• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dual-Chaining Watermark Scheme for Data Integrity Protection in Internet of Things

    2019-03-18 08:15:30BaoweiWangWeiwenKongWeiLiandNealXiong
    Computers Materials&Continua 2019年3期

    Baowei Wang ,Weiwen Kong,Wei Li and Neal N.Xiong

    Abstract:Chaining watermark is an effective way to verify the integrity of streaming data in wireless network environment,especially in resource-constrained sensor networks,such as the perception layer of Internet of Things applications.However,in all existing single chaining watermark schemes,how to ensure the synchronization between the data sender and the receiver is still an unsolved problem.Once the synchronization points are attacked by the adversary,existing data integrity authentication schemes are difficult to work properly,and the false negative rate might be up to 50 percent.And the additional fixed group delimiters not only increase the data size,but are also easily detected by adversaries.In this paper,we propose an effective dual-chaining watermark scheme,called DCW,for data integrity protection in smart campus IoT applications.The proposed DCW scheme has the following three characteristics:(1) In order to authenticate the integrity of the data,fragile watermarks are generated and embedded into the data in a chaining way using dynamic grouping; (2) Instead of additional fixed group delimiters,chained watermark delimiters are proposed to synchronize the both transmission sides in case of the synchronization points are tampered; (3) To achieve lossless integrity authentication,a reversible watermarking technique is applied.The experimental results and security analysis can prove that the proposed DCW scheme is able to effectively authenticate the integrity of the data with free distortion at low cost in our smart meteorological Internet of Things system.

    Keywords:Dual-chaining,reversible watermark,integrity authentication,Internet of things.

    1 Introduction

    The rapid development of Internet of Things (IoT) has caused great changes in the national security,industry and people’s lives [Zhang,Sun and Wang (2016); Wang,Gu and Zhou (2017)].It has the potential to become a vital part of our infrastructure to enrich lives and make processes easier.It offers economically viable solutions for a variety of people-centric applications,such as,health care,working space automation,public safety and smart space.Smart campus is exactly the most typical application scenario of Internet of Things.As the core part of the smart IoT system perception layer,wireless sensor networks (WSNs) are organized by a great number of sensors with limited computational capacity and power to form a self-organizing network in wireless communication.In the smart campus system,the massive real-time sensory data is continuously collected by the source nodes and sent to the sink node through multi-hop relays.It is used to make decisions and discover deep levels of knowledge [Wang,Gu,Ma et al.(2017); Xia,Wang,Sun et al.(2014)].Due to the limited resources,traditional data security solutions based on cryptography and Message Authentication Code (MAC) cannot be applied to sensor nodes.Sensor nodes are susceptible to a variety of attacks,such as data forgery attack,data tampering attack,and packets selective forwarding attack.So,verifying the integrity of the transmitted data is critical for most smart space IoT applications.

    Lightweight digital watermarking techniques are gradually introduced into the wireless sensor networks and smart Internet of Things to verify the integrity of the data [Feng and Potkonjak (2003); Wang,Yan,Li et al.(2015); Zhang,Liu,Das et al.(2008); Wang,Sun,Ruan et al.(2011); Dong and Li (2009)].Chaining watermarks are considered to be the most effective method [Guo,Li and Jajodia (2007)].The core ideas of the existing single chaining watermark schemes are as follows:The data collected by a source node is defined as a data stream.It is divided into multiple groups using the synchronization points or the group delimiters,and the fragile watermark generated by the data in the current group is embedded into the next (or previous) group to form a watermarking chain.Any tamper or attack on the watermarked data would corrupt the watermarking chain.It can efficiently detect and locate any modifications made to the data and authenticate the data integrity [Juma,Kamel and Kaya (2008); Kamel and Juma (2010);Kamel and Juma (2011); Shi and Xiao (2013); Liu,Ge,Zhu et al.(2014)].

    But all existing single chaining watermarking schemes still have the following bottlenecks:(1) The tampering of the indispensable synchronization points may lead to a high false negative rate of 50 percent and result in completely meaninglessness of data integrity authentication; (2) The additional fixed group delimiters,which are usually special data elements or fixed packet segments,can be detected easily by the adversaries.(3) It is unacceptable that the embedding method leads to certain irreversible changes to the original data.

    In this article,an effective dual-chaining watermark scheme is proposed to ensure the data integrity in the perception layer of smart IoT system.The proposed DCW scheme has the following three characteristics:

    (1) Fragile watermarks are generated and embedded into the data stream using a dynamic chaining method to verify the data integrity.

    (2) Instead of the additional fixed group delimiter,a chained watermark one is designed to synchronize the both transmission sides in case of the synchronization points failure.

    (3) To achieve completely lossless integrity authentication,a reversible watermark algorithm is applied to DCW.

    The proposed DCW scheme is evaluated in a real smart campus meteorological Internet of Things system,which is deployed in Nanjing University of Information Science and Technology.The experimental results and security analysis show that the proposed scheme can effectively authenticate the integrity of the data with free distortion and tiny computational overhead.It does not increase the data size nor change its accuracy.Furthermore,DCW can significantly improve the ability to detect and locate the various packet level attacks.Meanwhile,the adversaries can hardly detect the existence of the dual-chaining watermarking based integrity authentication scheme.

    The rest of the paper is organized as follows.Section 2 introduces some related works of single chaining watermark schemes.Section 3 presents our proposed dual-chaining watermark scheme.In Section 4,the experimental results and the analysis are introduced.Section 5 includes the work.

    2 Related works

    Chaining watermark is considered as a most effective way to verify the integrity of streaming data in network environment.The first single chaining watermark scheme,called SGW,is proposed by Guo et al.[Guo,Li and Jajodia (2007)].The SGW scheme is used to authentication the integrity of streaming data in network environment.The data stream is divided into groups of variable size by synchronization points.Fragile watermarks are chained across data groups.Any modifications can be detected and located.The problem with the SGW scheme is that the data insertion,modification,and deletion attacks may create confusion at the receiver.It is difficult for the receiver to track the synchronization points.The synchronization points have been the biggest bottleneck of existing dynamic grouping-based single chaining watermark methods.

