• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The analysis of heat and water fluxes in frozen silty soil

    2019-03-14 01:49:54DaHuRuiMingLuKunioWatanabeJunZhang
    Sciences in Cold and Arid Regions 2019年1期

    DaHu Rui,Ming Lu,Kunio Watanabe,Jun Zhang

    1.School of Civil Engineering,Henan Polytechnic University,Jiaozuo,Henan 454000,China

    2.State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute,Chinese Academy of Sciences,Lanzhou,Gansu 730000,China

    3.Graduate School of Bioresources,Mie University.Mie 514-8507,Japan

    4.University of Chinese Academy of Sciences,Beijing 100049,China

    ABSTRACT In this paper,based on the basic equations of water flow and heat transfer,the hydrothermal coupling model is established.The numerical model was realized in COMSOL Multiphysics software,and simulation results are compared with the experimental results of Watanabe and Wake(2008)to verify the effectiveness of the model.Through the calculation,we can obtain the dynamic changes of heat and water fluxes,thermal and hydrological properties,matric potential and temperature gradient in unsaturated freezing soil;and these variables are unmeasurable in practice.

    Keywords:unsaturated freezing soil;hydrothermal coupling;heat and water fluxes;COMSOL

    1 Introduction

    Soil freezing is an intricate,multiphasic coupling process.In the soil-freezing process,part of the water generates phase changes in the soil;and the soil is divided into frozen and unfrozen zones.The resulting temperature gradient and matric potential are significantly different for frozen and unfrozen zones.During the soil-freezing process,the change in heat and water fluxes can reflect temperature and water-content redistribution.Therefore,the forecast of water and temperature redistribution of frozen soil has great significance in the engineering field.

    In the 1970s,Harlan(1973)presented a model for coupled heat transport and water flow in partially frozen soils.This model was widely used to solve the problem of heat transport and water flow in the freezing process.Later scholars established a better hydrothermal coupling model(Hansson et al.,2004;Liu and Yu,2011;Tan et al.,2011).The driving force of water flow is one of the core problems in numerical simulation.Williams(1964)used the same soil under freezing and drying conditions to measure the soilfreezing characteristic curve(SFCC)and the soil-water characteristic curve(SWCC).There is a unique relationship in the negative temperature conditions for the suction of a given amount of unfrozen water,corresponding to a similar water content at room temperature(Koopmans and Miller,1966;Spaans and Baker,1996).It is important to know the unfrozen-water content and hydraulic conductivity of frozen soils when assessing water,heat,and solute transport in freezing and thawing soils(Watanabe and Osada,2017).Watanabe and Osada(2016)conjectured the hydraulic conductivity of frozen soil should be estimated from that of unfrozen soil,based on the liquid-(unfrozen)water content instead of the temperature.Harlan(1973)first proposed the role of ice as a blocking effect for liquidwater flow.To account for this blocking,the hydraulic conductivity is often reduced by means of an imped-ance factor,Ω(Lundin,1990),which may underestimate the hydraulic conductivity as the ice-water content increases.However,Watanabe and Flury(2008)proposed that the impedance factor is unnecessary if the SWCC is accurate enough.Thermal conductivity of frozen soil is complicated,and ice content has a great influence on it(Karra et al.,2014).Many scholars have proposed different equations to achieve numerical simulation(Hansson et al.,2004;Tan et al.,2011),which improved the accuracy of calculations.

    The water-heat coupling process of frozen soil is complicated.The freezing process indicates that many variables change.Heat and water fluxes are the two main variables during the freezing process.However,they change under microconditions;and it is hard to realise synchronous measurement due to a lack of technology.Obtaining the dynamic process of heat and water fluxes could provide us a clear and transparent process of hydraulic and thermal fields.It is impossible to obtain the long-term process of the thermal conductivity and heat capacity of the freezing soil,due to its complicated physical characteristics.Investigating the details of the water-heat coupling of freezing soil is an important endeavor with practical applications.In this paper,we obtain through calculation the heat and water fluxes,which are unmeasurable in practice,and show the advantage of numerical calculation.

    2 Hydraulic field

    2.1 Mass-conservation equation

    For a variably unsaturated porous medium,fluid movement is complicated;and for research convenience,we chose a unit body of volumeVas a representation in a porous medium.Then,the change of fluid in the unit bodyVin a unit of time is as follows:

    whereρwis the density of liquid water(kg/m3)andqwis the liquid-water flux(m/s).In addition,the unit quantities of liquid water and ice in the unit body are ρwθwand ρiθi,where ρiis the density of ice(kg/m3);and θwand θiare volumetric liquid-and ice-water content(cm3/cm3),respectively;t is time(s).Ignoring frost heave,the mass increment per unit volume of water in a unit time is

    According to the law of conservation of mass,

    Integrating Equation(3),the partial differential equation for liquid-water flow is as follows:

    In the Harlan model(Harlan,1973),liquid-water flow in unfrozen,unsaturated soil is similar to that in partially frozen soils.The water flow is described by the modified Richards equation;therefore,the governing equation for liquid-water flow is as follows:

    whereKlh(m/s)andKlT(m2/(K·s))are hydraulic conductivities of the liquid-water flow due to a pressurehead gradient and a temperature gradient,respectively;y is the vertical coordinate positive upward(m);h is the pressure head(m);and T is soil temperature(K).

