• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無表面活性劑條件下一鍋法制備金屬/氧化鋅復(fù)合材料用于催化二氧化碳加氫制甲醇反應(yīng)

    2019-03-08 08:30:50劉艷芳尹雅芝劉國亮洪昕林
    物理化學學報 2019年2期
    關(guān)鍵詞:武漢大學氧化鋅活性劑

    劉艷芳,胡 兵,尹雅芝,劉國亮,洪昕林

    武漢大學化學與分子科學學院,武漢 430072

    1 Introduction

    Nanocomposites,especially functional metal oxide supported transition metal,have attracted intensive research attention in recent years1–5.The hybrid systems that consist of two or more components usually exhibit special synergic functionalities and novel optoelectronic,magnetic and catalytic properties over their individual counterparts,making them good candidates in a wide range of application areas,such as biology,solar cells,catalysis and optoelectronic devices6–9.Transition metals,especially noble metals,are known to have superior electronic and catalytic properties,which can be further promoted by metal oxide supports in catalysis due to the so-called strong-metalsupport-interaction (SMSI) effect10.More importantly,through controlling particle size and loading content of metals,their chemical properties can be finely tuned and optimized.

    Among transition metal/metal oxide nanocomposites,metal/ZnO (M/ZnO) system has been widely used as catalysts for several important chemical processes,such as catalytic conversion of syngas to low-carbon alcohols (Cu/ZnO)11,hydrogenation of CO2(Cu or Pd/ZnO)12,CO oxidation(Au/ZnO)13and ethanol stream reforming (Co or Ni/ZnO)14.In general,M/ZnO nanocomposites can be prepared following two strategies,one being physical routes such as ball-milling15(topdown),the other being chemical synthesis methods (bottom-up).The former allows the mass production of powder samples,but it is very difficult to achieve SMSI,which has been confirmed to be an important factor in heterogeneous catalysis10.Chemical methods could be a better solution to fabricate multi-component catalysts.For example,conventional co-precipitation and wetimpregnation are widely employed for preparation of supported metal catalysts.But they normally require an extra H2reduction step to obtain active metallic phase (M) from oxide precursor(MOx).As the synthesis of individual metal nanoparticles (NPs),especially noble metal NPs,is quite different from that of oxides,especially metal/ZnO,most of metal/oxide nanocomposites involve two or multi-steps synthesis.Therefore,it is of great significance to develop a one-step synthesis procedure.

    Since a “hot injection” method was reported by Murray et al.in 199316,many other strategies,such as thermal decomposition17,photodeposition18,in situ redox reactions19,20and thermal reduction21–23,have been also developed for size-control synthesis of metal or oxide NPs.However,most of the reported methods involve expensive or toxic reagents.Moreover,they normally require the use of surfactants,which,albeit effective in controlling the size of nanoparticles,turns out to be a headache for catalytic applications as the surfactants would block the catalytic surface and thus lower the activity24.Therefore,it is quite desirable to develop a simple and versatile route for size-control synthesis of metal/oxide nanocomposites without using any surfactants.

    2 Experimental section

    Here we present a simple one-pot surfactant-free method to synthesize Pd/ZnO nanocomposites in refluxed ethylene glycol by combining strategies of thermal decomposition and thermal reduction.Typically,a certain amount of Na2PdCl4,0.1 g of NaHCO3and 5 mmol of Zn(OAc)2were mixed with 45 mL of ethylene glycol,followed by a reflux treatment for 30 min (see detailed procedure in ESI).The particle size and loading content of Pd can be easily tailored by changing the dosage of NaHCO3and Na2PdCl4 in the recipe.This new process also proved versatile and can be applied to the fabrication of Au/ZnO,Ag/ZnO,and Cu/ZnO.In addition,we have shown that M/ZnO nanocomposites mixed with Al2O3can be used as catalysts for CO2hydrogenation to methanol.After screening,the Pd/ZnO catalyst with a Pd/Zn ratio of 1 :9 showed the highest methanol yield.

