馮 波, 李升東, 李華偉, 王宗帥, 張 賓, 王法宏, 孔令安
?
灌漿初期高溫脅迫對(duì)不同耐熱性小麥品種形態(tài)和產(chǎn)量的影響*
馮 波, 李升東, 李華偉, 王宗帥, 張 賓, 王法宏**, 孔令安**
(山東省農(nóng)業(yè)科學(xué)院作物研究所 濟(jì)南 250100)
研究灌漿初期高溫脅迫對(duì)不同耐熱性小麥品種的影響, 有助于為耐熱穩(wěn)產(chǎn)性小麥品種選育提供方法, 也可為小麥豐產(chǎn)抗逆栽培技術(shù)提供理論參考。以‘濟(jì)麥22’(JM22)、056852品系(056852)、‘新麥26’(XM26)和‘藁城8901’(GC8901)4個(gè)不同耐熱性小麥品種(系)為材料, 通過灌漿初期(花后12~14 d)在田間搭建塑料棚模擬高溫脅迫, 研究高溫脅迫對(duì)小麥形態(tài)和籽粒產(chǎn)量的影響。高溫脅迫處理3 d, 處理最高溫度達(dá)43.13 ℃, 處理日均溫較不搭棚的田間對(duì)照溫度在脅迫3 d中分別高10.48 ℃、9.71 ℃、9.84 ℃。結(jié)果表明: 灌漿初期高溫脅迫降低了小麥的植被覆蓋指數(shù)和冠層葉綠素含量, JM22和056852高溫脅迫處理與對(duì)照的NDVI值和冠層葉綠素含量在脅迫后差異不顯著, 而XM26和GC8901分別顯著下降9.66%、6.26%和12.10%、10.73%。高溫脅迫后不同耐熱性小麥品種(系)籽粒灌漿持續(xù)期顯著縮短, 與對(duì)照相比, JM22、XM26、056852和GC8901籽粒灌漿持續(xù)期分別顯著縮短1.4 d、2.4 d、0.8 d和3.0 d。千粒重和籽粒產(chǎn)量因高溫脅迫顯著降低, XM26和GC8901分別比對(duì)照產(chǎn)量降低11.43%和10.05%, JM22和056852產(chǎn)量分別降低6.41%和6.93%。綜上, 灌漿初期高溫脅迫不同程度地加速了耐熱性不同小麥品種(系)冠層葉綠素的降解, 縮短了籽粒灌漿天數(shù), 減少了灌漿物質(zhì)的積累, 降低了籽粒產(chǎn)量。試驗(yàn)材料JM22耐熱性和豐產(chǎn)性都較好; 056852品系耐熱性較好, 產(chǎn)量一般; XM26和GC8901耐熱性較差, 產(chǎn)量較低。
高溫脅迫; 小麥; 耐熱性; 植株形態(tài); 產(chǎn)量
小麥()是我國主要的糧食作物, 其產(chǎn)量的豐欠直接影響人民生活水平和國家糧食安全。在冬小麥250 d左右的生育期里, 非生物脅迫是造成小麥產(chǎn)量降低的主要原因[1-2], 其中高溫脅迫, 尤其是生育后期的高溫嚴(yán)重影響小麥產(chǎn)量和品質(zhì)[3-4]。小麥開花后經(jīng)常遭遇32 ℃以上的高溫, 此時(shí)正是小麥產(chǎn)量和品質(zhì)形成的關(guān)鍵時(shí)期。高溫脅迫使小麥光合能力下降, 植株老化加速, 灌漿時(shí)間縮短, 粒重大大降低[4-8]。高溫條件也是誘發(fā)干熱風(fēng)的主要因素之一。在我國的黃淮海小麥主產(chǎn)區(qū), 干熱風(fēng)天氣在小麥灌漿的初期、中期以及后期均經(jīng)常出現(xiàn), 嚴(yán)重影響小麥的產(chǎn)量和品質(zhì)[8-9]。有報(bào)道[10]指出, 到2100年全球平均溫度較1980—2000年間的平均溫度將增加1.8~4.0 ℃。在全球環(huán)境溫度不斷增高的背景下, 小麥灌漿期遭遇高溫脅迫的頻率也將呈上升趨勢(shì)[11], 高溫脅迫對(duì)小麥的直接危害也將變得日益明顯與突出。
前人采取了很多研究方法研究小麥對(duì)高溫脅迫的反應(yīng), 并進(jìn)行耐熱性篩選與評(píng)價(jià)。高溫脅迫后小麥葉綠素?zé)晒庾兓痆12-14]、細(xì)胞膜透性變化[15-17]、冠層溫度變化[18-19]等被用來作為耐熱性篩選和評(píng)價(jià)的生理指標(biāo), 尤其是細(xì)胞膜透性的變化在耐熱性篩選上被應(yīng)用較多。依據(jù)千粒重和容重計(jì)算的熱感指數(shù)或熱害指數(shù)也被許多人用來進(jìn)行耐熱性評(píng)價(jià)[17,20]。儀小梅等[21]根據(jù)小麥旗葉功能期和千粒重, 計(jì)算出干熱風(fēng)抗逆指數(shù)和抗逆系數(shù), 進(jìn)行小麥抗干熱風(fēng)能力評(píng)價(jià)。雖然關(guān)于高溫脅迫對(duì)小麥產(chǎn)量的影響研究較多, 但許多研究者在進(jìn)行小麥耐熱性篩選與評(píng)價(jià)時(shí)只重視耐熱性而忽視產(chǎn)量, 或者由于試驗(yàn)方法僅限于實(shí)驗(yàn)室測(cè)定等原因, 導(dǎo)致目前尚沒有統(tǒng)一的、簡(jiǎn)單易行的評(píng)價(jià)小麥耐熱性的指標(biāo)方法。小麥?zhǔn)侨后w作物, 本研究在考察小麥耐熱性時(shí), 將群體冠層葉綠素含量、群體NDVI值作為評(píng)價(jià)小麥耐熱性的指標(biāo), 同時(shí)與灌漿特性和產(chǎn)量結(jié)果聯(lián)系分析, 希望為耐熱豐產(chǎn)穩(wěn)產(chǎn)性小麥品種選育提供方法, 也為小麥豐產(chǎn)抗逆栽培技術(shù)提供理論參考。