    Inserting Equation(4)into Equation(5)produces the water-flow equation as follows(Fayer,2000):

    2.2 Hydraulic properties

    Based on the analogy of drying and freezing processes,the soil-water characteristic curve(SWCC)can be extended to describe the relationship between the unfrozen-water content and the matric potential(Koopmans and Miller,1966).The matric potential should be a function of liquid water,and the Van Genuchten equation(Van Genuchten,1980)is used to predict the unsaturated freezing-soil matric potential:

    whereSeis the effective saturation;θsis saturated water content and the porosity of soil(cm3/cm3);θris residual water content(cm3/cm3);h is the pressure head(m);and m,n,andαare empirical parameters.

    The hydraulic conductivity of variably saturated soil varies with liquid-water content and matric potential.The Van Genuchten-Mualem model(Van Genuchten,1980)is used to predict hydraulic conductivity based on the soil-water characteristic curve(SWCC),the relationship between the liquid-water content and the matric potential.

    whereKsis the saturated hydraulic conductivity(m/s),and l is the pore-connectivity parameter.

    The hydraulic conductivity of flow due to the temperature gradient is defined as follows(Saito et al.,2006):

    where T is temperature(K),GwTis a gain factor,γis soil-water surface tension,andγ0is the surface tension at 25°C.

    Soil-freezing models sometimes use an impedance factor to reduce hydraulic conductivity(e.g.,Hansson et al.,2004).However,recent research proposed that the impedance factor is unnecessary as long as the SWCC is precisely determined(Newman and Wilson,1997;Watanabe and Flury,2008).Therefore,in this paper,the impedance factor is not discussed.

    The unfrozen-water content was calculated by the empirical formula(Xu et al.,2001):

    whereWuis mass water content(%),T is temperature(°C),a and b are empirical parameters.

    3 Thermal field

    3.1 Energy-conservation equation

    For research convenience,we chose a unit body of volumeVas a representation in porous medium.The heating up in a unit time with the unit bodyVis as follows:

    where the first term is conduction,the second term is convection,λis thermal conductivity(W/(m?K)),Cwis the heat capacity of liquid water(J/(m3?K)),T is temperature(K),and t is time(s).

    With the development of freezing in soil pores,icewater phase change and latent-heat release cause temperature change in the unit body as follows:

    where CPis the volumetric heat capacity of bulk soil(J/(m3?K)),andLfis latent heat(J/kg).According to the law of conservation of energy,we can obtain

    The unit bodyVis chosen at random,therefore the energy-balance equation can be written as follows(Nassar and Horton,1989):

    The left-hand side of Equation(16)can be rewritten as follow:

    where Cais the apparent volumetric heat capacity(J/(m3?K)).

    3.2 Thermal properties

    The volumetric heat capacity of the soil,Cp,is defined as the sum of the volumetric heat capacities of the soil particles Cn,liquid water Cw,ice Ci,and air Cair(J/(m3?K)),multiplied by their volumetric fractions(Campbell,1985;Williams et al.,1989):

    The thermal conductivity of frozen soil depends on the thermal conductivity of its components(ice,unfrozen water or liquid water,and soil matrix).In this paper,the thermal conductivity is defined as follows(Tan XJ et al.,2011):

    where λi,λn,and λware the thermal conductivity(W/(m?K))of ice,soil particles,and water,respectively.

    4 Basic assumptions

    (1)The density of liquid water is constant as temperature changes.

    (2)The soil is homogeneous and isotropicly porous.

    (3)The pore ice does not move and cause any frost heave.

    (4)The unfrozen-water content and temperature have a functional relationship under thermal equilibrium conditions.

    5 Model validation

    Figure 1 shows the temperature profiles observed in the laboratory experiment(a)and calculated by the numerical simulation(b).In the laboratory experiment,the 0°C isotherm moves downward gradually at the speed of 1.52 cm/h,0.43 cm/h,and 0.18 cm/h,corresponding to 0-6 h,6-28 h,and 28-50 h,respectively.It is not difficult to see that the numerical simulation result is highly congruent with the profiles measured in the laboratory.The 0°C isotherm indicates the position of the freezing front.With the develop-ment of freezing,the soil column is divided into two parts:the frozen zone and the unfrozen zone.It is worthwhile to point out that there is an obvious difference of temperature gradient between the frozen zone and the unfrozen zone.The reason for this difference is the different thermal conductivity and volumetric heat capacity between the frozen zone and the unfrozen zone.