    3 Results and discussion

    As we know,ethylene glycol,serving as a mild reducing agent and solvent,has been widely used in the synthesis of noble metal NPs25.As illustrated in Fig.1,alcohol hydroxyl groups are capable to reduce Pd ions to generate Pd crystals in refluxing conditions.The “thermal reduction” allows the nucleation and growth of Pd particles without using extra reducing agents.To control the size of Pd NPs,NaHCO3,which acts as a size-control agent,is employed in the system by changing the alkaline conditions.Meanwhile,such high temperature would favor a thermal decomposition of Zn(OAc)2 to form ZnO nanocrystals26.When combining the two routes together,one may expect to obtain hybrid Pd/ZnO in one pot.In our surfactant-free system,the new-born species (Pd and ZnO nanoclusters) would stabilize each other from further aggregation by reducing their individual surface energy in the growth process.Importantly,this approach can be extended to fabricate (Au,Cu,and Ag)/ZnO hybrid nanomaterials by simply changing the metal precursor,verifying the effectiveness and feasibility of this novel approach.

    Fig.2a shows the X-ray diffraction (XRD) pattern of the Pd/ZnO sample with a Pd/Zn ratio of 1 :6.Clearly,the signals at 31.8°,34.4° and 36.3° can be assigned to (100),(002) and(101) diffraction peaks of wurtzite-ZnO crystals (JCPDS#21-1486),suggesting the existence of ZnO.Meanwhile,the peaks at 40.2°,46.6° and 68.1° correspond to the (111),(200) and (220)planes of a face centered cubic (fcc) lattice of metallic Pd(JCPDS#65-6174).No impurity phase was detected by XRD analysis,indicating that the obtained materials were solely comprised of crystallized Pd and ZnO lattices.Fig.2b shows a transmission electron microscopy (TEM) image of the Pd/ZnO sample.It reveals pseudo sphere-like ZnO crystals,decorated with small-sized Pd particles,as distinguished from different contrasts.The average size of ZnO NPs is around 30 nm,while that of Pd is estimated to be about 8 nm.The high-resolution TEM image in Fig.2c shows a d-spacing value of 0.23 nm,which can be assigned to the characteristic (111) lattice plane of metallic Pd27.

    For comparison,pure ZnO sample was synthesized under the same conditions without adding Pd precursor.The TEM image(Fig.2d) shows some big spherical aggregates that consist of irregular ZnO NPs.The size of these aggregates ranges from 30 nm to 100 nm.It seems that Pd plays an important role in preventing aggregation of ZnO nanocrystals.This could be explained by the decrease of the surface energy of ZnO NPs after the decoration of new-born Pd nanoclusters on the surface of ZnO.

    Fig.1 Schematic illustration of hybrid Pd/ZnO nanoparticle fabrication.

    To further confirm the formation of Pd/ZnO hybrid material,XPS analysis was performed.Fig.3a displays a wide-range XPS spectrum of the Pd/ZnO sample,confirming the coexistence of Zn,Pd,O and C.More specifically,Fig.3b shows the highresolution spectra of Zn 2p.The binding energy at 1021.5 and 1044.6 eV can be assigned to Zn(II) 2p3/2and 2p1/2in the form of ZnO,respectively.The deconvolution of O 1s using curve fitting in Fig.2c clearly shows two main peaks,one being lattice oxygen (O2-) from ZnO,the other being adsorbed oxygen on the surface of the composite28.The Pd 3d spectrum (Fig.3d)consists of two main peaks at binding energies of 339.9 and 334.6 eV,corresponding to Pd 3d3/2and 3d5/2of metallic Pd species29.Interestingly,the Pd 3d region can be divided into two peak groups,and the signals of higher binding energies (341.2 and 335.8 eV) come from partially oxidized Pd (δ+),which accounts for around 21% of total surface Pd content.Many studies on oxide-supported metal clusters show that surface defects of the supports could serve as anchoring sites for metal clusters30.When Pd are immobilized onto the surface of ZnO,Pd-O-Zn interfaces would form.This part of Pd normally shows positive charge via electron transfer from Pd to ZnO,indicating strong interactions between Pd and ZnO (SMSI)31.

    Fig.2 (a) XRD pattern,(b) TEM and (c) high resolution TEM images of the Pd/ZnO sample prepared at a Pd/Zn ratio of 1 :6,and(d) TEM image of pure ZnO sample.

    Fig.3 XPS analysis of the Pd/ZnO nanocomposite.(a) The wide-range XPS spectrum;high resolution spectra of (b) Zn 2p,(c) Pd 3d,(d) O 1s.

