar recommendation node,indirect familiar recommendation node and stranger recommendation node.

    Definition 4.Direct familiar recommendation node refers to have ever direct services between recommendation node and service provider.

    Definition 5.Indirect familiar recommendation node refers to have already had direct transactions or indirect transactions with direct familiar recommendation nodes.

    Definition 6.Direct Trust is that service requestor gives an evaluation of service provider and this evaluation is based on direct services that service provider gave service requestor ago.

    Definition 7.Recommendation trust refers to an evaluation of service requestor to service provider according to their history service state.

    2.1 Trust computing model

    System would like to judge the whole trust value of nodek(nodekis a service provider or resource provider) is closely related to two factors.One factor is that whole trust value of nodekusually comes from evaluation of other nodes to it,and whether this evaluation is accuracy and objective is largely depended on similarity between services or service received by individual evaluating node.The other is that whole trust value of nodekis also related to a trust evaluator’s familiarity with a trust recommendation node (also known as resource recommendation node).The structure of this model is described in Fig.1.

    Figure1:Trust computing model

    From Fig.1,when Service Requestor applied a service to Service Provider,system computed and fed back trust value of Service Provider,and then gave an advice whether Service Requestor selected service proposed by Service Provider.During computing trust,algorithm will firstly fuse Direct Trust,Indirect Trust and Recommendation Trust,in the process of fusion we will also comprehensive consider relationship among Direct Trust,Indirect Trust and Recommendation Trust because trust in itself involves multiattribution such as service content similarity,time sensitive.Meanwhile,system updated trust value of Service Provider in User Dataset.

    2.2 Direct trust computing

    When there was history interaction between service provider and service receiver,we use following equation as Direct Trust.In whichDTi,jis direct trust value,Si,jis the successful number of times betweeniandj.Gi,jis all interactions times betweeniandj.Fi,jis the failures number of times betweeniandj.whenGi,j=0,we setDTi,j=0.5.Meanwhile,

    2.3 Recommendation trust computing

    Recommendation Trust computing equation that we used is as following:

    whereRTkrefers to integration evaluation value of recommendation trust to node k,andSim(Ci,k,Cj,k)is the similarity of transaction contentCi,kandCj,kof between nodei,jandk,jandk,ωikandωjkrespectively refer to acquaintance recommendation weight and stranger recommendation weight,andωikrefers to evaluation value of service requestor to service recommendation node; in whichωikandThe recommendation weight to stranger is set at 0.5,that is to say,trust and un-trust of node initially are fifty-fifty.αis the recommendation weight of direct or indirect familiar node,and thenαis set at as following.

    If α<ε,this node is abandoned.ε refers to threshold value of trust chain and was set by us.is recommendation weight of stranger.Ifwhilethis node is actually a new joining node or a dormant node.

    compute trust degree of node whose three square-root is used to ensure the weight of each coefficient can be within a normal range.At the same time,it also ensures that system can be easy to make reasonable trust judgment to node.In this case,Eq.(2)becomes Eq.(3).

    2.4 Global synthetical trust

    Global synthetical trust refers to a general trust degree.The paper used following equation to compute Global Trust Degree.

    In which,sis the number of recommendation node,τis the number of direct transaction between trust evaluator and service provider.is the weight of direction transaction,is the weight of recommendation trust.With social relationship analysis,trust earned by direct interaction of two nodes is higher than trust earned by nodes recommendation,so trust evaluator believes target node by interaction of self-trust evaluator and target node.is a function to indicate that trust is a dynamic change with interactive numbers and we make argument in Eq.(5).

    n∈{1,2http://china.alibaba.com/,3http://www.taobao.com/,…},xrefers to thex-thinteraction between service evaluator and service provider.xandρa(bǔ)re positive correlation.When service requestor is the first interaction with service provider,because the number of interactions is too little,service requestor has to rely on recommendation trust evaluation given by the others.When the number of interactions is creasing between service requestor and service provider,service requestor would like to judge trust value of service provider by its own,and thenρwill enlarge gradually as increase of interactive numbers.