    Figure 1 Plots(a)and(b)indicate the experimental results(Watanabe and Wake,2008)and simulation results of the distribution of the temperature profile,respectively

    Figure 2 shows profiles of liquid-(unfrozen)and total-(liquid water plus ice)water content observed in the laboratory experiment(a)and calculated by the simulation(b).The results of the hydraulic field are generally consistent.The freezing process can be divided into two phases:a rapid-freezing phase and a stabilisation phase.In the rapid-freezing phase,the temperature of the soil decreases sharply;and the freezing front moves rapidly.In the stabilisation phase,the temperature declines slowly;the freezing front moves slowly;and the water curve tends to be steady.In the freezing process,the negative temperature changes the hydraulic and thermal properties of the soil,resulting in the change of the matric potential,and produces a steep pressure-head gradient near the frozen front,which drives the liquid water to migrate towards the freezing front.Meanwhile,the driving effect of the temperature gradient on the liquidwater flow cannot be ignored.Under the influence of the pressure-head gradient and the temperature gradient,the liquid water flows to the cold end and finally reaches a steady state.

    Figure 2 Plots(a)and(b)indicate the experimental results and simulation results of the distribution of the liquid-water content and total-water content in the unidirectional freezing experiment,respectively

    The comparisons seen in Figure 1 and Figure 2 illustrate that the proposed model can describe the unsaturated frozen soil's water and temperature fields under freezing conditions.

    6 Thermal field analysis

    Figure 3 shows the profiles of the temperature gradient at different times,as in Figure 3.As the 6-h curve shows in Figure 3,because of the contrast between the cold-end temperature and the initial temperature,the temperature gradient is steeper at the initial stage of the freezing process upon the soil column.The decrease of the temperature gradient is steeper in 6-28 h than in 28-50 h,and steeper in the frozen zone than in the unfrozen zone.It is worthwhile to point out that the difference of temperature gradient between the frozen zone and the unfrozen zone decreases gradually.In addition,the temperature gradient drops rapidly at the position of the freezing front(above the inflection point is the frozen zone;below the inflection point is the unfrozen zone),this is because the formation of ice releases latent heat in soil pores,which decelerates the freezing process near the freezing front.

    Figure 3 Profile of the temperature gradient at different times

    Figure 4 shows the change in temperature at different depths.As shown in Figure 4,the changes at 3 cm and at 34 cm tend to stabilise quickly because they are both close to the ends of the column,where constant temperature-boundary conditions are maintained.At the beginning of freezing,the temperature at the 3-cm point decreased rapidly to-6°C;and afterwards,the velocity of the temperature drop tended to slow down.The velocities of temperature drop obviously differed;this distinction also shows the difference of the heatconduction process between the frozen soil and common solid materials,this is because the heat-conduction process of the frozen soil is influenced by many factors.The water in the soil pores turns into ice,which results in the increase of thermal conduction and the loss of heat flux due to the latent heat,this also shows that the frozen soil has different thermal properties as compared with common solid materials.

    Figures 5a and 5b show the distribution of the ice content and thermal conductivity respectively.In the early period of the freezing process,the ice content increased rapidly;and the process is determined by both the temperature and the water flow.As shown in Figure 5,the geometric shape of the distribution curve of the ice content is similar to that of the curve of the thermal conductivity.If the ice content increases,the thermal conductivity also increases.In the unfrozen zone,the ice content is zero;therefore,the thermal conductivity substantially remains a constant value.It can be seen that the ice content has an important effect on thermal conductivity.

    Figure 4 Curves of temperature vs.time at different depths

    Figure 6 is the variation of the apparent volumetric heat capacity with time at depths of 5,10,15,and 20 cm.Before the freezing,the apparent heat capacity reduces slightly because the liquid-water content decreases due to upward soil-water migration.After freezing begins,the liquid water turns into ice,releasing a considerable amount of latent heat,which results in an obvious increase in the volumetric apparent heat capacity.As the soil freezes,the latent heat decreases,so that the apparent volumetric heat capacity starts to reduce slowly.After reaching thermal equilibrium,due to the ice-content increase,the apparent heat capacity become greater than in the initial state.

    Figure 7 shows heat flux at different times.The heat-transfer process includes conduction and convection.Latent-heat release also plays a role in the process of temperature change.However,the water vapour is not taken into consideration,as we take water content as 0.4 cm3/cm3in the study.In the frozen zone,temperature and phase change little;the temperature gradient keeps a nearly constant value;and heat transfer is mainly based on conduction.In the unfrozen zone,both the temperature gradient and thermal conductivity become lower than those of the frozen zone,while there is non-negligible water flow,so that convection becomes greater than conduction.The freezing front is always the most active position of water flux,where water flux and convection flux reach their peaks at the same time.Convection drastically changes with water content and freezing rate,which changes the water flux.