    A series of Pd/Zn molar ratios were investigated using this simple synthesis method.The final products were analyzed using ICP-MS to check the actual elemental compositions,as listed in Table S1 (in Supporting Information).The detected atomic ratios of Pd/Zn are well consistent with the theoretical recipe value,evidencing a total conversion of initial Pd and Zn species to their corresponding products.It is quite advantageous to achieve a precise control of multi-component ratios by using this simple method.Fig.S1 shows XRD patterns of a series of Pd/ZnO composites with the Pd/Zn ratio varying from 1 :2 to 1 :48.As expected,when the ratio is reduced,the peak intensity ratio of Pd (111)/ZnO (002) decreases continually.At the same time,the widening of Pd (111) reveals a decreasing trend of the Pd size.According to the Scherrer formula,the particle size calculated on a basis of the Pd (111) peak goes up from 6.14 nm at Pd/Zn molar ratio = 1 :12 to 10.12 nm at Pd/Zn molar ratio = 1 :2.Fig.S2 shows TEM images of the Pd/ZnO samples.Despite different Pd loading,all composites show similar morphology,with small Pd dots on sphere-like ZnO crystals.All ZnO particles have similar size of around 30 nm,while the size of Pd particles varies with the Pd/Zn molar ratios,as shown in Fig.4a.When the Pd loading goes up,the corresponding Pd particle size also increases,in good agreement with aforementioned XRD analysis.This phenomenon may be attributed to relatively insufficient surface defects of ZnO to anchor extra Pd species,thus losing control of the growth of Pd particles.

    The amount of NaHCO3is another key factor to control the size of Pd NPs.By keeping the molar ratio of Pd/Zn at 1 :6,we investigated the effect of the added amount of NaHCO3on Pd size.Fig.S3 shows the XRD patterns of fresh samples with the dosage of NaHCO3varying from 0,0.1,0.4,0.6,1.0 to 1.5 g.Accordingly,the Pd (111) peak (at 40.24°) became widened and weakened,revealing a decrease of Pd size.The average sizes are calculated and shown in Fig.4b.Clearly,it decreases gradually from 8.0 to 4.4 nm with increased amount of NaHCO3.This can be further confirmed by TEM observation,as seen in Fig.S4.It has been accepted that alkaline conditions would accelerate the initial nucleation of noble metals,thus favoring a smaller particle size32.Therefore,NaHCO3 can serve as a size-control tool for Pd NPs.

    Fig.4 Histogram of Pd particle size versus (a) the mole ratio of Pd to Zn and (b) the amount of NaHCO3.

    Fig.5 XRD patterns of ZnO and M/ZnO (M = Pd,Au,Ag,and Cu) synthesized at a M/Zn molar ratio of 1 :6.

    We also synthesized other M/ZnO nanocomposites including Au/ZnO,Ag/ZnO and Cu/ZnO following the same strategy.XRD patterns (Fig.5) confirm the formation of corresponding metal NPs supported on ZnO.Precisely,all metals show their typical (111) diffraction peaks at a scanning region from 38° to 45°.The intensity and width of diffraction peaks vary for different samples,indicative of apparent size difference.Among the three M/ZnO systems,Au NPs show the largest size with around 30 nm,Ag the second with around 15 nm,Cu the smallest with only 9 nm,as calculated from Scherrer formula.The size difference may be explained by different reduction potentials for selected metal precursors,thus affecting the subsequent growth process.Fig.S5 shows TEM images of the three samples and pure ZnO.Clearly,we can see the incorporation of Au,Ag and Cu species can also stabilize ZnO NPs from aggregation,similar to the aforementioned Pd/ZnO system.

    Cu/ZnO/Al2O3 composite is a well-known catalyst towards the catalytic hydrogenation of CO2to produce methanol33.Other metal/ZnO composites are also catalytically active for this reaction,such as Pd/ZnO34.We tested our one-pot synthesized M/ZnO nanomaterials mixed with Al2O3 (33.3% (w)) as catalysts for the hydrogenation of CO2(see Table 1).For the Cu/ZnO and Ag/ZnO catalyst,the methanol selectivity is very low,with a value of 23% and 26% respectively.The Au/ZnO catalyst favors the highest methanol selectivity (82%),but lowest CO2conversion,with only 6.6%.When the Pd/ZnO is used,the CO2 conversion reaches 20.7% while the methanol selectivity is still kept at a high value (71%),giving the highest methanol yield (14.7%).The excellent catalytic performance may be explained by the following two factors:one is that Pd is a good catalyst for the dissociation of H2to give active H atoms35,the other being that SMSI between Pd and ZnO would favour the formation of surface oxygen vacancies on ZnO36.