試驗(yàn)于2011—2013年、2017—2018年在山東省農(nóng)業(yè)科學(xué)院濟(jì)南試驗(yàn)田進(jìn)行。供試材料為耐熱性較好的‘濟(jì)麥22’(JM22)、056852品系(056852)以及耐熱性較差的‘新麥26’(XM26)和‘藁城8901’ (GC8901)。JM22和056852在2011年、2012年、2017年都是10月6日播種, 而XM26和GC8901都是10月9日播種, 花期一致。小區(qū)面積1.5 m×9 m, 基本苗165株?m-2, 行距25 cm。完全隨機(jī)排列, 3次重復(fù)。采取田間搭棚的方法進(jìn)行高溫處理(Str), 以不搭棚的大田小區(qū)作為對(duì)照(CK), 田間自動(dòng)氣象站(CM10l Campbell Scientific, Logan, UT, USA)記錄對(duì)照溫度。高溫處理時(shí)期為開花后12~14 d, 即小麥灌漿的初期搭建塑料大棚, 大棚采用刷漆鐵骨架作構(gòu)架, 塑料薄膜的厚度為70 μm, 透光率為92.7%, 大棚高度1.7 m, 面積為18 m×9 m。在每個(gè)小區(qū)冠層上方50 cm處均勻懸掛3個(gè)溫度計(jì), 每日8:00—20:00每2 h調(diào)查記錄小區(qū)溫度。高溫處理結(jié)束后, 移除覆蓋大棚的薄膜。大棚兩側(cè)距頂部20 cm處每50 cm留若干30 cm×30 cm的小窗口, 以保證棚內(nèi)良好的通風(fēng)狀態(tài)。
高溫處理期間, 處理與對(duì)照田的溫度如圖1所示, 2012年、2013年以及2018年處理3 d期間棚內(nèi)外的平均氣溫差分別是: 10.48 ℃、9.71 ℃、9.84 ℃, 10.65 ℃、8.99 ℃、9.96 ℃和2.00 ℃、2.37 ℃、1.55 ℃。3年高溫處理期間均無降水。播前每公頃底施有機(jī)肥3 750 kg, 純氮120 kg, P2O5105 kg和K2O 105 kg, 拔節(jié)期每公頃追施純氮105 kg, 越冬期和拔節(jié)期各灌水60 mm。6月4日收獲。每個(gè)小區(qū)分為兩部分, 一部分材料用作數(shù)據(jù)測(cè)定和取樣分析, 另一部分成熟時(shí)測(cè)產(chǎn)。
1.2.1 植株形態(tài)觀察記錄
高溫處理3 d結(jié)束后, 移除覆蓋的大棚薄膜, 即刻觀察記錄處理與對(duì)照葉片、穗部、穗下節(jié)間的形狀與顏色變化, 并用相機(jī)拍攝植株冠層照片。
1.2.2 葉片和穗部的葉綠素含量測(cè)定
處理結(jié)束后取高溫處理與對(duì)照植株, 迅速帶回實(shí)驗(yàn)室, 稱旗葉、穗下節(jié)間、基部第三小穗以及旗葉鞘各0.5 g左右, 放入1∶1的無水乙醇和丙酮混合提取液中, 常溫、黑暗條件下充分提取超過24 h, 于663 nm、645 nm和470 nm處測(cè)定吸光值, 葉綠素含量按照Arnon[22]的公式計(jì)算。
1.2.3 歸一化植被指數(shù)(NDVI)值測(cè)定
處理結(jié)束后, 在小麥灌漿的中期(5月18日和5月21日)以及后期(5月29日和6月2日), 即高溫脅迫結(jié)束后第4 d、7 d、15 d和19 d, 采用GreenSeeker手持式光譜儀(美國NTech公司)測(cè)定NDVI值, 傳感器與冬小麥冠層保持平行, 距離冠層高度60 cm, 順麥壟方向采集NDVI值獲取3組數(shù)據(jù)。每小區(qū)固定3組測(cè)定區(qū)域。
圖1 2012年、2013年、2018年試驗(yàn)期間高溫脅迫處理與對(duì)照處理的氣溫日變化
試驗(yàn)在2012年處理的第3天12:00時(shí)大棚內(nèi)溫度均超過45 ℃, 因此12:00—14:00揭開高溫棚, 以解除超高溫脅迫。因此, 2012年第3天高溫脅迫處理12:00和14:00數(shù)據(jù)是揭開大棚后的溫度數(shù)據(jù)。The proof of the artificial greenhouse was uncovered from 12:00 to 14:00 at the 3rdday in 2012 because of the extreme high temperature over 45 ℃inside, so as to alleviate the damage by the super high temperature stress. Therefore, the data at time 12:00 and time 14:00 of the 3rdday in 2012 were the temperature after the greenhouse proof was removed.