    Figure 5 Distribution of ice content and thermal conductivity during soil freezing

    7 Hydraulic field analysis

    Figure 8 shows the matric potential head at different times.The matric potential head values at the cold end reach peaks,then rapidly gain and reach stability when below the freezing front.When the content of unfrozen water(liquid water)is constant,the matric potential head maintains an almost constant value.The minimum value appears at the cold end,where the unfrozen water is minimal.The maximum value of the pressure gradient is located at the freezing front and drives the water near the unfrozen zone to migrate to the freezing front.

    Figure 6 Distribution of the volumetric apparent heat capacity vs.time at different depths

    Figure 7 Distribution of the heat flux at different times

    Figure 9a shows the distribution of water flux at different times,and Figure 9b shows the distribution of the water flux vs.time at different depths.The dynamic changes of water flux at different times also reflect the law of water flow.In the frozen zone,because of the small amount of liquid-water content in the soil pores,the water-flow phenomenon being negligible,the value of water flux is zero.A lot of water flows to the freezing front,so that the water-flux value reaches its peak.In the unfrozen zone,water flux gradually decreases with depth.However,as the freezing front moves from top to bottom,the peaks decrease gradually.The heat flux decreases with the freezing progress,which makes the freezing-front movement slower,and it takes a longer time for the same travel distance.When the system reaches equilibrium,the temperature profile holds a steady curve;and the freezing front does not move any more.As shown in Figure 9b,with the increase of depth and the progression of time,the active time of water flux is getting longer and longer,from another perspective,this also reflects that the movement velocity of the freezing front gradually reduces.However,the sustained time has a close relationship with the movement velocity of the freezing front.Although the water-flux peaks decrease gradually with the increase of depth,the active time of water flow increases constantly.It results that the total-water content in the frozen zone changes little.

    Figure 8 Distribution of the pressure head at different times

    Figure 9 (a)Distribution of the water flux at different times and(b)distribution of the water flux vs.time at different depths

    8 Conclusions

    To understand the complicated changes in hydro and thermal fluxes and properties during soil freezing,we developed the numerical model using COMSOL and found the following:

    (1)In the frozen zone,temperature change and phase change are slight,so that heat apparently flows as per Fourier's law.In the unfrozen zone,both temperature gradient and thermal conductivity become much less than those of the frozen zone,while there is non-negligible water flow,so that convection becomes greater than conduction.

    (2)Convection is sensitive to the water content and drastically changes with water content and freezing rate,which changes the water flux.

    (3)The change of water flux can reflect the migration velocity of the freezing front and the amount of water flow,so that the process of water-heat coupling can be shown more clearly.

    Acknowledgments:

    The authors acknowledge financial support from the National Natural Science Foundation of China(Grant No.41371092).This research was partially supported by the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars,Ministry of Education(Grant No.20100528),China;the State Key Laboratory of Frozen Soil Engineering(SKLFSE201402);the National Key Scientific and Technological Project of Henan Province Office of Education,China(Grant No.14B170007);and the Doctoral Scientific Fund Project of Henan Polytechnic University(Grant No.648347).