    Juma et al.take the lead in applying the chaining watermark technology to wireless sensor networks.In Juma et al.[Juma,Kamel and Kaya (2008)],they presented two single chaining watermarking methods,called S-SGW and FWC,respectively.In Kamel et al.[Kamel and Juma (2010)],the authors proposed the LWC scheme to try to avoid several drawbacks of SGW.However,these three schemes still suffer from the same bottleneck as the SGW.In Kamel et al.[Kamel and Juma (2011)],the FWC-D scheme uses the group delimiters to synchronize the sender side and the receiver side.In FWC-D,the dynamic grouping method is abandoned,and additional data elements are used as the group delimiters.It is very easy to be detected by the adversaries.

    Another common disadvantage of the existing schemes is that watermarks are embedded by replacing the least significant bits (LSB) of the data,which can significantly affect the data accuracy.It is unacceptable that the methods used to protect the data destroy its integrity,especially,in some critical applications such as smart campus,medical care and military applications.

    Reversible chaining watermarking technologies are adopted to address this problem [Qiu(2017); Yuan,Xia and Sun (2017)].In Shi et al.[Shi and Xiao (2013)],a prediction-error expansion based reversible watermarking scheme is proposed by Shi and Li.It can avoid any modification to the data for watermark embedding.But the synchronization point is still its bottleneck.Once the synchronization points are attacked,the false negative rate will be up to 50% and the integrity authentication might be completely meaninglessness.

    Shi’s scheme does not take into account the upper bound of the buffer size,the buffer overflow would occur in extreme cases [Liu,Ge,Zhu et al.(2014)].To address this problem,Liu et al.proposed a histogram shifting based reversible watermarking scheme for data integrity protection in BSN.Liu’s scheme does not use dynamic grouping but adopts a fixed grouping method to avoid the drawback of synchronization points.In the head segment of the system packet,a serial number (SN) segment and a group delimiter(DF) segment are attached.Not only increase the transmission overhead,but also easily detected by the adversaries.

    3 The dual-chaining watermarking scheme

    3.1 Overview of the system model

    The system model of the proposed DCW scheme for data integrity protection in smart IoT system is illustrated in Fig.1.There are three types of nodes in the perception layer sensor network,including source sensor nodes,relay nodes and the sink node.Source sensor nodes continually collect data samplings,and send them to the sink using data packets through the multi-hop relay nodes.A data packet is represented as (headsegments,payload),where head segments are predefined parameters,including route,packet length,etc.; the payload is the encoded data samplings.For simplicity,we need not present the data on the packet level.Instead,each data sampling is represented as a data elementEi.All the sensory data of a source node is defined as an infinite numericaldata streamS={E1,E2,…,En}.

    Figure1:The system model of DCW

    To verify the integrity of the data stream,the proposed DCW scheme is adopted in the system’s perception layer.The dual-chaining watermarks are generated and embedded on the source node,extracted and verified on the sink node.

    (1) On the source sensor,the data streamSis cached in two buffers and dynamically divided into different data groups.And two adjacent data groups form an authentication group.The dual-chaining watermarks,including the chaining fragile watermark and the pre-defined chained delimiter watermark,are embedded into the authentication groups in a chaining way.

    (2) On the sink,it synchronizes the data groups using the synchronization point and the chained delimiter watermark,and verifies the integrity of the data stream using the chaining fragile watermark.If the data is not temped,the original data can be restored.

    3.2 Definitions and rules

    Firstly,some system parameters and notations used in the proposed DCW scheme are pre-defined.To simplify the description,all the notations and parameters are shown in Tab.1,and considered to be known parameters.

    To embed and extract the dual-chaining watermarking,the data elements would firstly be cached and grouped on the both transmission sides,including the source node and the sink node.Two data buffers B0and B1,which are also denoted as Buffer (b0) and Buffer(b1),are needed to cache the data groups.The data buffer is defined as follows:

    Definition 1:(Data Buffer,B) A data bufferBis an allocated memory space to cache the data elements.The capacityNof a data buffer means that it can cache up toNdata elements,which is usually a system-defined parameter.

    Definition 2:(Synchronization Point,SP) A data elementEiis aSP,if and only if:Hash(Key,Ei) mod m == 0.

    In DCW,the SPs are used for dynamic grouping of data.Since aSPis a selected data element using the secret key,and the group length is variable,it is very difficult to find out and destroy the data groups.All the data elements are cached in the two buffers B0and B1,alternately.When each data element is cached into a data buffer,Rule1is used to determine if a data group is cached successfully.

    Rule 1:(Data Grouping Rule) For each elementEkCached in a buffer:(1) ifEkis not aSP && k < N,then continue to buffer the data; (2) ifEkis aSP && k < L,whereLis defined as the lower bound of the group length,then continue to cache data; (3) ifEkis aSP && L ≤ k ≤ N,then all the data elements cached in the buffer is defined as a Data GroupGx={E1,E2,…,Ek}; (4) else,that is,when the buffer is full,a suitableSPhas not been found,then all the data elements cached in the buffer is defined as a Data GroupGx={E1,E2,…,EN},(no SP is included).

    In summary,two adjacent data groups are cached in two buffers.The group sizekis a variable value and is bounded byLandN.Buffer overflow would not occur in any cases.The two adjacent data groups can be defined as an Authentication Group,which is the workspace for embedding and verifying the dual-chaining watermark scheme.To avoid confusion,they are denoted as the previous group (Gi-1) and the current group (Gi).

    As shown in Fig.2,the data elements in each data group are divided into three segments,includingSF={E1,E2,…,Ek-l-1},SD={Ek-l,Ek-l+1,…,Ek-1} andSP=Ek.The lengthlofSDis a fixed value; and the length ofSFisk-l-1.The well-designed fragile watermark and delimiter watermark are embedded intoSFandSDof theprevious group Gi-1respectively,using a reversible method.The fragile watermarkFWiis generated by all the original data elements in the current groupGi,the delimiter watermarkDWi-1is generated using Rule 2.