1.2.4 籽粒硬度和直徑測(cè)試
成熟期收獲后, 取高溫處理與對(duì)照的籽粒進(jìn)行籽粒硬度和直徑測(cè)試, 采用4100型單籽粒硬度儀(瑞典PERTEN公司)測(cè)定。每個(gè)重復(fù)測(cè)定300個(gè)籽粒, 取平均值, 樣品的籽粒硬度用平均硬度指數(shù)表示。籽粒直徑用游標(biāo)卡尺取最寬處測(cè)定, 每個(gè)重復(fù)測(cè)定50個(gè)籽粒, 取平均值。
1.2.5 小麥籽粒灌漿速率的測(cè)定
開花期對(duì)開花一致的小麥單莖標(biāo)記, 開花至成熟期每隔5 d每個(gè)重復(fù)取標(biāo)記穗5穗, 105 ℃殺青10 min, 70 ℃烘至恒重, 稱籽粒重, 用于籽粒灌漿速率的測(cè)定。籽粒的增重動(dòng)態(tài)參照李世清等[23]的方法, 用三次多項(xiàng)方程式=+1+22+33進(jìn)行模擬, 其中1、2、3是根據(jù)品種的不同確定常數(shù),代表粒重,代表花后天數(shù)。并推導(dǎo)出當(dāng)=-2/33時(shí)最大灌漿速率max=1-22/33, 最大灌漿速率持續(xù)期dmax=-2(22-331)1/2/33。
因2011—2013兩年度的試驗(yàn)結(jié)果趨勢(shì)基本一致, 而2017年高溫處理與對(duì)照日均溫差較低, 試驗(yàn)結(jié)果與2011—2013年重演性不好, 因此本文采用2011—2012年度的試驗(yàn)數(shù)據(jù)進(jìn)行分析。采用DPS v17.10軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行方差分析和多重比較(LSD法), 用SigmaPlot 10.0軟件作圖。
不同耐熱品種對(duì)高溫脅迫的反應(yīng)不同(圖2)。高溫脅迫對(duì)056852品系植株形態(tài)影響最小, 植株個(gè)體的差異很難分辨, 從群體上看較對(duì)照略微失綠變黃。高溫對(duì)JM22的外部形態(tài)有較小的影響, 與對(duì)照相比, 高溫脅迫的芒、穗部以及少量葉尖顏色略微失綠, 顏色發(fā)黃。高溫對(duì)XM26的植物形態(tài)影響最大, 脅迫處理的芒幾乎全部變黃白色, 穗部明顯失綠變黃, 葉尖失綠干枯面積較大。高溫對(duì)GC8901植株形態(tài)的影響也較大, 主要以芒變白和部分葉片葉尖失綠為特征, 穗部與對(duì)照相比也明顯的失綠變黃。
圖2 灌漿初期高溫脅迫對(duì)不同耐熱品種(系)冬小麥植株形態(tài)的影響
高溫脅迫后不同耐熱性品種小麥冠層葉綠素含量下降(圖3)。XM26和GC8901冠層葉綠素含量下降程度顯著大于JM22和056852。冠層各光合器官比較發(fā)現(xiàn), 穗部的葉綠素含量受高溫脅迫的影響變化最大, 較冠層其他綠色器官葉綠素含量下降顯著。XM26和GC8901穗部葉綠素含量分別下降12.10%和10.73%, JM22和056852下降5.29%和1.95%; 穗下節(jié)間的葉綠素含量下降最小, 變化較大的XM26和GC8901下降5.65%和7.18%, JM22和056852變化較小, 分別下降0.61%和3.13%; 旗葉和旗葉鞘的葉綠素含量變化居于穗部和穗下節(jié)間之間。
圖3 灌漿初期高溫脅迫后不同耐熱性小麥品種(系)冠層不同器官葉綠素含量較對(duì)照下降百分比
正體不同小寫字母表示同一品種不同器官間差異達(dá)5%顯著水平。斜體不同大、小寫字母分別表示不同品種間差異達(dá)1%或5%顯著水平。Different normal lowercase letters mean significant differences among different organs for the same cultivar at 0.05 level. Different italic uppercase or lowercase letters mean significant differences among different varieties at 0.01 or 0.05 level.
灌漿初期連續(xù)3 d的高溫脅迫降低了小麥的植被覆蓋指數(shù)(NDVI, 圖4), 但不同品種影響程度不同。高溫脅迫處理結(jié)束后第4 d(5月18日), XM26和GC8901的NDVI顯著低于各自對(duì)照, 分別較對(duì)照降低9.66%和10.28%, JM22和056852分別下降4.45%和2.53%, 高溫處理與對(duì)照無顯著差異。品種間差異不顯著。脅迫結(jié)束后第7 d(5月21日), 高溫處理與對(duì)照的差異更加顯著, 其中XM26和GC8901高溫處理與對(duì)照差異極顯著(>0.01), JM22和056852高溫處理與對(duì)照差異顯著(<0.05)。隨著生育進(jìn)程推進(jìn), 至高溫脅迫后15 d(5月29日), 各品種(系)NDVI降低,且參試品種(系)高溫處理與對(duì)照差異均顯著。XM26和GC8901兩品種之間NDVI差異不顯著, 但兩品種均顯著低于JM22和056852。至高溫脅迫后19 d(6月2日), JM22和056852品系高溫處理NDVI顯著高于對(duì)照; 而XM26和GC8901高溫處理與對(duì)照差異不顯著, 并且該兩個(gè)品種間無顯著差異。這是由于自5月下旬以來環(huán)境溫度越來越高, 加速了不耐熱品種(系)的早衰, 耐熱性較差的品種(系)的對(duì)照也由于外界環(huán)境溫度升高而趨于成熟, 使得高溫處理與對(duì)照差異不顯著。這也進(jìn)一步證實(shí)JM22和056852耐熱性更好, XM26和GC8901耐熱性不如前兩者。
圖4 灌漿初期高溫脅迫對(duì)不同耐熱小麥品種(系)不同時(shí)間植被覆蓋指數(shù)(NDVI)的影響
05-18、05-21、05-29和06-02分別為高溫脅迫后4 d、7 d、15 d和19 d。正體不同大、小寫字母表示同一品種不同處理間差異達(dá)1%極顯著或5%顯著水平。斜體不同大小寫字母分別表示不同品種間差異達(dá)1%或5%顯著水平。05-18, 05-21, 05-29 and 06-02 are 4, 7, 15 and 19 days after high temperature stress. Different normal upper and lowercase letters above each bar mean significant differences between treatments for the same cultivar at 0.01 level and 0.05 level. Different italic uppercase and lowercase letters mean differences among different varieties at 0.01 or 0.05 level.