    3 Computing of Concept similarity degrees about service domain ontology

    3.1 Service or trade goods ontology building process

    This paper proposed a new service domain ontology building method.We firstly gave its mainly building process as follows:

    3.1.1Aim of building domain ontology

    Building different domain ontology is for different application purpose in different field.Thus,the first step of building domain ontology to our model aims to complete our application purpose.

    3.1.2 Determining ontology Concept and classification system

    There generally are two ways to get domain ontology data sources.“The first comes from lexicons and professional dictionaries.The second relies on mathematical analysis by using set of language data and documents,and computing and analyzing the weight of conceptualizations,and then selecting concepts of those greater weight” [Jia (2006);Uschold (1996)].This paper uses the principles of Chinese Library Catalogues,Trade Marks and Commodity Catalogues of the People’s Republic of China as building way of service domain ontology,and classification and definition of Alibaba2http://china.alibaba.com/,Taobao3http://www.taobao.com/and Baidu on E-commerce products.Determining attribution and relationship among classes.Class attribution is as a classifying basis of research object,and is used to distinguish between different classes,and a subclass will inherit attributions of father class.Besides defined class attributions,it also added constraints to specific attribute during building ontology.Constraints may be derived from father class,and there are also some new attribution constraints to a subclass.e.g.,the key attributes of automobile ontology is those attributes such as design and production.However,the key attributes of automobile as commodities focus more on its applications and the attributes as commodity,such as price,color and exterior.In addition,Relationship among classes is also an attribution.Fig.2 is a service domain ontology structure built by us.

    Figure2:Service domain ontology structure

    3.1.3 Formal definition and explanation of ontology

    Definition 8:ontology indication uses five tuples,

    Of which,Cis concept set;Ris a set of relationship;ACproductis a conceptproductrattribution set composed by more attribution sets;refers to a set of more attributions component and is also a relationship set of concepts;Xproductrefers to an axiom set.

    Definition12:ifto conceptsand

    Definition13:

    3.1.4 Ontology coding

    Trade goods ontology adopts Proté gé which is a software development tool,and it can create ontology and run created ontology.In which,Fig.3 is a part of trade goods ontology.

    Figure3:Part of trade goods ontology picture

    3.1.5 Ontology assessment

    Ontology assessment is focused on clarity,coherence and extendibility.Moreover,other issues would be thought such as encoding minimal mistake probability,minimum restrict of ontology,etc.[Gruber (1995); Wu,Wu,Li et al.(2005)].

    3.2 Similarity computation of ontology Concept in service domain

    This paper put forward a similarity computation way of ontology concept.This method used statistical information entropy to calculate the weight of evaluation index and avoided the subjectivity of artificial weight method.At the same time,this paper also used heuristic algorithm to ensure a clear difference between two or more similar ontology concepts.

    In ontology concept,conceptCihas to satisfy Eq.(8):

    Of which,I(Csuperclass)denotes the information ofCsuperclassthat is parent class ofC;iiidenotes self-information ofCi.

    this path,Csuperclassis a parental node ofC,computation equations is Eq.(13).thisthis

    is a parental node of conceptsanddifference between two concepts can bring about change ofon the shortest path between them.Cκpresents a node of same side ofCthis. Two concepts similarity computing formula is as follows:

    As is well known,when information of two concepts is respectively same,we think two concepts are the same,for avoiding the situation,we used heuristic algorithm to compute similarity.Heuristic algorithm is Tab.1.

    Table1:Heuristic Algorithm

    3.3 Trust computing algorithm

    Initialization:To set the total number of node and service

    Target:To get trust degree of service provider

    Step 1:To initialize service path map.To define all network nodes.In which,there are never any interaction before between any two nodes.Meanwhile,to set the number of malicious nodes and good nodes.And then services are randomly distributed to nodes.When a node is defined malicious node,its service only has a half of a good node.Finally,system will create a service path map.

    Step2:To compute Global synthetical trust degree,we need firstly initializeε,i,j.Secondly,whileiis larger than the numbers of loop and computing trust degree is larger than ε,system adopts this service path map,unless system cancels this service path map.

    Step3:Ifiis smaller than the total number of service path and there aren’t malicious nodes in the present service path,system usessuccessNumas successful service number and usestotalNumas service total number.