    Reaction temperatures were then investigated over the Pd/ZnO (1 :6) system.When the temperature is reduced from 260 to 240 °C,the CO2conversion slightly decreases from 20.7% to 19.0% while the methanol selectivity goes up marginally from 71% to 77%,maintaining a nearly identical methanol yield (14.6%).When the temperature further drops to 220 °C,the CO2conversion decreases to only 9.8% although a higher methanol selectivity (84%) is achieved.The final methanol yield drops significantly from 14.6% to 8.2%.A lower temperature would be favourable for the selectivity of methanol because this route is exothermic whilst the CO2-to-CO route is endothermic33.However,the total CO2conversion rate would drop quickly with the decrease of temperature.Therefore,it is of great significance to choose a proper temperature for a desirable methanol yield.

    The loading of Pd in Pd/ZnO catalysts was further studied at a reaction temperature of 240 °C,as summarized in Table 1.When Pd loading is increased,the methanol yield increases first and then decreases,with a maximum of 21.0% at a Pd/Zn ratio of 1 :9.Similarly,the CO2conversion also reached a peak(30.49%) for this sample,along with an acceptable methanol selectivity (68.7%).In general,the activity of Pd/ZnO is closely related to the exposed Pd surface sites which determine the amount of dissociated H species.In our case,the Pd particle size shows an increased trend with increased loading content,which would in turn decrease the effective Pd surface sites.Therefore,the activity of Pd/ZnO catalysts from our synthesis method would be very sensitive to the loading content of Pd.

    Table1 Catalytic performance of M/ZnO/Al2O3 catalysts (M = Ag,Cu,Au,and Pd).