如圖5所示, 受高溫脅迫的影響, 不同耐熱性小麥的籽粒形態(tài)也發(fā)生了程度不等的變化。變化最大的是XM26, 高溫脅迫后籽粒變小, 籽粒飽滿度下降, 籽粒顏色明顯變深。其次是GC8901, 其籽粒大小、飽滿度、顏色較對(duì)照變化程度僅次于XM26。JM22和056852的籽粒形態(tài)與對(duì)照相比變化程度較小。
圖5 灌漿初期高溫脅迫對(duì)不同耐熱小麥品種(系)籽粒形態(tài)的影響
高溫脅迫增加了不同耐熱性小麥品種(系)的籽粒硬度指數(shù), 降低了小麥的籽粒直徑(表1)。不同耐熱性品種(系)間籽粒硬度的變化幅度不同, 056852籽粒硬度增加幅度最大, 達(dá)極顯著水平, 且顯著大于其他3個(gè)品種(系); XM26、GC8901和JM22分別增加8.54%、6.72%和6.04%,差異顯著。JM22和GC8901間差異不顯著。品種間直徑大小差異極顯著。高溫脅迫后, XM26和GC8901高溫脅迫處理直徑較對(duì)照籽粒極顯著降低; 056852和JM22高溫脅迫處理較對(duì)照顯著降低。
表1 灌漿初期高溫脅迫對(duì)不同耐熱小麥品種(系)籽粒硬度及直徑的影響
不同大小寫字母分別表示高溫脅迫與對(duì)照間差異在<0.01水平和<0.05水平顯著。Different lowercase and capital letters indicate significant differences between CK and high temperature stress treatments at< 0.05 and< 0.01 levels, respectively.
高溫脅迫后不同耐熱品種小麥籽粒灌漿速率無降低(圖6)?;ê?5~20 d, JM22和056852處理與對(duì)照相比灌漿速率變化不大, XM26和GC8901灌漿速率下降較大。JM22、XM26、GC8901的千粒重都在花后30 d時(shí)達(dá)最大值, 056852花后35 d時(shí)籽粒增重曲線仍呈上升趨勢(shì), 灌漿持續(xù)時(shí)間較長。與各自對(duì)照(CK)相比, 灌漿初期的高溫處理均顯著降低了不同耐熱品種小麥的千粒重。小麥成熟時(shí)期, JM22、056852、GC8901和XM26 4個(gè)品種高溫脅迫處理的千粒重比對(duì)照分別下降4.39%、5.93%、7.64%和8.03%。
圖6 灌漿初期高溫脅迫(Str)對(duì)不同耐熱性小麥品種(系)粒重增長動(dòng)態(tài)的影響
箭頭之間為高溫脅迫處理時(shí)間: 花后12-14 d。Space between two narrows is the high temperature stress treatment time, from 12 to 14 days after anthesis.
用方程式=+1+22+33模擬籽粒增長動(dòng)態(tài), 并計(jì)算灌漿持續(xù)期和最大灌漿速率及其出現(xiàn)時(shí)間。由表2可以看出, 灌漿初期高溫脅迫顯著縮短了不同耐熱品種(系)的籽粒灌漿持續(xù)期, 與對(duì)照相比, JM22、XM26、056852和GC8901分別顯著縮短1.4 d、2.4 d、0.8 d和3.0 d。056852灌漿持續(xù)期極顯著大于JM22、XM26和GC8901, JM22顯著大于XM26和GC8901, XM26和GC8901之間無差異顯著。高溫脅迫使不同耐熱品種的最大灌漿速率時(shí)間提前, JM22、056852、XM26和GC8901分別極顯著提前1.7 d、2.1 d、1.7 d和1.8 d。XM26和GC8901的最大灌漿速率出現(xiàn)時(shí)間差異不顯著, 但其灌漿速率持續(xù)期極顯著低于JM22和056852。JM22、056852、XM26和GC8901的最大灌漿速率降低, 與對(duì)照相比分別降低10.53%、5.56%、35.29%和29.41%, 但品種(系)間與處理間差異均不顯著。
表2 灌漿初期高溫脅迫對(duì)不同品種(系)小麥籽粒增重模型及灌漿參數(shù)的影響
不同大、小寫字母分別表示高溫脅迫與對(duì)照間差異在<0.01水平和<0.05水平顯著。Different lowercase and capital letters indicate significant differences between CK and high temperature stress treatments at< 0.01 and< 0.05 levels, respectively.
灌漿初期高溫脅迫顯著降低了小麥千粒重, 從而造成了產(chǎn)量的降低(表3)。與對(duì)照相比, XM26、GC8901、JM22和056852籽粒產(chǎn)量受高溫脅迫分別極顯著減產(chǎn)11.43%、10.05%、6.41%和6.93%。受高溫脅迫的影響千粒重降幅在品種(系)間差異極顯著, XM26和GC8901籽粒產(chǎn)量降幅差異顯著, 都極顯著大于JM22和056852, 后兩者之間差異也達(dá)顯著水平。
表3 灌漿初期高溫脅迫對(duì)不同耐熱品種(系)千粒重和產(chǎn)量的影響
不同大小寫字母分別表示高溫脅迫與對(duì)照間差異在<0.01水平和<0.05水平顯著。Different lowercase and capital letters indicate significant differences between CK and high temperature stress treatments at< 0.05 and< 0.01 levels, respectively.