    Figure2:The proposed Dual-Chaining Watermarking Model

    The workflow of the dual-chaining watermarking embedding:When a data groupGis cached in the buffer using Rule 1,the following two operations are performed:(1)Firstly,the fragile watermark binary stringFWiof the current groupGiis computed according to Rule 3,and is embedded into theSFsection of the previous groupGi-1using Rule 4.A fragile watermarking chain is formed.It is used to verify the data integrity.(2)Meanwhile,the delimiter watermarkDWis generated using Rule 2,and is embedded into theSDsection ofGi-1using Rule4.That is the other watermarking chain to keep the both transmission sides synchronized.It can avoid failure in sync grouping whenSPConfusion happens.Once the dual-watermarking embedding ends,the data in the groupGi-1will be sent to the sink node and the next groupGi+1will be buffered.

    Rule 2:(Delimiter Watermarks Definition) The delimiter watermarks,which is denote asDW={DW1,DW1,…,DWl},are a set of well-defined fixed-size binary strings.They are embedded into fixed position in each group of data,one by one,to form a watermark chain.Fo r simplicity,they can be generated by a fixed delimiterWD,DWiis denoted asWD⊕i,inwhich “⊕” is theXORoperation.XORis a reversible operation.The length ofWDandDWiis l,which is equal to the length ofSD.

    Rule 3:(Fragile Watermark Generation Rule) The fragile watermarkFWiis generated by the hash of the concatenation of all the data elements in the current group and then embedded into the previous group.FWiis denoted asGroupXOR (H1⊕H2⊕…⊕Hk),in which “⊕” is theXORoperation.The length ofFWi,which is a fixed value,depends on the hash function.If the length ofSFin previous group is larger than the length ofFWi,FWiwill be embedded repetitively.

    In DCW,to make the both watermarks reversible,a difference expansion-based reversible embedding algorithm is designed [Chen,Sun,Sun et al.(2013); Alattar (2004)].The reversible watermarking embedding rules are defined as follows.

    Rule 4:(Watermarking Embedding Rule) Given an numerical data groupGx={E1,E2,… ,Et},and a binary watermarkW,(its length ist-1),the embedding rule is as follows:(1)calculate the average value ofGxdata,denoted asu=?(E1+E2+…+Et)/t」; (2) compute the differences between each data elementEj(j=2,3,…,t)andE1,denoted asdj=Ej-E1;(3) shiftdjone bit to the left and embed the corresponding bit ofWinto the vacant least significant bit ofdj,that isdj'= 2×dj+W[j-2]; (4) we can get the watermarked dataGx',in whichE1'=u-?(d2'+d3' +…+ dt')/t」,Ej'=E1'+dj' (j=2,3,…,t).

    Since the data elements are collected in a short period of time,and thedjChanges in a small range,the 1-bit left-shifted operation overflow will not happen [Kamel and Juma(2010); Kamel and Juma (2011)].

    Rule 5:(Sync Data Grouping Rule) The only difference between the sync grouping rules and the Rule 1 is:the group ends before the buffer is full,if and only whenEkis aSPand simultaneously a delimiter watermark can be extracted from the data elements beforeEk.

    Rule 6:(Watermark Extraction and Data Recovery Rule) Given a watermarked data groupGx'={E1',E2',…,Et'}:(1) calculate the average value ofGx',denoted asu=?(E1'+E2' +…+Et')/t」; (2) compute the differences between eachEj'(j=2,3,…,t) andE1',denoted asdj'=Ej'-E1'; (3) the binary watermarkingWx'Can be extracted from the least significant bit of the differences; the corresponding watermark bit isWx' [j-2] =LSB(dj'),and the length ofWx'ist-1; (4) shiftdj'one bit to the right,dj= ?dj'/2」; (4) we can get the recovered dataGx,in whichE1=u-?(d2+d3+…+ dt)/t」,Ej=E1'+dj(j=2,3,…,t).

    The workflow of the dual-chaining watermarking based data integrity authentication scheme is as follows:(1) Two groups of dataGi-1'andGi'are cached correctly using Rule 5.As shown in Fig.2,data elements in each data group can be divided into three parts,includingSF,SDandSP; (2) the fragile watermarkingFWi'Could be extracted from sectionSFofGi-1',according to Rule 6; and then the watermarkingFWi''Can be recalculated using Rule 3.ThenFWi'is equal toFWi'',the data in Gi'is complete; (3) The original dataGiCan be regained fromGi'using Rule 6.

    3.3 Watermarking embedding algorithm

    Without loss of generality,the dual-chaining watermarking generation and embedding schemes,which run on the source sensor node in the perception layer of a smart Internet of Things system,are introduced formally in this section.Two data buffers,which are denoted as Buffer (b0) and Buffer (b1),respectively,are needed on each source sensor node.The dual-chaining watermark embedding algorithm is presented in Algorithm 1.It includes the delimiter watermark embedding and the fragile watermark embedding.Algorithm 2 shows the data buffering process on the data source sensor node.The detailed course of the reversible watermarking embedding is designed in Algorithm 3.

    Algorithm 1:Dual-Chaining Watermark Embedding(DW)1.clear Buffer (b 0),Buffer (b 1);2. b0= 0;3.Cache_buffer (Buffer (b0));//Call Algorithm 2 4.while (true) 5. { 6.b1= (b0 + 1 ) mod 2;7. FWi =Cache_buffer (Buffer (b1));//Call Algorithm 2 8. k= elements number in Buffer(b0);9. l= bits number in DW ;10. Embedding (Buffer(b0), k-l-1,k-2,DW);//Delimiter watermark embedding 11. Embedding (Buffer(b0), 0 , k-2-l , FWi);//Fragile watermark embedding 12. send data in Buffer(b0);13. Clear Buffer(b0);14. b0= b1 ;15.}

    Algorithm 2:Cache_buffer (Buffer(b))1. k =0; W =0;2.while (receive a data element Ei)3.{4.Buffer(b) (k ++)= Ei ;5. H=Hash (Key,Ei ) ;6. W = W ⊕ H ;7.if ((H mod m==0) && (k >= L) && (k <= N) || (k == N))8.return W ;9.}