    Step4:Ifjis smaller than the number of service path andiandjare two different nodes,iandjare going to mutual service,and service successful ratio is the number of successful services dived by the total number of services,unless system abandons nodejand algorithm go back to Step 2.

    4 Simulation experiment and result analysis

    We divide service nodes into two sorts of nodes,one is good nodes,and the other is malicious nodes.Meanwhile,malicious nodes are divided into individual malicious nodes and cooperative malicious nodes.

    4.1 Experiment analysis

    Experiment 1:Analysis to malicious recommendation nodes scale.

    Figure4:Service success ratio in malicious nodes dynamic change

    Results of the experiment from Fig.4 show whole tendency to two algorithms is similar,e.g.,with increasing of percent rate of malicious node,we find service ratio of two algorithms declines gradually.However,there are a few important differences between two algorithms.Firstly,when malicious node rate is from 0 to 30%,we find that our algorithm effect is better than EigenRep algorithm.Service success ratio of our algorithm seldom decline,but EigenRep success ratio declines rapidly.From 30% malicious nodes to 70% malicious nodes,we can find though success ratio of two algorithms all declines,our algorithm effect is better than EigenRep algorithm.Secondly,when we set percent rate of malicious nodes is 50%,we find our algorithm still has a high service success rate.In a word,from these falling service success rate and numbers,no matter what it is an individual malicious node or cooperative malicious node,we can find our algorithm is better than EigenRep algorithm.

    Experiment 2:Sensitivity analysis to number of service cycle.

    Figure5:Service success rate with different service circulation times

    In this experiment,malicious node rate we firstly set is 40%.We can find tendency of two algorithms is increase gradually with increasing of service circulation times,that is to say,tendency of two algorithms is similar.However,there are still a few differences because we can find service success rate of two algorithms is different in the different circulation times.Firstly,in 50-th cycle,we find EigenRep algorithm’s service success rate is only 69.4%,but our algorithm is 90.2%,our algorithm effect is obviously better than EigenRep.Secondly,our algorithm can constrain better cheat and pretending of malicious node.Obviously,from Fig.5 we can find that sensitivity of our algorithm to malicious attack is better than EigenRep’s.

    Experiment 3:Analysis directed to malicious recommendation attack.

    Figure6:Service success rate in different malicious recommendation nodes

    This picture illustrates that tendency of two algorithms is decline gradually with the increasing number of malicious recommendation nodes,and we find that tendency of two algorithms is similar.However,there are still a few differences because we can find service success rate of two algorithms is different under different malicious node numbers.When the number of malicious nodes is 30%-40%,we find Hassan algorithm’s service success rate is obviously lower than our algorithm.This experiment illustrates our algorithm effect is obviously better than Hassan.Secondly,though Hassan model is good at constraint to node cheat,Hassan model has a few lacks,e.g.,Hassan has an assumption that recommendation nodes is trust,and Hassam does not have a specific punishment strategy,so its effect is not good enough to constrain malicious recommendation.

    By these analyses,we can know trust algorithm proposed in this paper can effectively constrain malicious recommendation of dishonest nodes,and in same recommendation road good nodes can ensure service success rate.By compare our model with EigenRep and Hassan algorithms,experiment results illustrate our model is good enough to constrain malicious recommendation,cheat and attack.

    5 Conclusions and further works

    In big data environment trust is one of all preconditions in network service.Under the circumstances,we proposed trust evaluation model based on service recommendation.This model could distinguish familiar nodes from stranger nodes in cyber,and also took into account service or transaction ontology in business to make sure computing accuracy of recommendation trust,and computing effect was also better than past some trust models.Experiment results illustrated this algorithm effect is better than several typical trust models like EigenRep and Hassan model.At the same time,we’ll consider to improve algorithm efficiency and introduce more characteristics of trust so that trust compute is more accurate in further works.

    Acknowledgment:This paper Supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No.2014JM2-6099) and the Project of Xi’an University of Finance and Economics (No.17FCJH13).