在全球氣溫不斷升高的背景下, 極端高溫事件頻發(fā)[24-26]。溫度每升高1 ℃, 全球小麥減產(chǎn)6%[27]。IPCC(2007年)第4次報(bào)告已將高溫脅迫作為威脅全球糧食安全的重要因子之一。高溫脅迫對(duì)我國小麥的危害主要表現(xiàn)為干熱風(fēng), 可使小麥灌漿期縮短、粒重降低, 品質(zhì)下降。有前人研究表明, 灌漿中后期是小麥熱脅迫的高發(fā)期, 對(duì)小麥生產(chǎn)影響較大[3]。然而, 也有少數(shù)研究表明灌漿期前期比后期對(duì)高溫更敏感[28-29]。且全國農(nóng)業(yè)氣象月報(bào)顯示, 2014— 2017年5月上、中旬小麥灌漿前期, 黃淮海大部分地區(qū)出現(xiàn)了干熱風(fēng)天氣。因此研究灌漿前期高溫脅迫對(duì)小麥的影響是當(dāng)前的迫切需求。
許多研究表明, 環(huán)境條件對(duì)冬小麥生產(chǎn)具有顯著的影響[3,7-9,28-31]。灌漿期高溫脅迫主要通過影響籽粒灌漿特性來影響粒重[6,32-34]。李世清等[23]認(rèn)為籽粒灌漿持續(xù)期、灌漿速率受環(huán)境因素(特別是溫度)調(diào)控, 籽粒灌漿速率與粒重呈正相關(guān), 并且不同基因型間粒重的差異主要與灌漿速率的差別有關(guān)。本試驗(yàn)發(fā)現(xiàn), 灌漿初期連續(xù)3 d的高溫處理, 使4個(gè)參試品種(系)JM22、056852、XM26和GC8901籽粒灌漿特性發(fā)生改變, 籽粒灌漿持續(xù)期的天數(shù)都減少, 這與前人[35-36]研究結(jié)果一致。不同小麥品種對(duì)高溫脅迫耐性不同[35-37]。本試驗(yàn)結(jié)果表明, 與各自對(duì)照相比, JM22和056852灌漿持續(xù)期縮短時(shí)間較小, XM26和GC8901灌漿持續(xù)期縮短時(shí)間較多。根據(jù)馮素偉等[38]將小麥灌漿過程分為漸增期、快增期和緩增期的劃分, 本試驗(yàn)在灌漿初期的高溫脅迫使籽粒灌漿快增期的灌漿速率降低, 尤其是XM26和GC8901受熱脅迫影響的時(shí)間早于JM22和056852。高溫脅迫還使供試品種的最大灌漿速率降低。灌漿時(shí)間減少和灌漿速率下降是高溫脅迫后小麥粒重顯著降低的直接原因。粒重降低與籽粒形態(tài)變化相吻合。高溫脅迫后灌漿物質(zhì)充實(shí)不足導(dǎo)致籽粒飽滿度下降, 籽粒直徑下降, 硬度指數(shù)升高。
灌漿期高溫脅迫對(duì)小麥籽粒灌漿產(chǎn)生負(fù)面影響主要是由于高溫脅迫后冠層的呼吸速率加劇, 呼吸消耗的同化產(chǎn)物增加, 籽粒灌漿的同化產(chǎn)物減少。姜雨萌等[39]研究發(fā)現(xiàn)冬小麥灌漿期間的高溫脅迫對(duì)冠層碳同化具有顯著的抑制作用。穗、莖、葉是冠層碳同化的主體, 即籽粒灌漿最主要的光合器官。持綠型小麥產(chǎn)量較普通小麥產(chǎn)量高的重要原因就是生育后期冠層具有較多的綠葉面積和數(shù)目, 凈光合速率高, 光合功能維持時(shí)間長, 干物質(zhì)積累多, 并且莖稈和葉鞘的儲(chǔ)備轉(zhuǎn)運(yùn)能力強(qiáng)[40-41]。耐熱性好的小麥即使在高溫下也能夠保持較高的葉綠素含量和光合效率, 并且具有較長的灌漿時(shí)間[34,42]。本研究發(fā)現(xiàn), 灌漿期高溫脅迫后不同耐熱小麥植株冠層黃化失綠, 冠層葉和非葉光合器官的葉綠素含量降低。穗部的葉綠素含量降低最多, 而穗下節(jié)間的葉綠素含量下降最小, 旗葉和旗葉鞘的變化居中。不同耐熱性小麥品種冠層葉綠素含量變化受高溫脅迫的影響不同。GC8901和XM26冠層葉葉綠素含量下降顯著大于JM22和056852。冠層穗、莖鞘、葉的衰老影響同化物質(zhì)的合成與轉(zhuǎn)運(yùn)。小麥干物質(zhì)轉(zhuǎn)運(yùn)受生育后期溫度影響較大, 花后高溫脅迫使小麥籽粒干物質(zhì)分配量顯著降低。因此推測(cè)高溫脅迫也將降低葉片、莖鞘以及穎殼中貯存同化物向籽粒的轉(zhuǎn)運(yùn)能力, 降低籽粒產(chǎn)量。植被覆蓋指數(shù)可以無損快速地估算作物冠層葉綠素含量[43-45], 本試驗(yàn)中高溫脅迫后小麥群體的植被覆蓋指數(shù)降低, 證實(shí)了冠層葉綠素含量降低, 葉面積指數(shù)減少。
在品種選育時(shí), 群體NDVI值、植株冠層葉綠素含量可以作為小麥耐熱性評(píng)價(jià)的參考指標(biāo)。生產(chǎn)上進(jìn)行品種推廣時(shí), 應(yīng)綜合考慮品種(系)耐熱性與豐產(chǎn)性, 本研究中XM26和GC8901耐熱性較差, 產(chǎn)量也較低; 056852品系雖然耐熱性較好, 但是產(chǎn)量一般; JM22耐熱性較好, 產(chǎn)量表現(xiàn)也最好。
[1] KO? M, BARUTCULAR C, TIRYAKIOGLU M. Possible heat-tolerant wheat cultivar improvement through the use of flag leaf gas exchange traits in a Mediterranean environment[J]. Journal of the Science of Food and Agriculture, 2008, 88(9): 1638–1647
[2] DEL MORAL L F G, RHARRABTI Y, VILLEGAS D, et al. Evaluation of grain yield and its components in durum wheat under Mediterranean conditions[J]. Agronomy Journal, 2003, 95(2): 266–274
[3] 李永庚, 于振文, 張秀杰, 等. 小麥產(chǎn)量與品質(zhì)對(duì)灌漿不同階段高溫脅迫的響應(yīng)[J]. 植物生態(tài)學(xué)報(bào), 2005, 29(3): 461–466 LI Y G, YU Z W, ZHANG X J, et al. Response of yield and quality of wheat to heat stress at different grain filling stages[J]. Acta Phytoecologica Sinica, 2005, 29(3): 461–466
[4] 苗建利, 王晨陽, 郭天財(cái), 等. 高溫與干旱互作對(duì)兩種筋力小麥品種籽粒淀粉及其組分含量的影響[J]. 麥類作物學(xué)報(bào), 2008, 28(2): 254–259 MIAO J L, WANG C Y, GUO T C, et al. Effects of post-anthesis interactions of high temperature and drought stresses on content and composition of grain starch in two wheat cultivars with different gluten strength[J]. Journal of Triticeae Crops, 2008, 28(2): 254–259
[5] WARDLAW I F. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment[J]. Annals of Botany, 2002, 90(4): 469–476
[6] 胡陽陽, 盧紅芳, 劉衛(wèi)星, 等. 灌漿期高溫與干旱脅迫對(duì)小麥籽粒淀粉合成關(guān)鍵酶活性及淀粉積累的影響[J]. 作物學(xué)報(bào), 2018, 44(4): 591–600 HU Y Y, LU H F, LIU W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat[J]. Acta Agronomica Sinica, 2018, 44(4): 591–600
[7] 肖登攀, 陶福祿, 沈彥俊, 等. 華北平原冬小麥對(duì)過去30年氣候變化響應(yīng)的敏感性研究[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2014, 22(4): 430–438 XIAO D P, TAO F L, SHEN Y J, et al. Sensitivity of response of winter wheat to climate change in the North China Plain in the last three decades[J]. Chinese Journal of Eco-Agriculture, 2014, 22(4): 430–438
[8] 成林, 張志紅, 方文松. 干熱風(fēng)對(duì)冬小麥灌漿速率和千粒重的影響[J]. 麥類作物學(xué)報(bào), 2014, 34(2): 248–254 CHENG L, ZHANG Z H, FANG W S. Effects of dry-hot wind on grain filling speed and 1000-kernel weight of winter wheat[J]. Journal of Triticeae Crops, 2014, 34(2): 248–254
[9] AL-KHATIB K, PAULSEN G M. Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions[J]. Crop Science,1990, 30(5): 1127–1132
[10] IPCC. Summary for policymakers[C]//Climate Change 2007: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: IPCC, 2007