    亚洲av成人精品一区久久| 久久6这里有精品| 少妇的逼好多水| 少妇的逼好多水| 国产亚洲最大av| 舔av片在线| 中国国产av一级| 91在线精品国自产拍蜜月| 亚洲国产精品成人综合色| 国产在视频线精品| 国内精品宾馆在线| 毛片女人毛片| 97精品久久久久久久久久精品| 婷婷色av中文字幕| 伊人久久国产一区二区| 国产在视频线在精品| 欧美97在线视频| 成年女人在线观看亚洲视频 | 免费人成在线观看视频色| kizo精华| 色综合色国产| 99视频精品全部免费 在线| 亚洲精品aⅴ在线观看| 日日啪夜夜撸| 欧美日韩精品成人综合77777| 五月伊人婷婷丁香| 男人舔女人下体高潮全视频| 欧美日韩精品成人综合77777| 国产精品一及| 久久久久久久午夜电影| 亚洲av免费在线观看| 一边亲一边摸免费视频| 欧美性感艳星| av国产久精品久网站免费入址| 亚洲国产色片| 国产单亲对白刺激| 直男gayav资源| 美女被艹到高潮喷水动态| 十八禁网站网址无遮挡 | 国内揄拍国产精品人妻在线| 高清av免费在线| 久久这里只有精品中国| 亚洲内射少妇av| 一级毛片久久久久久久久女| 国产免费视频播放在线视频 | 亚洲电影在线观看av| 久久久午夜欧美精品| 久久久久精品久久久久真实原创| 国产成人精品婷婷| 国产综合精华液| 国产黄片视频在线免费观看| 偷拍熟女少妇极品色| 91精品伊人久久大香线蕉| 春色校园在线视频观看| 国产一区二区三区综合在线观看 | 欧美成人一区二区免费高清观看| 一个人观看的视频www高清免费观看| 午夜免费激情av| 亚洲精品成人av观看孕妇| 日日啪夜夜爽| 国产乱人偷精品视频| 在线观看人妻少妇| 国产熟女欧美一区二区| 日韩不卡一区二区三区视频在线| 久久精品综合一区二区三区| 99九九线精品视频在线观看视频| 老司机影院成人| 免费看日本二区| 午夜视频国产福利| 久久久久久久久久久免费av| 日韩av在线免费看完整版不卡| 国产精品久久久久久精品电影| 偷拍熟女少妇极品色| 亚洲国产精品成人久久小说| 国产精品久久久久久久久免| 亚洲在线自拍视频| 一个人看的www免费观看视频| 美女大奶头视频| 日韩av免费高清视频| 久久韩国三级中文字幕| 国产麻豆成人av免费视频| 中文字幕免费在线视频6| 久久久欧美国产精品| 熟女电影av网| 亚洲精品日韩av片在线观看| 久久久国产一区二区| 免费观看无遮挡的男女| 好男人在线观看高清免费视频| 别揉我奶头 嗯啊视频| 日韩在线高清观看一区二区三区| 特级一级黄色大片| 国产av码专区亚洲av| 中文欧美无线码| 久久久久久久久大av| 欧美性猛交╳xxx乱大交人| 日韩欧美精品免费久久| 免费在线观看成人毛片| 免费黄频网站在线观看国产| 一级毛片aaaaaa免费看小| 欧美人与善性xxx| 最近中文字幕2019免费版| 一级毛片黄色毛片免费观看视频| 日韩欧美精品v在线| 国产精品久久久久久精品电影| 亚洲av电影在线观看一区二区三区 | 床上黄色一级片| 淫秽高清视频在线观看| 欧美xxxx黑人xx丫x性爽| 国产中年淑女户外野战色| 青春草视频在线免费观看| 女人久久www免费人成看片| 男人舔奶头视频| 久久99热这里只有精品18| 九色成人免费人妻av| 六月丁香七月| 啦啦啦啦在线视频资源| 成人午夜精彩视频在线观看| av专区在线播放| 欧美人与善性xxx| 成人毛片a级毛片在线播放| 看非洲黑人一级黄片| 亚洲熟妇中文字幕五十中出| 91在线精品国自产拍蜜月| 久久久久精品性色| 亚洲图色成人| 成人综合一区亚洲| 亚洲在久久综合| 亚洲电影在线观看av| 国产一区二区三区av在线| 国产一区二区亚洲精品在线观看| 欧美性猛交╳xxx乱大交人| 国产精品女同一区二区软件| 在线免费十八禁| 亚洲一区高清亚洲精品| 欧美高清性xxxxhd video| 小蜜桃在线观看免费完整版高清| 三级国产精品欧美在线观看| av免费观看日本| 亚洲欧洲国产日韩| av在线天堂中文字幕| 18禁裸乳无遮挡免费网站照片| 亚洲欧美一区二区三区国产| 又爽又黄无遮挡网站| 午夜精品一区二区三区免费看| 天天一区二区日本电影三级| 成人毛片a级毛片在线播放| 搡女人真爽免费视频火全软件| 日日摸夜夜添夜夜爱| 国产在视频线在精品| 一区二区三区高清视频在线| 偷拍熟女少妇极品色| 日本三级黄在线观看| 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 干丝袜人妻中文字幕| 免费无遮挡裸体视频| 国产伦精品一区二区三区视频9| 搡老妇女老女人老熟妇| 亚洲欧美中文字幕日韩二区| 99久国产av精品| 国产午夜精品一二区理论片| 中国美白少妇内射xxxbb| 亚洲性久久影院| av天堂中文字幕网| 成年女人看的毛片在线观看| 免费观看在线日韩| 大话2 男鬼变身卡| 亚洲熟妇中文字幕五十中出| 人妻少妇偷人精品九色| av专区在线播放| 国内精品美女久久久久久| 深夜a级毛片| 一边亲一边摸免费视频| 国产精品久久久久久精品电影小说 | 国产精品麻豆人妻色哟哟久久 | 亚洲最大成人av| 久久久久网色| av黄色大香蕉| 色综合色国产| 亚洲国产精品sss在线观看| 又粗又硬又长又爽又黄的视频| 日本爱情动作片www.