    国产男人的电影天堂91| 直男gayav资源| 一a级毛片在线观看| 国产毛片a区久久久久| 亚洲不卡免费看| 亚洲美女搞黄在线观看 | 欧美高清成人免费视频www| 国产高清不卡午夜福利| 少妇丰满av| 免费看美女性在线毛片视频| 一级黄片播放器| 国产在线精品亚洲第一网站| 老熟妇乱子伦视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 色综合站精品国产| 欧美色欧美亚洲另类二区| 免费观看精品视频网站| 91久久精品电影网| 琪琪午夜伦伦电影理论片6080| 免费观看的影片在线观看| 女人被狂操c到高潮| 精品国内亚洲2022精品成人| 成人国产一区最新在线观看| 中文字幕熟女人妻在线| 欧美色欧美亚洲另类二区| 麻豆一二三区av精品| 欧美区成人在线视频| 12—13女人毛片做爰片一| 久久精品91蜜桃| 国产精品国产高清国产av| 蜜桃亚洲精品一区二区三区| 香蕉av资源在线| 成人精品一区二区免费| 天美传媒精品一区二区| 美女免费视频网站| 成人国产综合亚洲| 赤兔流量卡办理| 99久久精品一区二区三区| 久久久久久久亚洲中文字幕| 国产 一区 欧美 日韩| 老司机福利观看| 欧美xxxx性猛交bbbb| 欧美成人一区二区免费高清观看| 久久6这里有精品| 超碰av人人做人人爽久久| 一区二区三区四区激情视频 | 午夜精品一区二区三区免费看| 美女xxoo啪啪120秒动态图| 丰满乱子伦码专区| 一个人免费在线观看电影| 欧美一区二区亚洲| 精品日产1卡2卡| 欧美日韩国产亚洲二区| 露出奶头的视频| 成人av在线播放网站| 国产 一区 欧美 日韩| 国产亚洲精品久久久久久毛片| 久久精品夜夜夜夜夜久久蜜豆| 免费搜索国产男女视频| 亚洲美女搞黄在线观看 | 国产精品98久久久久久宅男小说| 久久精品国产清高在天天线| 男人和女人高潮做爰伦理| 国产综合懂色| 又紧又爽又黄一区二区| 99热网站在线观看| 久久久色成人| 小蜜桃在线观看免费完整版高清| 亚洲成人精品中文字幕电影| 啪啪无遮挡十八禁网站| 老师上课跳d突然被开到最大视频| 亚洲av五月六月丁香网| 欧美黑人欧美精品刺激| 欧美xxxx性猛交bbbb| 赤兔流量卡办理| 亚洲 国产 在线| 有码 亚洲区| 国产成人aa在线观看| 可以在线观看毛片的网站| 国内少妇人妻偷人精品xxx网站| 亚洲国产欧洲综合997久久,| 少妇人妻精品综合一区二区 | 熟女人妻精品中文字幕| 中文资源天堂在线| 国产不卡一卡二| 亚洲欧美日韩卡通动漫| 色av中文字幕| 国产精品久久久久久久电影| 有码 亚洲区| 国产真实乱freesex| 免费观看精品视频网站| 大型黄色视频在线免费观看| 偷拍熟女少妇极品色| 日本黄色片子视频| 99久久九九国产精品国产免费| avwww免费| 欧美在线一区亚洲| 淫妇啪啪啪对白视频| 国产午夜福利久久久久久| 亚洲18禁久久av| 麻豆国产av国片精品| 联通29元200g的流量卡| 亚洲乱码一区二区免费版| 天堂√8在线中文| 久久久久久久午夜电影| 少妇猛男粗大的猛烈进出视频 | 亚洲欧美激情综合另类| 蜜桃亚洲精品一区二区三区| 一级av片app| 日韩欧美在线二视频| 免费在线观看日本一区| 国产亚洲精品综合一区在线观看| 少妇高潮的动态图| 亚洲专区国产一区二区| 国产精品综合久久久久久久免费| 国产精品福利在线免费观看| eeuss影院久久| 亚洲熟妇中文字幕五十中出| 男女之事视频高清在线观看| 亚洲欧美日韩高清专用| 99久久精品一区二区三区| 免费看a级黄色片| 久久6这里有精品| 国产在视频线在精品| 精品一区二区三区视频在线观看免费| 