[11] 譚凱炎, 房世波, 任三學(xué). 增溫對(duì)華北冬小麥生產(chǎn)影響的試驗(yàn)研究[J]. 氣象學(xué)報(bào), 2012, 70(4): 902–908 TAN K Y, FANG S B, REN S X. Experiment study of winter wheat growth and yield response to climate warming[J]. Acta Meteorologica Sinica, 2012, 70(4): 902–908
[12] BAKER N R, ROSENQVIST E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities[J]. Journal of Experimental Botany, 2004, 55(403): 1607–1621
[13] ELHANI S, RHARRABTI Y, DEL MORAL L F G, et al. Evolution of chlorophyll fluorescence parameters in durum wheat as affected by air temperature[M]//ROYO C, NACHIT M, DI FONZO N, et al. Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza: CIHEAM-Options Méditerranéennes, 2004: 275–277
[14] CUI L J, LI J L, FAN Y M, et al. High temperature effects on photosynthesis, PSⅡ functionality and antioxidant activity of twocultivars with different heat susceptibility[J]. Botanical Studies, 2006, 47(1): 61–69
[15] THIAW S, HALL A E. Comparison of selection for either leaf-electrolyte-leakage or pod set in enhancing heat tolerance and grain yield of cowpea[J]. Field Crops Research, 2004, 86(2/3): 239–253
[16] DHANDA S S, MUNJAL R. Inheritance of cellular thermotolerance in bread wheat[J]. Plant Breeding, 2006, 125(6): 557–564
[17] 耿曉麗, 張?jiān)铝? 臧新山, 等. 北方冬麥區(qū)與黃淮北片優(yōu)良小麥品種(系)耐熱性評(píng)價(jià)[J]. 麥類作物學(xué)報(bào), 2016, 36(2): 172–181GENG X L, ZHANG Y L, ZANG X S, et al. Evaluation the thermos tolerance of the wheat (L.) cultivars and advanced lines collected from the northern China and north area of Huanghuai winter wheat regions[J]. Journal of Triticeae Crops, 2016, 36(2): 172–181
[18] MAHAN J R, BURKE J J. Active management of plant canopy temperature as a tool for modifying plant metabolic activity[J]. American Journal of Plant Sciences, 2015, 6(1): 53531
[19] REYNOLDS M P, BALOTA M, DELGADO M I B, et al. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions[J]. Australian Journal of Plant Physiology, 1994, 21(6): 717–730
[20] 韓利明, 張勇, 彭惠茹, 等. 從產(chǎn)量和品質(zhì)性狀的變化分析北方冬麥區(qū)小麥品種抗熱性[J]. 作物學(xué)報(bào), 2010, 36(9): 1538?1546HAN L M, ZHANG Y, PENG H R, et al. Analysis of heat resistance for cultivars from North China Winter Wheat Region by yield and quality traits[J]. Acta Agronomica Sinica, 2010, 36(9): 1538?1546
[21] 儀小梅, 孫愛清, 韓曉玉, 等. 黃淮麥區(qū)小麥主推品種(系)干熱風(fēng)抗性鑒定[J]. 麥類作物學(xué)報(bào), 2015, 35(2): 274–284YI X M, SUN A Q, HAN X Y, et al. Identification of dry-hot wind resistance of major wheat cultivars (lines) in Huanghuai wheat region[J]. Journal of Triticeae Crops, 2015, 35(2): 274–284
[22] ARNON D T. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in[J]. Plant Physiology,1949, 24(1): 1–15
[23] 李世清, 邵明安, 李紫燕, 等. 小麥籽粒灌漿特征及影響因素的研究進(jìn)展[J]. 西北植物學(xué)報(bào), 2003, 23(11): 2031–2039 LI S Q, SHAO M A, LI Z Y, et al. Review of characteristics of wheat grain filling and factors to influence it[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(11): 2031–2039
[24] TEBALDI C, HAYHOE K, ARBLASTER J M, et al. Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events[J]. Climatic Change, 2006, 79(3/4): 185–211
[25] JIANG Z H, SONG J, LI L, et al. Extreme climate events in China: IPCC-AR4 model evaluation and projection[J]. Climatic Change, 2012, 110(1/2): 385–401
[26] 丁一匯, 任國玉, 石廣玉, 等. 氣候變化國家評(píng)估報(bào)告(Ⅰ): 中國氣候變化的歷史和未來趨勢(shì)[J]. 氣候變化研究進(jìn)展, 2006, 2(1): 3–8 DING Y H, REN G Y, SHI G Y, et al. National assessment report of climate change (Ⅰ): Climate change in China and its future trend[J]. Advances in Climate Change Research, 2006, 2(1): 3–8
[27] ASSENG S, EWERT F, MARTRE P, et al. Rising temperatures reduce global wheat production[J]. Nature Climate Change, 2015, 5(2): 143–147
[28] 趙俊芳, 趙艷霞, 郭建平, 等. 基于干熱風(fēng)危害指數(shù)的黃淮海地區(qū)冬小麥干熱風(fēng)災(zāi)損評(píng)估[J]. 生態(tài)學(xué)報(bào), 2015, 35(16): 5287–5293 ZHAO J F, ZHAO Y X, GUO J P, et al. Assessment of the yield loss of winter wheat caused by dry-hot wind in Huanghuaihai Plain based on the hazard index of dry-hot wind[J]. Acta Ecologica Sinica, 2015, 35(16): 5287–5293
[29] 楊絢, 湯緒, 陳葆德, 等. 氣候變暖背景下高溫脅迫對(duì)中國小麥產(chǎn)量的影響[J]. 地理科學(xué)進(jìn)展, 2013, 32(12): 1772–1779 YANG X, TANG X, CHEN B D, et al. Impacts of heat stress on wheat yield due to climatic warming in China[J]. Progress in Geography, 2013, 32(12): 1772–1779
[30] ARAUS J L, SLAFER G A, REYNOLDS M P, et al. Plant breeding and drought in C3 cereals: What should we breed for?[J]. Annals of Botany, 2002, 89: 925–940