在线观看| 在线免费十八禁| 日韩视频在线欧美| 午夜精品一区二区三区免费看| 伦理电影大哥的女人| 日产精品乱码卡一卡2卡三| 日韩三级伦理在线观看| 中国国产av一级| 日韩欧美精品免费久久| 极品少妇高潮喷水抽搐| 欧美不卡视频在线免费观看| 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 国产v大片淫在线免费观看| 久久久久免费精品人妻一区二区| 成人毛片60女人毛片免费| 国产精品福利在线免费观看| 在线免费观看的www视频| 观看美女的网站| 久热久热在线精品观看| 亚洲av二区三区四区| 国内揄拍国产精品人妻在线| 淫秽高清视频在线观看| 久久久色成人| 亚洲图色成人| 蜜桃久久精品国产亚洲av| 久久久久久久久中文| 成人高潮视频无遮挡免费网站| 亚洲精品自拍成人| 久久99热这里只有精品18| 男女国产视频网站| 国产老妇伦熟女老妇高清| 又黄又爽又刺激的免费视频.| 永久免费av网站大全| 少妇丰满av| 久久久精品欧美日韩精品| 日韩av在线大香蕉| 久久国内精品自在自线图片| 国产乱人偷精品视频| 久久精品国产亚洲av涩爱| av播播在线观看一区| 欧美zozozo另类| 欧美日韩亚洲高清精品| 精品酒店卫生间| 亚洲精品日韩av片在线观看| 欧美一区二区亚洲| 国产精品久久久久久久久免| 看免费成人av毛片| 草草在线视频免费看| 日日干狠狠操夜夜爽| 干丝袜人妻中文字幕| 特级一级黄色大片| 亚洲成人精品中文字幕电影| 丰满人妻一区二区三区视频av| 2021少妇久久久久久久久久久| 别揉我奶头 嗯啊视频| 永久网站在线| 国产欧美另类精品又又久久亚洲欧美| 亚洲综合精品二区| 国产精品蜜桃在线观看| 黄色一级大片看看| 男的添女的下面高潮视频| 噜噜噜噜噜久久久久久91| 水蜜桃什么品种好| 国产色婷婷99| 精品人妻偷拍中文字幕| 亚洲18禁久久av| 免费在线观看成人毛片| 夜夜爽夜夜爽视频| 两个人的视频大全免费| 一级毛片电影观看| 能在线免费观看的黄片| 中文在线观看免费www的网站| 大陆偷拍与自拍| 草草在线视频免费看| 国产精品爽爽va在线观看网站| 日本一二三区视频观看| 欧美3d第一页| 99久久精品一区二区三区| 亚洲最大成人中文| 亚洲av日韩在线播放| 免费观看a级毛片全部| 国产精品人妻久久久影院| 久久综合国产亚洲精品| 亚洲av免费高清在线观看| 亚洲av不卡在线观看| 久久久久久久久久久免费av| 亚州av有码| 精品久久久精品久久久| 日本三级黄在线观看| 国产精品99久久久久久久久| 日日啪夜夜撸| 噜噜噜噜噜久久久久久91| 97精品久久久久久久久久精品| 日韩一区二区视频免费看| 日韩av在线免费看完整版不卡| 九色成人免费人妻av| 2021少妇久久久久久久久久久| 别揉我奶头 嗯啊视频| 国产成人精品久久久久久| 99热网站在线观看| 在线观看免费高清a一片| 秋霞在线观看毛片| 亚洲,欧美,日韩| 免费观看av网站的网址| 99久久中文字幕三级久久日本| 性插视频无遮挡在线免费观看| 女人久久www免费人成看片| 人人妻人人澡人人爽人人夜夜 | 亚洲内射少妇av| 在线 av 中文字幕| 免费黄频网站在线观看国产| 亚洲欧美一区二区三区黑人 | 夫妻性生交免费视频一级片| 26uuu在线亚洲综合色| 久久久久九九精品影院| 日韩成人伦理影院| 欧美bdsm另类| 成人性生交大片免费视频hd| 熟妇人妻久久中文字幕3abv| 美女大奶头视频| 91久久精品国产一区二区成人| 一级爰片在线观看| 男女啪啪激烈高潮av片| 我要看日韩黄色一级片| 午夜激情欧美在线| 亚洲精华国产精华液的使用体验| 亚洲精品乱码久久久久久按摩| 欧美激情在线99| 精品久久久久久久久久久久久| 白带黄色成豆腐渣| 3wmmmm亚洲av在线观看| 精品久久久久久久末码| 在线观看人妻少妇| 免费观看在线日韩| 