嫩草影院精品99| 精品午夜福利视频在线观看一区| 中文亚洲av片在线观看爽| 国产精品国产三级国产av玫瑰| 日韩欧美精品免费久久| 国产成人a区在线观看| 小说图片视频综合网站| 国产国拍精品亚洲av在线观看| 成年人黄色毛片网站| 麻豆成人午夜福利视频| 麻豆一二三区av精品| 免费看a级黄色片| 18禁在线播放成人免费| 国产精品一区www在线观看 | 亚洲无线在线观看| 别揉我奶头 嗯啊视频| 色视频www国产| 天堂av国产一区二区熟女人妻| 悠悠久久av| 欧美精品国产亚洲| 麻豆国产av国片精品| 在线观看舔阴道视频| 欧美又色又爽又黄视频| 美女xxoo啪啪120秒动态图| aaaaa片日本免费| 国产精品人妻久久久久久| 22中文网久久字幕| 国产精品精品国产色婷婷| 麻豆国产av国片精品| 老师上课跳d突然被开到最大视频| 日本-黄色视频高清免费观看| 丰满人妻一区二区三区视频av| 97热精品久久久久久| 国产 一区 欧美 日韩| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区激情短视频| 午夜精品久久久久久毛片777| 精品一区二区三区av网在线观看| 1000部很黄的大片| 琪琪午夜伦伦电影理论片6080| 熟女人妻精品中文字幕| 看片在线看免费视频| 日韩欧美精品v在线| 日韩欧美免费精品| 内地一区二区视频在线| 亚洲va日本ⅴa欧美va伊人久久| 婷婷亚洲欧美| 国产真实乱freesex| 嫩草影院入口| 少妇人妻精品综合一区二区 | 中文字幕久久专区| 联通29元200g的流量卡| 久久久久免费精品人妻一区二区| 看免费成人av毛片| 全区人妻精品视频| 欧美日韩综合久久久久久 | 国产国拍精品亚洲av在线观看| 免费观看人在逋| 在现免费观看毛片| 欧美色欧美亚洲另类二区| 淫妇啪啪啪对白视频| 国产一区二区三区视频了| 色哟哟·www| 午夜爱爱视频在线播放| 中文资源天堂在线| 99久久精品热视频| 亚洲人成伊人成综合网2020| 久久久久国产精品人妻aⅴ院| 男人舔女人下体高潮全视频| 国产精品嫩草影院av在线观看 | av在线蜜桃| 欧美一区二区国产精品久久精品| 免费看av在线观看网站| 久久精品国产亚洲av涩爱 | h日本视频在线播放| 久久精品国产亚洲av香蕉五月| 午夜免费激情av| 亚洲中文日韩欧美视频| 3wmmmm亚洲av在线观看| 国产精华一区二区三区| 韩国av一区二区三区四区| 日韩欧美精品v在线| 日本一二三区视频观看| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 国内精品宾馆在线| 欧美+日韩+精品| 亚洲精品色激情综合| 成人性生交大片免费视频hd| 91在线观看av| 3wmmmm亚洲av在线观看| bbb黄色大片| 亚洲精华国产精华液的使用体验 | 国产aⅴ精品一区二区三区波| 男女啪啪激烈高潮av片| 69av精品久久久久久| 久久精品国产99精品国产亚洲性色| 精品不卡国产一区二区三区| 成人特级av手机在线观看| 欧美成人免费av一区二区三区| .国产精品久久| 久久中文看片网| 中文字幕精品亚洲无线码一区| 国产 一区 欧美 日韩| 成年版毛片免费区| 男人舔女人下体高潮全视频| 一本一本综合久久| 有码 亚洲区| 可以在线观看毛片的网站| 欧美黑人巨大hd| 日韩av在线大香蕉| 亚洲国产精品成人综合色| 久久久久久久午夜电影| 久久久成人免费电影| 国产精品av视频在线免费观看| 精品人妻1区二区| 欧美日韩精品成人综合77777| 久久久久久伊人网av| 亚洲一级一片aⅴ在线观看| 春色校园在线视频观看| 成年人黄色毛片网站| 