    Algorithm 3:Embedding (buffer E , start , end , W)1. t=end-start ;// Generate W with the needed length 2.if (| W |>= t-1)//| W | is the length of W 3. W =the first t-1 bits of W ;4.else 5.{6.n= t/|W| ;7. W =n W plus the first t % |W|- bits of W ;8.}9. u =?(Estart + Estart+1 +…+ Eend)/t 」;is the i th data element of E 10.for (j = start+1 to end)11.{12. dj = Ej – Estart ;13. dj '= 2× dj + W[j-start-1] ;14.}15. Estart = u- (dstart+1 '+ dstart+2 ' +…+ dend ')/t 」;16.for (j = start+1 to end)17. Ej =E1 ' +dj ';

    3.4 Data integrity authentication algorithm

    Without loss of generality,the data integrity authentication and data recovery algorithms,which run on the sink node in a smart Internet of Things system,are presented formally in this subsection.In a smart IoT application scenario,the computing resource,storage space and energy of the sink node are not constrained.It can cache data elements into the two buffers as well using Algorithm 6.As shown in Tab.1,the watermark embedding securityKey,the secret parameterm,and the lower bound of the buffer sizeLand the upper bound of the buffer sizeNare considered to be known parameters.The complete algorithm for data integrity authentication and original data recovery is shown in Algorithm 4.The extracted watermarks includeFWi'andDW'.Here,FWi'is the fragile watermark that is the group hash value for integrity protection constructed from the previous and the current group;DW'is the chained delimiter watermark,which extracted by Algorithm 5 for the verification of grouping.The data can be recovered using Algorithm 7.

    Algorithm 4:Data Integrity Authentication 1.clear Buffer (0),Buffer (1);2. b0 = 0 ;3.Cache_sync_buffer (Buffer (b0));4. k= number of data elements in buffer(b0);5. l= number of bits in DW ;6. FWi '= Extraction(Buffer(b0), 0 , k-2-l);//Call Algorithm 7 7.while (true)8.{9. b1 =(b0 +1) mod 2 ;10. if (Cache_sync_buffer (Buffer (b1)) == 1)11. {12. k= number of data elements in Buffer(b1);13. FWi+1 '= Extraction(Buffer(b1), 0 , k-2-l);//Call Algorithm 7 14.for (j = 0 to k-1)15. FWi ”=FWi ”+Hash (Buffer(b1) (j));16.if (FWi ' == FWi ”) 17.return 1;//Integrity 18.else 19.return 0;//Tampered 20.}21.else 22.return 0;//Tampered 23.clear Buffer(j0);24. b0= b1 ;25.}

    Algorithm 5:Delimiter (buffer E' , start,end)1.for (j = start+1 to end)2.{3. dj ' = Ej '- Estart ' ;4. W' [j-start-1] =LSB(dj ') ;5.}6.return W’ ;

    Algorithm 6:Cache_sync_buffer (Buffer(b))1. k= 0; W= 0;2.while (receive a data element Ei)3.{4.Buffer(b) (k ++)= Ei ;5. H= Hash (Key,Ei ) ;6. W=W ⊕ H ;7.if (((H mod m == 0 && Delimiter ( Buffer(b), k-1-l,k-1) == DW) &&(k >= L) && (k <= N)) || (k == N && Delimiter ( Buffer(b), k-l,k) == DW))8.return 1;//Sync Success;9.if ((Delimiter (Buffer(b), k-l,k) ! =DW && k == N)10.return 0;//Sync Failure 11.}

    Algorithm 7:Extraction (buffer E',start,end)1.t= end-start ;2. u' =(Estart ' + Estart+1 ' +…+ Eend ')/t 」;3.for (j = start+1 to end)4.{5. dj ' = Ej '- Estart ' ;6. W' [j-start-1]=LSB(dj ') ;7. dj= ? dj ' /2」;8.}9. Estart '= u ' - (dstart+1 + dstart+2 +…+ dend)/t 」;//Data Recovery10.for (j = start+1 to end) 11. Ej ' =Ej ' +dj ;12.return W’ ;

    4 Experiments and performance evaluation

    In the performance evaluation section,we evaluate the performance of the proposed dualchaining watermark scheme for data integrity protection from multiple perspectives.We use our own real smart meteorological Internet of Things system which is deployed in Nanjing University of Information Science and Technology,as shown in Fig.3.The sensor nodes used in this meteorological IoT system are our self-developed products[Wang,Gu,Ma et al.(2017); Wang,Gu and Yan (2018)],which is shown in Fig.4.The propose DCW scheme is implemented on the node.In this IoT system,the temperature,humidity data are gathered once per minute,and are used for embedding the dualchaining watermarks.

    Figure3:The smart meteorological Internet of Things system deployed in NUIST

    Figure4:The self-developed sensor nodes used in the experiment

    4.1 Data accuracy

    In the people centric Internet of Things systems,such as smart campus application,the data accuracy is very important.The watermark embedding method introduces some data changes.Since these changes are usually very small,and insignificant on the perception results,it is hard to be perceived.So,the data accuracy and the invisibility are acceptable under normal circumstances.Tab.2 shows the statistical comparison in terms of the rate of change of the mean and the variance of data change.Small changes in mean and variance indicate that our proposed dual-chaining watermark scheme has fairly better invisibility.Furthermore,people can recover the original data stream with scarcely error when needed.

    Table2:The statistical comparison of the data change

    2 14.53 0.0012 0.0006 0.0034 14.53 3 23.36 0.0017 0.0018 0.0047 23.36 4 49.45 0.0013 1.0054 0.0946 49.45 5 57.50 0.0026 0.0027 0.0625 57.50

    4.2 Data transmission amount

    In this subsection,we present the comparison of the data transmission amount among the original data,the existing single chaining watermark scheme (FWC-D) and the proposed dual-chaining watermarking scheme (DCW).In Fig.5,the x-axis denotes the sense data amount and the y-axis denotes the corresponding data transmission amount.Because the FWC-D scheme directly adds the additional group delimiters into the data groups,the additional amount of data transmission is extremely high.Furthermore,the LSB-based watermarking embedding also destroys the accuracy of the data.Different from FWC-D,DCW takes the chained delimiter watermarks as the GDs.The experimental results show that the DCW scheme doesn’t increase the amount of data transmission.It can also recover the original data.