亚洲av电影在线观看一区二区三区 | 精品国产一区二区三区久久久樱花 | 亚洲精品乱码久久久久久按摩| 一级毛片 在线播放| 一区二区三区乱码不卡18| 日韩电影二区| 亚洲乱码一区二区免费版| 国产精品久久久久久av不卡| 久久久久久久久久久丰满| 永久免费av网站大全| 在线观看免费高清a一片| videos熟女内射| 永久免费av网站大全| 综合色丁香网| 久久精品国产鲁丝片午夜精品| 在线天堂最新版资源| 日本猛色少妇xxxxx猛交久久| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| eeuss影院久久| 午夜福利视频1000在线观看| 欧美一级a爱片免费观看看| 亚洲精品乱码久久久久久按摩| 免费观看性生交大片5| 精品久久久久久久久久久久久| 91久久精品电影网| 青春草亚洲视频在线观看| 精品久久久久久成人av| 日本免费在线观看一区| 色哟哟·www| 超碰97精品在线观看| 欧美不卡视频在线免费观看| 日本wwww免费看| 欧美xxxx性猛交bbbb| 国产又色又爽无遮挡免| 日本色播在线视频| 国语对白做爰xxxⅹ性视频网站| 尤物成人国产欧美一区二区三区| 国产女主播在线喷水免费视频网站 | 国产一区亚洲一区在线观看| 日韩亚洲欧美综合| 免费少妇av软件| 夜夜看夜夜爽夜夜摸| 亚洲一级一片aⅴ在线观看| 国产老妇伦熟女老妇高清| 久久久久久久久中文| 亚洲国产精品sss在线观看| 国产精品久久久久久av不卡| 日本一本二区三区精品| 日日啪夜夜撸| 免费观看无遮挡的男女| 精品久久久久久久久久久久久| 国产免费一级a男人的天堂| 观看美女的网站| 亚洲图色成人| 男人舔奶头视频| 一级毛片我不卡| 亚洲人成网站在线观看播放| 久久久久精品久久久久真实原创| 中文乱码字字幕精品一区二区三区 | 99久久人妻综合| 欧美xxⅹ黑人| 青青草视频在线视频观看| 亚洲人成网站在线播| 麻豆av噜噜一区二区三区| 国产探花极品一区二区| 美女国产视频在线观看| 国产精品嫩草影院av在线观看| 看黄色毛片网站| 男人舔女人下体高潮全视频| 在现免费观看毛片| 内射极品少妇av片p| 婷婷六月久久综合丁香| 午夜老司机福利剧场| av在线老鸭窝| 日产精品乱码卡一卡2卡三| 国产av国产精品国产| 国产成人精品一,二区| 国产一区二区在线观看日韩| 中文乱码字字幕精品一区二区三区 | 亚洲欧美成人精品一区二区| 国产 一区精品| 国内精品宾馆在线| 美女被艹到高潮喷水动态| 亚洲真实伦在线观看| 欧美一区二区亚洲| 极品教师在线视频| 欧美日韩综合久久久久久| 国产精品人妻久久久影院| 在现免费观看毛片| 中国美白少妇内射xxxbb| 草草在线视频免费看| 麻豆成人午夜福利视频| 中文资源天堂在线| 亚洲国产精品专区欧美| 久99久视频精品免费| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 亚洲精品影视一区二区三区av| 最近最新中文字幕大全电影3| 亚洲综合色惰| 午夜福利视频1000在线观看| 久久亚洲国产成人精品v| 五月玫瑰六月丁香| 内地一区二区视频在线| 边亲边吃奶的免费视频| 最近最新中文字幕免费大全7| 亚洲人与动物交配视频| 黄色一级大片看看| 日韩三级伦理在线观看| 日本av手机在线免费观看| 精品久久久噜噜| 亚洲真实伦在线观看| 国语对白做爰xxxⅹ性视频网站| 嫩草影院入口| 非洲黑人性xxxx精品又粗又长| 白带黄色成豆腐渣| 综合色丁香网| av专区在线播放| 看非洲黑人一级黄片| 亚洲国产色片| 免费观看av网站的网址| 天天躁日日操中文字幕| kizo精华| 久久人人爽人人爽人人片va| 婷婷色av中文字幕| 免费无遮挡裸体视频| 久久精品综合一区二区三区| 国产在线一区二区三区精| 国产黄频视频在线观看| 一本久久精品| 亚洲国产日韩欧美精品在线观看| 国产亚洲91精品色在线| 午夜久久久久精精品| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 日本黄大片高清| av在线播放精品| 久久久精品免费免费高清| 在线免费观看的www视频| 麻豆精品久久久久久蜜桃| 伊人久久精品亚洲午夜| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人手机在线| 欧美日本视频| 日本色播在线视频| 中文乱码字字幕精品一区二区三区 | 99热这里只有是精品在线观看| 国产视频内射| 亚洲精品456在线播放app| 