    4 Conclusions

    In summary,we demonstrate a facile one-pot surfactant-free synthesis of M/ZnO (M = Pd,Au,Ag,and Cu) nanocomposites in ethylene glycol under the refluxing condition.In this strategy,Pd and ZnO can stabilize each other from further aggregation.Pd loading can be precisely tailored by changing recipe Pd/Zn ratios.NaHCO3can serve as a size-control tool for Pd particles by adjusting alkaline conditions.It is also found that the Pd/ZnO sample prepared by this simple method shows strong interactions between Pd and ZnO,which promotes a high methanol yield at a Pd/Zn ratio of 1 :9.This facile method would open up a new route for one-pot synthesis of M/ZnO nanocomposites with clean surface for catalysis.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    武漢大學氧化鋅活性劑
    武漢大學
    校訓展示墻
    在武漢大學拜謁李達塑像
    氧化鋅中氯的脫除工藝
    銦摻雜調(diào)控氧化鋅納米棒長徑比
    AOS-AA表面活性劑的制備及在浮選法脫墨中的應(yīng)用
    中國造紙(2015年7期)2015-12-16 12:40:48
    化學降解表面活性劑的開發(fā)
    來源于微生物的生物表面活性劑
    氯霉素氧化鋅乳膏的制備及質(zhì)量標準
    隆重慶祝武漢大學建校120周年(1893-2013)
    亚洲 欧美一区二区三区| www日本在线高清视频| 久久久久国产精品人妻一区二区| 男女午夜视频在线观看 | 国产精品免费大片| 欧美日韩国产mv在线观看视频| 麻豆乱淫一区二区| 午夜福利乱码中文字幕| 99国产综合亚洲精品| av在线观看视频网站免费| 有码 亚洲区| av国产久精品久网站免费入址| 最后的刺客免费高清国语| 久久国内精品自在自线图片| 国产精品一区www在线观看| 日韩一区二区三区影片| 人妻系列 视频| 婷婷成人精品国产| 国产亚洲一区二区精品| 国产成人aa在线观看| 人妻系列 视频| 精品99又大又爽又粗少妇毛片| 久久精品国产a三级三级三级| 亚洲少妇的诱惑av| 乱人伦中国视频| 国产成人精品一,二区| 亚洲精品久久成人aⅴ小说| 久久亚洲国产成人精品v| 精品人妻熟女毛片av久久网站| 日韩熟女老妇一区二区性免费视频| 久久99精品国语久久久| 中国国产av一级| 久久精品夜色国产| 两个人免费观看高清视频| 男女免费视频国产| 大码成人一级视频| 黑人高潮一二区| 日韩三级伦理在线观看| av国产久精品久网站免费入址| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 欧美日韩成人在线一区二区| 欧美精品av麻豆av| 少妇 在线观看| 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 国产成人91sexporn| 午夜福利视频精品| 中文字幕亚洲精品专区| 亚洲精品美女久久av网站| 国产精品偷伦视频观看了| 伦理电影免费视频| 久久精品久久精品一区二区三区| 夜夜骑夜夜射夜夜干| 91成人精品电影| 老司机影院毛片| 亚洲国产av新网站| 亚洲婷婷狠狠爱综合网| 99久久人妻综合| 国产又色又爽无遮挡免| 中国美白少妇内射xxxbb| 亚洲精华国产精华液的使用体验| 亚洲欧美成人精品一区二区| 久久精品国产亚洲av涩爱| 伦精品一区二区三区| 色94色欧美一区二区| 久久99一区二区三区| 亚洲精品,欧美精品| 视频区图区小说| 18禁裸乳无遮挡动漫免费视频| 91久久精品国产一区二区三区| 国精品久久久久久国模美| 成年人午夜在线观看视频| 日本欧美视频一区| 边亲边吃奶的免费视频| 丰满乱子伦码专区| 久久精品夜色国产| 人妻一区二区av| 91国产中文字幕| 久久ye,这里只有精品| 国产黄色视频一区二区在线观看| 