[31] 劉霞, 尹燕枰, 姜春明, 等. 花后不同時(shí)期弱光和高溫脅迫對(duì)小麥旗葉熒光特性及籽粒灌漿進(jìn)程的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2005, 16(11): 2117–2121 LIU X, YIN Y P, JIANG C M, et al. Effects of weak light and high temperature stress after anthesis on flag leaf chlorophyll fluorescence and grain fill of wheat[J]. Chinese Journal of Applied Ecology, 2005, 16(11): 2117–2121
[32] FAROOQ M, BRAMLEY H, PALTA J A, et al. Heat stress in wheat during reproductive and grain-filling phases[J]. Critical Reviews in Plant Sciences, 2011, 30(6): 491–507
[33] 韓利明, 張勇, 彭惠茹, 等. 從產(chǎn)量和品質(zhì)性狀的變化分析北方冬麥區(qū)小麥品種抗熱性[J]. 作物學(xué)報(bào), 2010, 36(9): 1538?1546 HAN L M, ZHANG Y, PENG H R, et al. Analysis of heat resistance for cultivars from north china winter wheat region by yield and quality traits[J]. Acta Agronomica Sinica, 2010, 36(9): 1538?1546
[34] HAYS D B, DO J H, MASON R E, et al. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar[J]. Plant Science, 2007, 172(6): 1113–1123
[35] VISWANATHAN C, KHANNA-CHOPRA R. Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (L.) varieties differing in grain weight stability[J]. Journal of Agronomy and Crop Science, 2001, 186(1): 1–7
[36] 趙彥坤, 王秀堂, 王靜, 等. 熱脅迫對(duì)不同小麥品種灌漿速率的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2016, 24(9): 1239–1245ZHAO Y K, WANG X T, WANG J, et al. Effects of heat stress on grain-filling rate of different wheat varieties[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1239–1245
[37] 胡吉幫, 王晨陽, 郭天財(cái), 等. 灌漿期高溫和干旱對(duì)小麥灌漿特性的影響[J]. 河南農(nóng)業(yè)大學(xué)學(xué)報(bào), 2008, 42(6): 597–601HU J B, WANG C Y, GUO T C, et al. Effects of high temperature and drought stress on grain filling characteristics in wheat during grain filling period[J]. Journal of Henan Agricultural University, 2008, 42(6): 597–601
[38] 馮素偉, 胡鐵柱, 李淦, 等. 不同小麥品種籽粒灌漿特性分析[J]. 麥類作物學(xué)報(bào), 2009, 29(4): 643–646 FENG S W, HU T Z, LI G, et al. Analysis on grain filling characteristics of different wheat varieties[J]. Journal of Triticeae Crops, 2009, 29(4): 643–646
[39] 姜雨萌, 趙風(fēng)華, 劉金秋, 等. 極端高溫對(duì)冬小麥冠層碳同化的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2015, 23(10): 1260–1267 JIANG Y M, ZHAO F H, LIU J Q, et al. Effect of extreme heat on winter wheat canopy carbon assimilation[J]. Chinese Journal of Eco-Agriculture, 2015, 23(10): 1260–1267
[40] 武永勝, 薛輝, 劉洋, 等. 持綠型小麥葉片衰老和葉綠素?zé)晒馓卣鞯难芯縖J]. 干旱地區(qū)農(nóng)業(yè)研究, 2010, 28(4): 117–122WU Y S, XUE H, LIU Y, et al. Study on senescence and chlorophyll fluorescence traits of stay-green leaf in wheat[J]. Agricultural Research in the Arid Areas, 2010, 28(4): 117–122
[41] 龔月樺, 林娜, 石慧清, 等. 持綠型小麥冠溫特性及其對(duì)低氮和高溫的適應(yīng)性[J]. 西北農(nóng)林科技大學(xué)學(xué)報(bào): 自然科學(xué)版, 2016, 44(9): 49–55GONG Y H, LIN N, SHI H Q, et al. Canopy temperature characteristics and adaptability of stay-green wheat to low nitrogen and high temperature[J]. Journal of Northwest A&F University: Natural Science Edition, 2016, 44(9): 49–55
[42] 陳冬梅, 馬永安, 蘇玉環(huán), 等. 不同落黃型小麥品種光合器官衰老及產(chǎn)量對(duì)花后高溫的響應(yīng)[J]. 麥類作物學(xué)報(bào), 2017, 37(12): 1596–1603 CHEN D M, MA Y A, SU Y H, et al. Response of photosynthetic organ senescence and yield of wheat with different yellowing types to heat stress after anthesis[J]. Journal of Triticeae Crops, 2017, 37(12): 1596–1603
[43] 陳曉娜, 趙庚星, 周雪, 等. 基于高光譜的小麥冠層葉綠素(SPAD值)估測(cè)模型[J]. 天津農(nóng)業(yè)科學(xué), 2017, 24(2): 60–65 CHEN X N, ZHAO G X, ZHOU X, et al. Estimation model of wheat canopy chlorophyll content (SPAD value) based on hyperspectral technology[J]. Tianjin Agricultural Sciences, 2017, 24(2): 60–65
[44] 張俊華, 張佳寶, 賈科利. 不同施肥條件下夏玉米光譜特征與葉綠素含量和LAI的相關(guān)性[J]. 西北植物學(xué)報(bào), 2008, 28(7): 1461–1467 ZHANG J H, ZHANG J B, JIA K L. Correlation between summer maize spectral reflectance and leaf chlorophyll, LAI under different fertilizations[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(7): 1461–1467
[45] 王曉飛, 李志洪, 袁家萍, 等. 玉米品種冠層NDVI與葉綠素的關(guān)系[J]. 中國農(nóng)學(xué)通報(bào), 2010, 26(16): 175–179 WANG X F, LI Z H, YUAN J P, et al. The relationship between corn varieties canopy of NDVI and chlorophyll[J]. Chinese Agricultural Science Bulletin, 2010, 26(16): 175–179
Effect of high temperature stress at early grain-filling stage on plant morphology and grain yield of different heat-resistant varieties of wheat*
FENG Bo, LI Shengdong, LI Huawei, WANG Zongshuai, ZHANG Bin, WANG Fahong**, KONG Ling’an**
(Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China)