    Figure5:Comparison of the amount of the data transmission among three schemes

    4.3 False positive rate comparison

    In all the existing single chaining watermark schemes,such as SGW,FWC,when the watermarked data groups cannot be synchronized by the sink node,false positives happen.In the proposed DCW scheme,the chained watermark delimiters can synchronize the both transmission sides in case of the synchronization points are tampered.Fig.6 shows the comparison of the false positive rate among the SGW scheme,the FWC scheme and the proposed DCW scheme.The false positive rate decreases with the parameterm.Meanwhile,compared with the SGW scheme and the FWC scheme,the false positive rate of DCW reduces significantly.That is because the DCW can locate the SP by delimiter watermark.

    In total,the false positive performance of the proposed dual-chaining watermark scheme is better than anyone of the previous single chaining watermark schemes.

    Figure6:Comparison of the false positive rate

    4.4 Anti-attack capability evaluation

    In this subsection,we evaluate the anti-attack capability of the proposed DCW scheme.We discuss four most common attacks that can be launched in the wireless smart Internet of Thing application scenario,including packet tampering attack,packet forgery attack,selective forwarding and packet replay attack.We define that an attack is successful if it is not detected by the sink node.In our experiments,we randomly select 5 relay sensor nodes as the malicious nodes,which can launch these four attacks.And each type of attack is evaluated 500 times.The experimental results of anti-attack capability of the proposed DCW scheme are shown in Tab.3.

    Table3:Anti-attack capability evaluation

    In our proposed DCW scheme,the well-designed dual-chaining watermarks,including the chaining fragile watermark and the pre-defined chained delimiter watermark,are embedded into the data in a dynamic and reversible way.It is difficult for the adversaries to analysis any data information by capturing the data packets without the data grouping secret key.The DCW scheme embeds chained delimiters watermarks which can prevent the adversaries to track and improve the security greatly compared to the single chaining watermarking scheme.According to the experimental results shown in Tab.3,the prosed DCW scheme achieved 100% detection rate on all the four types of packet attacks.We can see that the proposed DCW scheme can verify the integrity of the data stream.It can be used to ensure the authenticity of the data.

    4.5 Computation overhead and energy consumption analysis

    It is difficult to accurately evaluate the energy consumption of the proposed dualchaining watermark scheme in the real smart meteorological Internet of Things experiment environment.So,we only evaluate energy consumption using the computation overhead analysis according to common practice.Generally,the energy consumed to transmit one bit data over a distance of 100m by radio can execute about 3000 instructions [Kamel and Juma (2011)].That is,if1Erepresents the energy consumed to execute one instruction,the energy consumption to transmit 1-bit data is 3000E.So,we can see that the energy consumption for data transmission is far greater than processing the sensory data.In DCW,the chained delimiter watermarks and the fragile watermark are both embedded into the data elements instead of being transmitted as additional data.It does not introduce any data transmission overhead.So,the total energy consumption of the perceptual layer of the network is reduced.The network lifetime of the smart Internet of Things system is extended significantly.

    5 Conclusion

    In this article,a dual-chaining reversible watermarking method for data integrity protection in the perception layer of the IoT system.The proposed reversible scheme can ensure the integrity of the data with free distortion.In addition,DCW scheme takes the chained watermarking delimiters to synchronize the data source node and the sink node.It makes the adversaries difficult to detect the existence of the watermarking and track the data groups.The dual-chaining watermarks can resist various types of attacks such as packet forgery attack,selective forwarding attack,packet replay and tampering attack,and authenticate the integrity of data effectively.Meanwhile,the proposed dual-chaining watermark scheme does not increase the transmission overhead.Experimental results have shown that the DCW has remarkable advantages over the existing single chaining watermark methods not only in terms of data accuracy,but also data security and the lifetime of the wireless sensor network.

    Acknowledgement:This work is supported by the Major Program of the National Social Science Fund of China under Grant No.17ZDA092; by the Electronic Information and Control of Fujian University Engineering Research Center Fund under Grant No.EIC1704; by the National Key R&D Program of China under grant 2018YFB1003205;by the National Natural Science Foundation of China under grant 61173136,U1836208,U1536206,U1836110,61602253,61672294; by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) fund; by the Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET) fund,China.