久久久欧美国产精品| 最新的欧美精品一区二区| 久久午夜综合久久蜜桃| 免费看av在线观看网站| 亚洲久久久国产精品| 亚洲天堂av无毛| 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠躁躁| 夫妻性生交免费视频一级片| 亚洲精品乱久久久久久| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 男女边摸边吃奶| 久久久精品94久久精品| 国产亚洲一区二区精品| 免费大片黄手机在线观看| 少妇被粗大猛烈的视频| videossex国产| 国产亚洲av片在线观看秒播厂| 欧美日韩综合久久久久久| 亚洲美女视频黄频| 国产在视频线精品| 精品视频人人做人人爽| 2022亚洲国产成人精品| 成人影院久久| 久久精品久久久久久久性| 考比视频在线观看| 制服诱惑二区| av卡一久久| videos熟女内射| 日本黄大片高清| 一级a做视频免费观看| 51国产日韩欧美| 午夜福利,免费看| 美女主播在线视频| 亚洲高清免费不卡视频| 欧美精品高潮呻吟av久久| 男女下面插进去视频免费观看 | 赤兔流量卡办理| 在线观看免费日韩欧美大片| 一区二区三区四区激情视频| 新久久久久国产一级毛片| 国产福利在线免费观看视频| av天堂久久9| 欧美成人精品欧美一级黄| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 免费日韩欧美在线观看| 国产午夜精品一二区理论片| 亚洲美女黄色视频免费看| 国精品久久久久久国模美| 精品人妻一区二区三区麻豆| 一级片免费观看大全| 中国国产av一级| 亚洲精品国产av蜜桃| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 国产黄色视频一区二区在线观看| 国产探花极品一区二区| 色婷婷av一区二区三区视频| 久久久久网色| 免费看不卡的av| 日本色播在线视频| 最后的刺客免费高清国语| 精品视频人人做人人爽| 男人操女人黄网站| 久久精品国产综合久久久 | 亚洲情色 制服丝袜| 国产欧美日韩一区二区三区在线| 国产有黄有色有爽视频| 欧美少妇被猛烈插入视频| 飞空精品影院首页| 香蕉丝袜av| √禁漫天堂资源中文www| 亚洲精品中文字幕在线视频| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片| 少妇熟女欧美另类| 亚洲中文av在线| 亚洲成国产人片在线观看| 在线免费观看不下载黄p国产| 国产在线视频一区二区| 亚洲成国产人片在线观看| 久久精品夜色国产| av有码第一页| 亚洲av福利一区| 青春草国产在线视频| 女人久久www免费人成看片| 我的女老师完整版在线观看| 久久久久网色| 在线天堂中文资源库| 日韩中文字幕视频在线看片| 热re99久久精品国产66热6| 看十八女毛片水多多多| 精品久久国产蜜桃| 晚上一个人看的免费电影| 精品熟女少妇av免费看| 久久热在线av| 十八禁高潮呻吟视频| 男的添女的下面高潮视频| 免费观看性生交大片5| 涩涩av久久男人的天堂| 2022亚洲国产成人精品| 丰满少妇做爰视频| 亚洲人成网站在线观看播放| 又大又黄又爽视频免费| 久久久久精品性色| 在线天堂中文资源库| 国产男人的电影天堂91| 亚洲av综合色区一区| 色5月婷婷丁香| 免费在线观看黄色视频的| 日本欧美国产在线视频| 欧美+日韩+精品| 成人国语在线视频| 性色av一级| 久久国产精品大桥未久av| 午夜久久久在线观看| 亚洲精品成人av观看孕妇| 女人久久www免费人成看片| 九色成人免费人妻av| 欧美日韩亚洲高清精品| 纵有疾风起免费观看全集完整版| 日本av手机在线免费观看| 国产色爽女视频免费观看| 蜜臀久久99精品久久宅男| av国产久精品久网站免费入址| 在线观看免费视频网站a站| 香蕉国产在线看| 国产在视频线精品| 99re6热这里在线精品视频| 亚洲成国产人片在线观看| 人妻系列 视频| 99国产综合亚洲精品| 制服人妻中文乱码| 国产精品久久久av美女十八| 亚洲熟女精品中文字幕| 国产精品久久久久久精品电影小说| 色5月婷婷丁香| 亚洲成人手机| 久久精品国产a三级三级三级| 亚洲精品视频女| 久久久a久久爽久久v久久| 日韩人妻精品一区2区三区| 中文字幕最新亚洲高清| 又黄又爽又刺激的免费视频.