亚洲欧美精品自产自拍| 女人十人毛片免费观看3o分钟| kizo精华| 国产一区二区亚洲精品在线观看| 中文字幕久久专区| xxx大片免费视频| 免费黄网站久久成人精品| 自拍偷自拍亚洲精品老妇| 99热全是精品| 精品国产一区二区三区久久久樱花 | 1000部很黄的大片| 久久97久久精品| 亚洲丝袜综合中文字幕| 又大又黄又爽视频免费| 水蜜桃什么品种好| 欧美不卡视频在线免费观看| 狂野欧美激情性xxxx在线观看| 别揉我奶头 嗯啊视频| 91午夜精品亚洲一区二区三区| 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 国产亚洲最大av| 久久精品国产鲁丝片午夜精品| 日韩精品青青久久久久久| 一级毛片我不卡| 人妻制服诱惑在线中文字幕| 男女边吃奶边做爰视频| 尤物成人国产欧美一区二区三区| eeuss影院久久| 午夜激情欧美在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲国产成人一精品久久久| 亚洲精品亚洲一区二区| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 亚洲内射少妇av| videos熟女内射| 看非洲黑人一级黄片| 在线免费观看不下载黄p国产| 肉色欧美久久久久久久蜜桃 | 嫩草影院精品99| 十八禁国产超污无遮挡网站| 国产不卡一卡二| 国产视频内射| 亚洲激情五月婷婷啪啪| 亚洲欧美清纯卡通| 欧美激情久久久久久爽电影| 青春草亚洲视频在线观看| 日韩视频在线欧美| 99久久精品热视频| 国产精品伦人一区二区| 日韩精品青青久久久久久| 美女cb高潮喷水在线观看| www.av在线官网国产| 亚洲av电影在线观看一区二区三区 | 亚洲最大成人av| 99久久精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | a级一级毛片免费在线观看| 国产一区亚洲一区在线观看| 99热这里只有是精品50| 最近最新中文字幕免费大全7| 又爽又黄a免费视频| 精品久久久久久电影网| 精品人妻一区二区三区麻豆| 七月丁香在线播放| 日本三级黄在线观看| 国内揄拍国产精品人妻在线| 狠狠精品人妻久久久久久综合| 97人妻精品一区二区三区麻豆| 久久精品久久久久久久性| 天美传媒精品一区二区| 观看免费一级毛片| 日韩制服骚丝袜av| 又爽又黄a免费视频| 亚洲国产av新网站| 高清毛片免费看| 成人国产麻豆网| 亚洲久久久久久中文字幕| 久久久成人免费电影| 成人鲁丝片一二三区免费| 日产精品乱码卡一卡2卡三| 国产人妻一区二区三区在| 成人毛片a级毛片在线播放| 久99久视频精品免费| 22中文网久久字幕| 国产美女午夜福利| 国产精品综合久久久久久久免费| 亚洲精品日本国产第一区| 大话2 男鬼变身卡| 亚洲最大成人手机在线| 天堂中文最新版在线下载 | 男人舔女人下体高潮全视频| 欧美成人精品欧美一级黄| 国产一区二区三区av在线| 麻豆精品久久久久久蜜桃| 午夜福利高清视频| 99久国产av精品国产电影| 国产熟女欧美一区二区| 禁无遮挡网站| 身体一侧抽搐| 99久国产av精品国产电影| 国产成人精品久久久久久| 亚洲精品国产av成人精品| 精品国产露脸久久av麻豆 | 成年免费大片在线观看| 2021天堂中文幕一二区在线观| 久久精品久久久久久久性| av在线观看视频网站免费| 亚洲成人一二三区av| 91av网一区二区| 久热久热在线精品观看| av国产免费在线观看| 欧美成人精品欧美一级黄| 久久国产乱子免费精品| 干丝袜人妻中文字幕| 国产精品无大码| 免费看av在线观看网站| 26uuu在线亚洲综合色| 丝瓜视频免费看黄片| 亚洲av男天堂| 国产免费又黄又爽又色| 97在线视频观看| 人人妻人人看人人澡| 青青草视频在线视频观看| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 成年版毛片免费区| 大香蕉97超碰在线| 男女边摸边吃奶| 99热这里只有是精品在线观看| 中文欧美无线码| 免费看日本二区| 少妇被粗大猛烈的视频| 亚洲av不卡在线观看| 婷婷六月久久综合丁香| 极品少妇高潮喷水抽搐| 国产精品一及| 中文字幕久久专区| 最近视频中文字幕2019在线8| 国产精品99久久久久久久久| 丝袜美腿在线中文| av.在线天堂| 免费黄色在线免费观看| 2022亚洲国产成人精品| 国产精品国产三级国产专区5o| 国产三级在线视频| 国产精品久久久久久久久免| 日韩伦理黄色片|