人妻少妇偷人精品九色| 一级黄片播放器| 两人在一起打扑克的视频| 免费看日本二区| 欧美高清性xxxxhd video| 国产在视频线在精品| 麻豆一二三区av精品| 亚洲精华国产精华液的使用体验 | 一级黄片播放器| 国产av一区在线观看免费| 国产色爽女视频免费观看| 国产色婷婷99| 尾随美女入室| 久久国产精品人妻蜜桃| 真人一进一出gif抽搐免费| 真人一进一出gif抽搐免费| 欧美极品一区二区三区四区| 又爽又黄a免费视频| 中文字幕av在线有码专区| netflix在线观看网站| 亚洲va日本ⅴa欧美va伊人久久| 婷婷亚洲欧美| 精品一区二区三区人妻视频| 久久久午夜欧美精品| 五月伊人婷婷丁香| 久久久久久久久大av| 亚洲av日韩精品久久久久久密| 一夜夜www| 成人无遮挡网站| 51国产日韩欧美| 两人在一起打扑克的视频| 亚洲久久久久久中文字幕| 美女被艹到高潮喷水动态| 大又大粗又爽又黄少妇毛片口| av在线亚洲专区| 小说图片视频综合网站| 亚洲一区二区三区色噜噜| 热99在线观看视频| 有码 亚洲区| 国产伦人伦偷精品视频| 日本 欧美在线| 好男人在线观看高清免费视频| 夜夜夜夜夜久久久久| 免费黄网站久久成人精品| 午夜精品一区二区三区免费看| 国产伦在线观看视频一区| 国语自产精品视频在线第100页| 欧美区成人在线视频| 欧美区成人在线视频| 日韩欧美精品v在线| www.色视频.com| 97人妻精品一区二区三区麻豆| 久久精品国产清高在天天线| 亚洲国产欧美人成| 日日干狠狠操夜夜爽| 午夜免费激情av| 成人av在线播放网站| 成人性生交大片免费视频hd| 97超级碰碰碰精品色视频在线观看| 午夜福利成人在线免费观看| 99精品在免费线老司机午夜| 欧美绝顶高潮抽搐喷水| 小说图片视频综合网站| 欧美日韩瑟瑟在线播放| 99视频精品全部免费 在线| 男女啪啪激烈高潮av片| 少妇被粗大猛烈的视频| 国产男靠女视频免费网站| 色综合亚洲欧美另类图片| 精品久久国产蜜桃| 床上黄色一级片| 黄色视频,在线免费观看| 最近最新免费中文字幕在线| 在线免费观看不下载黄p国产 | 内地一区二区视频在线| 日本一本二区三区精品| 在线观看舔阴道视频| 搞女人的毛片| 亚洲人成网站在线播放欧美日韩| 久久精品人妻少妇| 国产高清激情床上av| 久久精品久久久久久噜噜老黄 | 真人一进一出gif抽搐免费| 亚洲人成伊人成综合网2020| 精品日产1卡2卡| 亚洲三级黄色毛片| 两性午夜刺激爽爽歪歪视频在线观看| 久久香蕉精品热| 亚洲美女黄片视频| 日韩欧美一区二区三区在线观看| 美女高潮喷水抽搐中文字幕| 欧美一区二区亚洲| 在现免费观看毛片| 欧美极品一区二区三区四区| 亚洲欧美日韩高清在线视频| 成人永久免费在线观看视频| 我的老师免费观看完整版| 搡老岳熟女国产| 综合色av麻豆| 一个人观看的视频www高清免费观看| 国产亚洲精品久久久com| 精品日产1卡2卡| 亚洲中文日韩欧美视频| 在线观看66精品国产| 日本五十路高清| 老熟妇仑乱视频hdxx| 男女下面进入的视频免费午夜| 噜噜噜噜噜久久久久久91| videossex国产| 亚洲成人久久爱视频| 亚洲国产精品久久男人天堂| 精品久久久久久久人妻蜜臀av| 在线观看66精品国产| 国产午夜精品久久久久久一区二区三区 | 精品久久久噜噜| 91狼人影院| 日韩欧美 国产精品| 精品国产三级普通话版| 岛国在线免费视频观看| 成熟少妇高潮喷水视频| 国产伦一二天堂av在线观看| 成人av一区二区三区在线看| 少妇丰满av| 久久久久久大精品| 一本久久中文字幕| 蜜桃亚洲精品一区二区三区| a级一级毛片免费在线观看| 久久精品国产亚洲av涩爱 | 超碰av人人做人人爽久久| 给我免费播放毛片高清在线观看| 中文字幕免费在线视频6| 久久久久久久久久久丰满 | 午夜视频国产福利| .