| 一区二区三区精品91| 久久午夜福利片| 久久久欧美国产精品| 日本wwww免费看| 欧美xxxx性猛交bbbb| 国产不卡av网站在线观看| 国产成人精品在线电影| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 高清av免费在线| 日韩欧美精品免费久久| 丰满饥渴人妻一区二区三| av在线老鸭窝| 国产高清不卡午夜福利| 少妇人妻 视频| 少妇猛男粗大的猛烈进出视频| 久久久久久久大尺度免费视频| 亚洲成av片中文字幕在线观看 | 午夜福利乱码中文字幕| 永久免费av网站大全| 久久久国产一区二区| 9热在线视频观看99| 亚洲丝袜综合中文字幕| 亚洲综合色惰| 飞空精品影院首页| 婷婷色麻豆天堂久久| 9191精品国产免费久久| 十八禁网站网址无遮挡| 男女边吃奶边做爰视频| 精品人妻一区二区三区麻豆| 男人操女人黄网站| 在线免费观看不下载黄p国产| 国产有黄有色有爽视频| 一二三四中文在线观看免费高清| 日韩在线高清观看一区二区三区| 亚洲精品色激情综合| 中文字幕亚洲精品专区| av在线观看视频网站免费| 热99国产精品久久久久久7| av有码第一页| 观看美女的网站| 久热这里只有精品99| 人人妻人人澡人人看| 国产日韩欧美视频二区| 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 宅男免费午夜| 日韩中文字幕视频在线看片| 天天躁夜夜躁狠狠躁躁| 日本av免费视频播放| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| 国产成人免费无遮挡视频| 免费在线观看完整版高清| 亚洲内射少妇av| 丁香六月天网| 国产精品秋霞免费鲁丝片| 青春草国产在线视频| 午夜福利网站1000一区二区三区| 大片免费播放器 马上看| 99re6热这里在线精品视频| 欧美另类一区| 男人添女人高潮全过程视频| av片东京热男人的天堂| 中文字幕制服av| 婷婷色麻豆天堂久久| 女性被躁到高潮视频| 国产成人精品在线电影| 久久青草综合色| videos熟女内射| 久久久久久久久久久免费av| 少妇精品久久久久久久| 久久亚洲国产成人精品v| 丝袜人妻中文字幕| 欧美少妇被猛烈插入视频| 青春草国产在线视频| 日韩精品免费视频一区二区三区 | 亚洲精品视频女| 啦啦啦中文免费视频观看日本| 美女视频免费永久观看网站| 不卡视频在线观看欧美| 成人手机av| 久久国产亚洲av麻豆专区| 亚洲伊人色综图| 日本黄大片高清| 在线观看三级黄色| 女人被躁到高潮嗷嗷叫费观| 久久人妻熟女aⅴ| 国产欧美另类精品又又久久亚洲欧美| a 毛片基地| 亚洲久久久国产精品| 免费在线观看黄色视频的| 大片免费播放器 马上看| 国产又爽黄色视频| 欧美日韩一区二区视频在线观看视频在线| 国产一区亚洲一区在线观看| 欧美成人午夜精品| 一级片免费观看大全| www日本在线高清视频| 精品国产露脸久久av麻豆| 热re99久久国产66热| 九草在线视频观看| 久久久久久久精品精品| 亚洲成av片中文字幕在线观看 | 卡戴珊不雅视频在线播放| 色5月婷婷丁香| 欧美精品av麻豆av| 国产又色又爽无遮挡免| 在现免费观看毛片| 亚洲,欧美精品.| 精品一区在线观看国产| 精品人妻在线不人妻| 亚洲av.av天堂| 熟妇人妻不卡中文字幕| 国产国语露脸激情在线看| 国产精品久久久久久久久免| 国产精品一国产av| 美女视频免费永久观看网站| 哪个播放器可以免费观看大片| 三级国产精品片| 最新的欧美精品一区二区| 一二三四在线观看免费中文在 | 亚洲欧美清纯卡通| 全区人妻精品视频| av电影中文网址| 九九在线视频观看精品| 一级毛片我不卡| 日韩,欧美,国产一区二区三区| 成人影院久久| 色5月婷婷丁香| 两个人看的免费小视频| 日韩成人伦理影院| 欧美日韩视频高清一区二区三区二| 欧美老熟妇乱子伦牲交| 9色porny在线观看| 国产探花极品一区二区| 日日爽夜夜爽网站| 久久女婷五月综合色啪小说| 美女福利国产在线| 久久国产精品大桥未久av| 精品卡一卡二卡四卡免费| 国产一区二区激情短视频 | 欧美成人午夜免费资源| 亚洲国产精品专区欧美| 涩涩av久久男人的天堂| 日韩中文字幕视频在线看片| 在线观看一区二区三区激情| 在线观看三级黄色| 久久婷婷青草| 激情五月婷婷亚洲| 日韩在线高清观看一区二区三区| 色网站视频免费| 欧美丝袜亚洲另类| 成人亚洲精品一区在线观看| 99久久综合免费| 亚洲人成77777在线视频| 久久午夜福利片| av有码第一页| 国产精品三级大全| 丰满乱子伦码专区| 一二三四中文在线观看免费高清| 午夜日本视频在线| 久久久精品94久久精品| 五月天丁香电影| 极品少妇高潮喷水抽搐| 欧美最新免费一区二区三区| 久久这里只有精品19| 亚洲av男天堂| 丰满少妇做爰视频| 欧美变态另类bdsm刘玥| 99热国产这里只有精品6| 最近2019中文字幕mv第一页| 亚洲在久久综合| 亚洲一区二区三区欧美精品| 中国三级夫妇交换| 欧美丝袜亚洲另类| 午夜福利网站1000一区二区三区| 人人妻人人添人人爽欧美一区卜| 高清在线视频一区二区三区| 久久免费观看电影| 