    国产精品国产高清国产av| 热99re8久久精品国产| 大型av网站在线播放| 午夜福利在线免费观看网站| 国产精品爽爽va在线观看网站 | 三级毛片av免费| x7x7x7水蜜桃| 女警被强在线播放| 免费在线观看黄色视频的| 这个男人来自地球电影免费观看| 一级,二级,三级黄色视频| av超薄肉色丝袜交足视频| 久久精品国产亚洲av高清一级| 高清黄色对白视频在线免费看| 日韩人妻精品一区2区三区| 中国美女看黄片| av片东京热男人的天堂| 日日干狠狠操夜夜爽| 在线天堂中文资源库| 黄色视频不卡| 色精品久久人妻99蜜桃| 国产精华一区二区三区| 免费不卡黄色视频| 精品国内亚洲2022精品成人| 亚洲自偷自拍图片 自拍| 女人被躁到高潮嗷嗷叫费观| 久久国产乱子伦精品免费另类| 国产高清视频在线播放一区| 国产精品亚洲一级av第二区| 国产欧美日韩一区二区三区在线| 婷婷六月久久综合丁香| 亚洲狠狠婷婷综合久久图片| 大型av网站在线播放| 久99久视频精品免费| 熟女少妇亚洲综合色aaa.| 日日爽夜夜爽网站| 日韩精品中文字幕看吧| 国产99白浆流出| 美女大奶头视频| 岛国视频午夜一区免费看| 51午夜福利影视在线观看| 日本wwww免费看| 亚洲第一欧美日韩一区二区三区| 亚洲国产中文字幕在线视频| 9色porny在线观看| 国产单亲对白刺激| 极品人妻少妇av视频| 最新在线观看一区二区三区| 美女 人体艺术 gogo| 在线观看免费午夜福利视频| 18禁裸乳无遮挡免费网站照片 | 18禁美女被吸乳视频| 叶爱在线成人免费视频播放| a级片在线免费高清观看视频| 欧美激情极品国产一区二区三区| 久久精品影院6| 91精品三级在线观看| 午夜福利,免费看| 岛国视频午夜一区免费看| 国产黄a三级三级三级人| 成在线人永久免费视频| 日本精品一区二区三区蜜桃| 日韩三级视频一区二区三区| 极品教师在线免费播放| 中文欧美无线码| 国产精品久久视频播放| 中文字幕人妻熟女乱码| 熟女少妇亚洲综合色aaa.| 在线国产一区二区在线| 免费在线观看视频国产中文字幕亚洲| 午夜免费观看网址| 黑人操中国人逼视频| 久久久久国产精品人妻aⅴ院| 9热在线视频观看99| 身体一侧抽搐| 国产xxxxx性猛交| 美女高潮到喷水免费观看| 免费观看人在逋| 亚洲五月婷婷丁香| 日本wwww免费看| 久久人人爽av亚洲精品天堂| 不卡av一区二区三区| av免费在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 一区二区日韩欧美中文字幕| 十八禁网站免费在线| 一级作爱视频免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 久热爱精品视频在线9| 免费av毛片视频| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 大型黄色视频在线免费观看| 日本a在线网址| 91麻豆av在线| 777久久人妻少妇嫩草av网站| 日韩欧美一区二区三区在线观看| 大香蕉久久成人网| 黄色毛片三级朝国网站| 啦啦啦免费观看视频1| 免费搜索国产男女视频| 国产99久久九九免费精品| 黑人巨大精品欧美一区二区蜜桃| 人成视频在线观看免费观看| 日日夜夜操网爽| 人人妻,人人澡人人爽秒播| 国产精品av久久久久免费| 久久久久国产一级毛片高清牌| 又黄又爽又免费观看的视频| 国产精品国产高清国产av| 国产xxxxx性猛交| 午夜福利在线观看吧| 久久人人爽av亚洲精品天堂| 亚洲成人免费av在线播放| 天堂中文最新版在线下载| 成人三级做爰电影| 国产精品98久久久久久宅男小说| 长腿黑丝高跟| 操美女的视频在线观看| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 麻豆国产av国片精品| 久久久久久久久中文| 久久久国产欧美日韩av| 1024视频免费在线观看| 日韩大尺度精品在线看网址 | 午夜福利免费观看在线| 老司机午夜福利在线观看视频| 手机成人av网站| av视频免费观看在线观看| 一边摸一边抽搐一进一小说| 久久久久久久久中文| 天天影视国产精品| 制服诱惑二区| 高清欧美精品videossex| 男女做爰动态图高潮gif福利片 | 老司机福利观看| 变态另类成人亚洲欧美熟女 | 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| a级片在线免费高清观看视频| 免费在线观看黄色视频的| 久久精品亚洲精品国产色婷小说| 日韩欧美一区视频在线观看| 黄色片一级片一级黄色片| 超碰成人久久| 99国产精品免费福利视频| 精品无人区乱码1区二区| 69精品国产乱码久久久| 18禁裸乳无遮挡免费网站照片 | av福利片在线| 欧美日韩av久久| 岛国视频午夜一区免费看| 99久久国产精品久久久| 九色亚洲精品在线播放| 国产精品爽爽va在线观看网站 | 亚洲精华国产精华精| 黄片播放在线免费| 免费少妇av软件| 一区二区三区精品91| 丝袜美足系列| 欧美午夜高清在线| 桃色一区二区三区在线观看| 成人特级黄色片久久久久久久| 90打野战视频偷拍视频| 高清av免费在线| 日本黄色视频三级网站网址| 日日干狠狠操夜夜爽| 亚洲情色 制服丝袜| 波多野结衣高清无吗| 国产精品久久久久久人妻精品电影| xxx96com| 在线观看一区二区三区激情| 一级作爱视频免费观看| 一级a爱视频在线免费观看| 亚洲第一青青草原| 亚洲五月婷婷丁香| 精品午夜福利视频在线观看一区| 在线观看免费视频网站a站| 欧美成人性av电影在线观看| 久久草成人影院| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女 | 国产xxxxx性猛交| 最近最新免费中文字幕在线| 国产成人啪精品午夜网站| 欧美激情久久久久久爽电影 | 一级毛片精品| 乱人伦中国视频| 99国产精品一区二区蜜桃av| 制服人妻中文乱码| 精品一区二区三区视频在线观看免费 | 麻豆成人av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久水蜜桃国产精品网| 国产成人精品无人区| 狂野欧美激情性xxxx| 搡老熟女国产l中国老女人| 成人国产一区最新在线观看| 