国产精品久久| 自拍偷自拍亚洲精品老妇| 哪里可以看免费的av片| 午夜老司机福利剧场| 一本久久中文字幕| 成人一区二区视频在线观看| 午夜福利高清视频| 亚洲av美国av| 国产高清有码在线观看视频| 亚洲精品久久国产高清桃花| 毛片一级片免费看久久久久 | 国产麻豆成人av免费视频| 亚洲国产精品久久男人天堂| 天天一区二区日本电影三级| 97碰自拍视频| 国国产精品蜜臀av免费| 国内精品宾馆在线| 久久久久久久亚洲中文字幕| 变态另类成人亚洲欧美熟女| 久久精品夜夜夜夜夜久久蜜豆| 一级毛片久久久久久久久女| 精品无人区乱码1区二区| 国产色爽女视频免费观看| 又黄又爽又免费观看的视频| 色在线成人网| 午夜a级毛片| 最近中文字幕高清免费大全6 | 俄罗斯特黄特色一大片| 简卡轻食公司| 久久人妻av系列| 日韩,欧美,国产一区二区三区 | 国内精品久久久久精免费| 波野结衣二区三区在线| 亚洲成人中文字幕在线播放| 搡老妇女老女人老熟妇| 麻豆国产av国片精品| 国产精品电影一区二区三区| 全区人妻精品视频| 亚洲国产精品sss在线观看| 欧美成人性av电影在线观看| 99久国产av精品| 在线观看舔阴道视频| 日本五十路高清| 乱人视频在线观看| 国产人妻一区二区三区在| 亚洲在线观看片| 成人毛片a级毛片在线播放| 精品久久国产蜜桃| 国产欧美日韩一区二区精品| 欧美在线一区亚洲| 一边摸一边抽搐一进一小说| 国产在视频线在精品| 欧美区成人在线视频| 国产精品av视频在线免费观看| 天天躁日日操中文字幕| 99在线视频只有这里精品首页| 欧美国产日韩亚洲一区| 日韩,欧美,国产一区二区三区 | 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 18禁黄网站禁片午夜丰满| 国产色婷婷99| 国产免费一级a男人的天堂| 97超视频在线观看视频| 久久久久国内视频| 女的被弄到高潮叫床怎么办 | 日日夜夜操网爽| av在线蜜桃| 天堂√8在线中文| 久9热在线精品视频| bbb黄色大片| 在线国产一区二区在线| 亚洲精品在线观看二区| 偷拍熟女少妇极品色| 亚洲一区高清亚洲精品| 男女那种视频在线观看| 日本黄色视频三级网站网址| 日韩欧美三级三区| 精品一区二区三区视频在线| 精品99又大又爽又粗少妇毛片 | 不卡一级毛片| 国产真实伦视频高清在线观看 | 女的被弄到高潮叫床怎么办 | 成人一区二区视频在线观看| 免费看光身美女| 亚洲精品亚洲一区二区| 久久精品影院6| 国产精品久久视频播放| 男人狂女人下面高潮的视频| 日韩精品中文字幕看吧| 在线观看一区二区三区| 国产伦人伦偷精品视频| 色视频www国产| 一级av片app| 欧美绝顶高潮抽搐喷水| 少妇人妻一区二区三区视频| 男人舔女人下体高潮全视频| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 极品教师在线视频| 亚洲av五月六月丁香网| 黄片wwwwww| 久久亚洲真实| 欧洲精品卡2卡3卡4卡5卡区| 一个人看的www免费观看视频| 88av欧美| 一进一出抽搐动态| 国产精品永久免费网站| 亚洲成av人片在线播放无| 午夜影院日韩av| 精品人妻熟女av久视频| 人人妻人人看人人澡| 欧美区成人在线视频| 床上黄色一级片| 久久精品国产亚洲网站| 国产精品亚洲美女久久久| 日韩欧美国产一区二区入口| 欧美日韩乱码在线| 国产精品久久电影中文字幕| 国产精品久久久久久久电影| 