As one of the major crops in China, wheat has direct relationship with living standard and national food security. Wheat suffers high temperature stress often at late growth period which negatively impacted wheat yield and quality. Under the steadily increasing global temperature, the frequency of high temperature stress in wheat has increased. There are many indicators used for heat resistance screening and evaluation of wheat, including chlorophyll fluorescence, cell membrane, canopy temperature, thermal index, etc, in previous researches. However, most researches were limited to laboratory analysis, and neglected yield investigation. Considering wheat as a group crop, the chlorophyll content of population canopy and NDVI were used for wheat heat-resistance evaluation in this study. The grain-filling characteristics and yield outputs were also investigated. The study aimed at providing reliable methods of breeding, and theoretical basis for cultivation of high-yielding and stress-resistant wheat varieties. In this study, the effect of high temperature stress for 3 days at early grain-filling stage on morphology and grain yield of different heat-resistant wheat varieties (lines), including heat-resistant varieties (lines) of JM22 and 056852, and heat-sensitive varieties (lines) of XM26 and GC8901, were investigated through erecting artificial greenhouse to increase on-field temperature. The highest temperature during the 3-day high temperature stress was 43.13 ℃ and the average temperatures in every day were respectively 10.48 ℃, 9.71 ℃ and 9.84 ℃ higher than that of the control. Different heat-resistance varieties (lines) varied in response of plant and grain morphologies to high temperature stress. NDVI and canopy chlorophyll content of four varieties (lines) decreased after high temperature stress. These changes of JM22 and 056852 were not significant, while NDVI values and chlorophyll contents of XM26, GC8901 significantly decreased by 9.66%, 12.10%, and 6.26%, 10.73%, respectively. High temperature stress accelerated the senescence process of wheat. The grain-filling duration were significantly shortened by 1.4 d, 0.8 d, 2.4 d and 3.0 d for JM22, 056852, XM26 and GC8901, respectively. High temperature stress significantly decreased 1000-kernel weight and grain yield of wheat. The yield reductions of heat-sensitive varieties (lines) of XM26 and GC8901 were 11.43% and 10.05%, those of heat-resistant varieties (lines) of JM22 and 056852 were 6.41% and 6.93%, respectively. In conclusion, high temperature stress at early grain-filling stage accelerated canopy chlorophyll degradation, shortened grain-filling duration, reduced grain yield of wheat. JM22 showed better heat resistant ability and yield performance. 056852 had better heat resistance ability but normal yield performance. XM26 and GC8901 were worse both in heat resistance and in grain yield.
High temperature stress; Wheat; Heat resistance; Plant morphology; Yield
WANG Fahong, E-mail:13001719601@163.com; KONG Ling’an, E-mail: kongling-an@163.com
Jun. 22, 2018;
Sep. 30, 2018
S512.1; S311
A
2096-6237(2019)03-0451-11
10.13930/j.cnki.cjea.180578
馮波, 李升東, 李華偉, 王宗帥, 張賓, 王法宏, 孔令安. 灌漿初期高溫脅迫對(duì)不同耐熱性小麥品種形態(tài)和產(chǎn)量的影響[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文), 2019, 27(3): 451-461
FENG B, LI S D, LI H W, WANG Z S, ZHANG B, WANG F H, KONG L A. Effect of high temperature stress at early grain-filling stage on plant morphology and grain yield of different heat-resistant varieties of wheat[J]. Chinese Journal of Eco-Agriculture, 2019, 27(3): 451-461
* 山東省農(nóng)業(yè)科學(xué)院青年基金項(xiàng)目(2014QNM04)、公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201503130)、山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017GNC11106)和山東省泰山產(chǎn)業(yè)領(lǐng)軍人才高效生態(tài)農(nóng)業(yè)創(chuàng)新類項(xiàng)目(LJNY201601)資助
王法宏, 主要研究方向?yàn)樾←湼弋a(chǎn)高效栽培技術(shù)及生理生態(tài), E-mail: 13001719601@163.com; 孔令安, 主要研究方向?yàn)樾←溈鼓嫔? E-mail: kongling-an@163.com
馮波, 主要研究方向?yàn)樾←溫S產(chǎn)穩(wěn)產(chǎn)節(jié)本高效栽培技術(shù)及其生理基礎(chǔ)。E-mail: fengbo109@126.com
2018-06-22
2018-09-30
* This study was supported by the Fund for Youth Scholars of Shandong Academy of Agricultural Sciences (2014QNM04), the Special Fund for Agro-scientific Research in the Public Interest of China (201503130), the Key Science and Technology Projects of Shandong Province (2017GNC11106), the Mountain Tai Industry Leaders Innovation Projects for High Efficient and Ecological Agriculture of Shandong Province (LJNY201601).
中國生態(tài)農(nóng)業(yè)學(xué)報(bào)(中英文)2019年3期