女生性感内裤真人,穿戴方法视频| 后天国语完整版免费观看| 人人妻人人添人人爽欧美一区卜| 一区二区三区激情视频| 1024香蕉在线观看| 桃红色精品国产亚洲av| 国产高清videossex| 亚洲色图av天堂| 日本 av在线| 国产黄色免费在线视频| av天堂久久9| 妹子高潮喷水视频| 十八禁网站免费在线| 久久久精品国产亚洲av高清涩受| 亚洲精品成人av观看孕妇| 亚洲中文av在线| 欧洲精品卡2卡3卡4卡5卡区| 午夜影院日韩av| 成人手机av| 国产成+人综合+亚洲专区| 精品乱码久久久久久99久播| av网站在线播放免费| 色哟哟哟哟哟哟| 国产成人精品久久二区二区91| 国产激情欧美一区二区| 一区福利在线观看| 在线观看免费午夜福利视频| 成人特级黄色片久久久久久久| 日本免费a在线| 50天的宝宝边吃奶边哭怎么回事| 国产主播在线观看一区二区| 久久久国产成人精品二区 | aaaaa片日本免费| 久久国产精品影院| 亚洲国产精品一区二区三区在线| 欧美乱码精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 日本三级黄在线观看| 亚洲欧美精品综合一区二区三区| 亚洲精品美女久久久久99蜜臀| 精品久久蜜臀av无| 一进一出抽搐gif免费好疼 | 亚洲精品在线观看二区| 两性夫妻黄色片| 亚洲国产精品合色在线| 国产三级黄色录像| 怎么达到女性高潮| 久久精品国产亚洲av香蕉五月| 午夜老司机福利片| 免费在线观看影片大全网站| 亚洲五月婷婷丁香| 侵犯人妻中文字幕一二三四区| 国产精品自产拍在线观看55亚洲| 一级毛片女人18水好多| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 亚洲自拍偷在线| 真人一进一出gif抽搐免费| 亚洲av五月六月丁香网| 亚洲精品中文字幕一二三四区| 免费观看精品视频网站| a级片在线免费高清观看视频| 中出人妻视频一区二区| 亚洲美女黄片视频| 99精品久久久久人妻精品| 国产精品免费视频内射| av网站免费在线观看视频| 色综合婷婷激情| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| 亚洲美女黄片视频| 99精品久久久久人妻精品| 黑人巨大精品欧美一区二区mp4| 免费女性裸体啪啪无遮挡网站| 国产精品野战在线观看 | 在线国产一区二区在线| 美女高潮到喷水免费观看| 搡老乐熟女国产| 天天影视国产精品| 狂野欧美激情性xxxx| 大型黄色视频在线免费观看| 69精品国产乱码久久久| 亚洲久久久国产精品| 欧美丝袜亚洲另类 | 99国产精品免费福利视频| svipshipincom国产片| 无遮挡黄片免费观看| 一级作爱视频免费观看| 免费在线观看影片大全网站| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 香蕉丝袜av| 看黄色毛片网站| 美女高潮喷水抽搐中文字幕| 久久人妻av系列| 亚洲精品久久成人aⅴ小说| 首页视频小说图片口味搜索| 精品人妻1区二区| 99香蕉大伊视频| 亚洲成人免费电影在线观看| a在线观看视频网站| 亚洲午夜精品一区,二区,三区| 亚洲九九香蕉| 色播在线永久视频| 视频区欧美日本亚洲| 黄片播放在线免费| 国产精品二区激情视频| 人人妻人人添人人爽欧美一区卜| 日本精品一区二区三区蜜桃| 国产成人av激情在线播放| 国产欧美日韩一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 神马国产精品三级电影在线观看 | 久久国产精品男人的天堂亚洲| 99久久精品国产亚洲精品| 18禁观看日本| 国产精品美女特级片免费视频播放器 | 亚洲av成人不卡在线观看播放网| 18禁黄网站禁片午夜丰满| 久久婷婷成人综合色麻豆| 午夜免费激情av| 一二三四在线观看免费中文在| 男女下面插进去视频免费观看| 亚洲一区二区三区不卡视频| 欧美日韩乱码在线| netflix在线观看网站| 黄片小视频在线播放| 国产国语露脸激情在线看| 欧美精品一区二区免费开放| 90打野战视频偷拍视频| 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 88av欧美| 精品无人区乱码1区二区| 成年版毛片免费区| 亚洲精品美女久久久久99蜜臀| 女人被狂操c到高潮| 日韩中文字幕欧美一区二区| 天天添夜夜摸| 国产高清videossex| 午夜免费成人在线视频| 一级片免费观看大全| 可以在线观看毛片的网站| 免费少妇av软件| 欧美成狂野欧美在线观看| 国产亚洲精品一区二区www| 精品国产美女av久久久久小说| 精品无人区乱码1区二区| 欧美成人午夜精品| 极品教师在线免费播放| 国产成人av激情在线播放| 国产一区在线观看成人免费| 欧美日韩福利视频一区二区| 欧美激情久久久久久爽电影 | 99国产综合亚洲精品| 男男h啪啪无遮挡| 久久香蕉国产精品| 亚洲av成人一区二区三| 香蕉丝袜av| 国产成+人综合+亚洲专区| 久久人妻福利社区极品人妻图片| 国产免费男女视频| 久久中文字幕人妻熟女| 国产精品乱码一区二三区的特点 | 欧美一级毛片孕妇| av在线播放免费不卡| 校园春色视频在线观看| 男女做爰动态图高潮gif福利片 | 咕卡用的链子| 黄频高清免费视频| 欧美日韩精品网址| 一边摸一边抽搐一进一小说| 国产无遮挡羞羞视频在线观看| 如日韩欧美国产精品一区二区三区| 天堂俺去俺来也www色官网| 超色免费av| 日韩中文字幕欧美一区二区| 69精品国产乱码久久久| 国产深夜福利视频在线观看| 最新在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 亚洲avbb在线观看| 丰满的人妻完整版| 黑人欧美特级aaaaaa片| 欧美日本中文国产一区发布| 午夜日韩欧美国产| 精品免费久久久久久久清纯| 欧美日韩av久久| 日韩人妻精品一区2区三区| 97人妻天天添夜夜摸| 1024视频免费在线观看| 身体一侧抽搐| 国产麻豆69| 最好的美女福利视频网| 精品欧美一区二区三区在线| 精品人妻在线不人妻| 成熟少妇高潮喷水视频| 精品国产美女av久久久久小说| 伊人久久大香线蕉亚洲五| 女警被强在线播放| 新久久久久国产一级毛片| 