香蕉av资源在线| 麻豆av噜噜一区二区三区| 欧美最新免费一区二区三区| 精品久久国产蜜桃| 国产麻豆成人av免费视频| 国内精品久久久久精免费| 国产爱豆传媒在线观看| 黄色视频,在线免费观看| 日日摸夜夜添夜夜添av毛片 | 亚洲 国产 在线| 综合色av麻豆| 国产精品久久久久久久久免| 一级黄色大片毛片| 亚洲国产欧洲综合997久久,| 久久天躁狠狠躁夜夜2o2o| 天堂网av新在线| 欧美日韩瑟瑟在线播放| 久久婷婷人人爽人人干人人爱| 亚洲av免费高清在线观看| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 日本精品一区二区三区蜜桃| 亚洲人与动物交配视频| 精品一区二区三区人妻视频| 毛片一级片免费看久久久久 | 亚洲欧美日韩东京热| 色综合站精品国产| av在线老鸭窝| 久久精品国产亚洲av香蕉五月| 欧美日韩瑟瑟在线播放| 女生性感内裤真人,穿戴方法视频| 一本精品99久久精品77| 搡老岳熟女国产| 夜夜夜夜夜久久久久| 精品人妻偷拍中文字幕| 亚洲欧美清纯卡通| 99久久九九国产精品国产免费| 狂野欧美激情性xxxx在线观看| 联通29元200g的流量卡| 亚洲综合色惰| 老司机福利观看| 村上凉子中文字幕在线| 久99久视频精品免费| 国产老妇女一区| 中亚洲国语对白在线视频| 黄色配什么色好看| 观看美女的网站| 中文字幕高清在线视频| 国产国拍精品亚洲av在线观看| 天堂影院成人在线观看| 国产不卡一卡二| 啦啦啦啦在线视频资源| 亚洲精品亚洲一区二区| bbb黄色大片| 1000部很黄的大片| 一区二区三区免费毛片| 欧美不卡视频在线免费观看| 舔av片在线| 日韩在线高清观看一区二区三区 | 欧美成人性av电影在线观看| 赤兔流量卡办理| 哪里可以看免费的av片| 人妻丰满熟妇av一区二区三区| 久久99热这里只有精品18| 成熟少妇高潮喷水视频| 3wmmmm亚洲av在线观看| 桃色一区二区三区在线观看| 22中文网久久字幕| 成人av在线播放网站| 成人av一区二区三区在线看| 男人和女人高潮做爰伦理| 日本黄色视频三级网站网址| 尤物成人国产欧美一区二区三区| 精品人妻1区二区| 日本黄色片子视频| 亚洲真实伦在线观看| 97超级碰碰碰精品色视频在线观看| 亚洲 国产 在线| 99在线视频只有这里精品首页| 999久久久精品免费观看国产| 美女cb高潮喷水在线观看| 国产极品精品免费视频能看的| 色精品久久人妻99蜜桃| 国语自产精品视频在线第100页| 国产精品久久久久久av不卡| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 亚洲精品乱码久久久v下载方式| 色哟哟哟哟哟哟| 一区二区三区免费毛片| 国产白丝娇喘喷水9色精品| 国产一区二区亚洲精品在线观看| 一卡2卡三卡四卡精品乱码亚洲| 欧美又色又爽又黄视频| 男女之事视频高清在线观看| 中文资源天堂在线| 日本精品一区二区三区蜜桃| 中文字幕免费在线视频6| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 日日摸夜夜添夜夜添小说| 深夜a级毛片| 51国产日韩欧美| 亚洲中文字幕日韩| 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 亚洲综合色惰| 久久草成人影院| 久久久久久九九精品二区国产| a级毛片免费高清观看在线播放| 非洲黑人性xxxx精品又粗又长| 国产高清不卡午夜福利| 精品乱码久久久久久99久播| 性欧美人与动物交配| 国产白丝娇喘喷水9色精品| 99热网站在线观看|