国产成人欧美在线观看| 男女做爰动态图高潮gif福利片 | 欧美日韩国产mv在线观看视频| 丝袜美腿诱惑在线| 亚洲国产精品合色在线| 国产成人影院久久av| 国产精品99久久99久久久不卡| 国产黄色免费在线视频| 99久久久亚洲精品蜜臀av| 午夜老司机福利片| 国产在线观看jvid| svipshipincom国产片| 黄片小视频在线播放| 亚洲精品久久午夜乱码| 国产一区二区三区在线臀色熟女 | 99riav亚洲国产免费| 不卡一级毛片| 99久久国产精品久久久| 丁香欧美五月| 成人18禁在线播放| 一二三四社区在线视频社区8| 脱女人内裤的视频| 国产精品爽爽va在线观看网站 | 校园春色视频在线观看| 精品乱码久久久久久99久播| 看片在线看免费视频| 一个人免费在线观看的高清视频| 色婷婷久久久亚洲欧美| 一边摸一边抽搐一进一小说| 一进一出抽搐gif免费好疼 | 亚洲第一青青草原| 国产1区2区3区精品| 叶爱在线成人免费视频播放| 老司机在亚洲福利影院| 国产黄色免费在线视频| 在线观看66精品国产| 在线观看免费高清a一片| 国产精品久久久人人做人人爽| 国产日韩一区二区三区精品不卡| 亚洲中文av在线| 成人永久免费在线观看视频| 亚洲黑人精品在线| 超碰97精品在线观看| 亚洲人成电影免费在线| 成人三级黄色视频| 老司机午夜福利在线观看视频| 两个人免费观看高清视频| 丰满迷人的少妇在线观看| 美女高潮到喷水免费观看| 国产伦一二天堂av在线观看| 午夜福利在线观看吧| 色哟哟哟哟哟哟| aaaaa片日本免费| 国产男靠女视频免费网站| 高清av免费在线| 黄片小视频在线播放| 久久国产亚洲av麻豆专区| 午夜亚洲福利在线播放| 在线观看免费视频日本深夜| 欧美日韩一级在线毛片| 亚洲国产欧美日韩在线播放| 午夜福利在线观看吧| 黄色成人免费大全| 中亚洲国语对白在线视频| 国产精品一区二区精品视频观看| 人成视频在线观看免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产精品一区二区三区在线| 久久精品亚洲熟妇少妇任你| 久久人妻熟女aⅴ| 丁香六月欧美| 美女高潮到喷水免费观看| 国产成人免费无遮挡视频| 国产蜜桃级精品一区二区三区| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区色噜噜 | 99精品久久久久人妻精品| 老汉色∧v一级毛片| 大香蕉久久成人网| 欧美不卡视频在线免费观看 | 欧美黄色淫秽网站| 91成人精品电影| 精品国产一区二区久久| 18禁观看日本| 99在线视频只有这里精品首页| 香蕉久久夜色| 久久亚洲精品不卡| 精品午夜福利视频在线观看一区| 久久久国产欧美日韩av| 亚洲性夜色夜夜综合| 我的亚洲天堂| 午夜福利欧美成人| 老司机午夜十八禁免费视频| 亚洲五月色婷婷综合| 国产免费av片在线观看野外av| 91麻豆av在线| 9热在线视频观看99| 日本a在线网址| 女人精品久久久久毛片| 人人妻,人人澡人人爽秒播| 99香蕉大伊视频| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 一级黄色大片毛片| 国产成人一区二区三区免费视频网站| 日本 av在线| 日日爽夜夜爽网站| 亚洲黑人精品在线| 午夜视频精品福利| 精品久久蜜臀av无| 欧美午夜高清在线| 91在线观看av| 日韩高清综合在线| 国产男靠女视频免费网站| 黄色丝袜av网址大全| 国产精品九九99| 激情在线观看视频在线高清| 69精品国产乱码久久久| 国产xxxxx性猛交| 精品国产乱子伦一区二区三区| 午夜亚洲福利在线播放| 国产无遮挡羞羞视频在线观看| 在线av久久热| 88av欧美| 国产精品乱码一区二三区的特点 | 中文字幕av电影在线播放| 高清黄色对白视频在线免费看| 热re99久久精品国产66热6| 性欧美人与动物交配| 欧美老熟妇乱子伦牲交| 精品久久久精品久久久| 国产精品偷伦视频观看了| 免费看a级黄色片| 国产高清国产精品国产三级| 天天添夜夜摸| 丰满饥渴人妻一区二区三| 久久久国产成人精品二区 | 亚洲专区字幕在线| 欧美精品一区二区免费开放| 亚洲第一av免费看| 免费在线观看日本一区| 日日干狠狠操夜夜爽| 少妇粗大呻吟视频| 法律面前人人平等表现在哪些方面| av有码第一页| 亚洲精品一卡2卡三卡4卡5卡| 国产成人一区二区三区免费视频网站| 另类亚洲欧美激情| 国产熟女xx| 高清毛片免费观看视频网站 | 夜夜夜夜夜久久久久| 国产一卡二卡三卡精品| 无限看片的www在线观看| 成年人黄色毛片网站| 亚洲第一av免费看| 日日摸夜夜添夜夜添小说| a级毛片在线看网站| 人人妻,人人澡人人爽秒播| 热99国产精品久久久久久7| 亚洲七黄色美女视频| a级毛片黄视频| 最近最新免费中文字幕在线| 亚洲熟女毛片儿| 在线观看日韩欧美| 国产男靠女视频免费网站| 欧美一级毛片孕妇| 国产免费av片在线观看野外av| 国产在线精品亚洲第一网站| 精品乱码久久久久久99久播| 日日夜夜操网爽| 成在线人永久免费视频| 久久久久国产精品人妻aⅴ院| 国产精品久久视频播放| 国产无遮挡羞羞视频在线观看| 一进一出抽搐动态| 美女大奶头视频| 国产av一区在线观看免费| 国产精品一区二区三区四区久久 | www.999成人在线观看| 丝袜美足系列| 亚洲一码二码三码区别大吗| 国产视频一区二区在线看| 久99久视频精品免费| 在线视频色国产色| 亚洲精品国产色婷婷电影| 欧美日韩亚洲综合一区二区三区_| 丰满饥渴人妻一区二区三| 人妻久久中文字幕网| 国产精品日韩av在线免费观看 | 男女床上黄色一级片免费看| 久久久久国产精品人妻aⅴ院| 制服诱惑二区| 国产精品香港三级国产av潘金莲| 看黄色毛片网站| 久久九九热精品免费| 美女午夜性视频免费| 亚洲av片天天在线观看| 欧美精品一区二区免费开放| 一区福利在线观看| 国产熟女xx| 99香蕉大伊视频| 久久精品国产清高在天天线| 欧美 亚洲 国产 日韩一| 国产国语露脸激情在线看| 99热只有精品国产| www日本在线高清视频| 美女 人体艺术 gogo| 99精品欧美一区二区三区四区| 手机成人av网站| 热99re8久久精品国产| 久久亚洲精品不卡| 一级毛片精品| 日日干狠狠操夜夜爽| 欧美乱色亚洲激情| 欧美午夜高清在线|