两个人看的免费小视频| 熟妇人妻不卡中文字幕| 亚洲一码二码三码区别大吗| 午夜免费鲁丝| 国产高清三级在线| 超色免费av| 国产成人免费无遮挡视频| 涩涩av久久男人的天堂| 母亲3免费完整高清在线观看 | 国产片内射在线| 日日啪夜夜爽| 制服诱惑二区| 亚洲欧美一区二区三区国产| 精品酒店卫生间| √禁漫天堂资源中文www| 久久精品国产亚洲av天美| 亚洲精品久久久久久婷婷小说| 国产免费一区二区三区四区乱码| 国产又色又爽无遮挡免| 亚洲综合色惰| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 国产高清国产精品国产三级| 精品国产一区二区三区四区第35| 日韩中字成人| 九色亚洲精品在线播放| 高清视频免费观看一区二区| 成人国产av品久久久| 精品人妻熟女毛片av久久网站| 欧美日韩视频精品一区| 欧美国产精品va在线观看不卡| 少妇高潮的动态图| 我的女老师完整版在线观看| 国产精品一二三区在线看| 大香蕉久久网| 国产片内射在线| 丝袜在线中文字幕| 日本黄大片高清| 国产成人a∨麻豆精品| kizo精华| 夫妻午夜视频| 韩国精品一区二区三区 | 好男人视频免费观看在线| 宅男免费午夜| 久久久久视频综合| 999精品在线视频| 日本黄大片高清| 欧美日韩国产mv在线观看视频| 色5月婷婷丁香| 丰满乱子伦码专区| 成人综合一区亚洲| 亚洲美女视频黄频| 色婷婷久久久亚洲欧美| 99re6热这里在线精品视频| 少妇的丰满在线观看| 999精品在线视频| 天天操日日干夜夜撸| 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| 在线观看美女被高潮喷水网站| 成年动漫av网址| 日本vs欧美在线观看视频| 久久国内精品自在自线图片| 999精品在线视频| 内地一区二区视频在线| 亚洲欧洲国产日韩| 99久久人妻综合| 午夜影院在线不卡| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| 国产一级毛片在线| 久久99精品国语久久久| 9热在线视频观看99| 色网站视频免费| 久久综合国产亚洲精品| 国产免费又黄又爽又色| 中国三级夫妇交换| 十八禁高潮呻吟视频| 少妇人妻 视频| 国产精品久久久久久久久免| 如日韩欧美国产精品一区二区三区| 免费看av在线观看网站| 日本与韩国留学比较| 王馨瑶露胸无遮挡在线观看| 国产免费现黄频在线看| 亚洲,一卡二卡三卡| 国产在线视频一区二区| 日日爽夜夜爽网站| 国产欧美亚洲国产| 视频中文字幕在线观看| 捣出白浆h1v1| 亚洲色图综合在线观看| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 亚洲精品美女久久av网站| xxxhd国产人妻xxx| 欧美激情极品国产一区二区三区 | 亚洲少妇的诱惑av| 免费播放大片免费观看视频在线观看| 韩国精品一区二区三区 | 高清在线视频一区二区三区| 99久久中文字幕三级久久日本| av在线app专区| 我的女老师完整版在线观看| 国产亚洲精品第一综合不卡 | 欧美精品高潮呻吟av久久| 国产成人91sexporn| 亚洲伊人色综图| 日韩制服骚丝袜av| av线在线观看网站| 日韩大片免费观看网站| 午夜影院在线不卡| 久久久国产一区二区| 亚洲少妇的诱惑av| 日韩三级伦理在线观看| 国产淫语在线视频| 激情五月婷婷亚洲| h视频一区二区三区| 高清av免费在线| 久久国产精品男人的天堂亚洲 | 国产在线一区二区三区精| 免费在线观看黄色视频的| 在线免费观看不下载黄p国产| av播播在线观看一区| 亚洲国产成人一精品久久久| 视频区图区小说| 999精品在线视频| 国产极品粉嫩免费观看在线| 免费黄网站久久成人精品| 又大又黄又爽视频免费| 老熟女久久久| 制服诱惑二区| 蜜桃国产av成人99| 69精品国产乱码久久久| 少妇 在线观看| 国产有黄有色有爽视频| 国产免费一区二区三区四区乱码| 免费av不卡在线播放| 欧美另类一区| 国产色婷婷99| 在线观看三级黄色| 久久精品aⅴ一区二区三区四区 | 五月伊人婷婷丁香| 精品99又大又爽又粗少妇毛片| 日本午夜av视频| 热re99久久精品国产66热6| 91午夜精品亚洲一区二区三区| a级毛色黄片| 日韩人妻精品一区2区三区| 丝袜脚勾引网站| 天堂中文最新版在线下载| 99久国产av精品国产电影| 精品熟女少妇av免费看| 午夜福利影视在线免费观看| 久久久久国产网址| 精品第一国产精品| 亚洲,欧美,日韩| 亚洲情色 制服丝袜| 少妇被粗大的猛进出69影院 | 99久久综合免费| 五月开心婷婷网| 热re99久久国产66热| 亚洲中文av在线| 91精品伊人久久大香线蕉| 久久久国产精品麻豆| 高清不卡的av网站| 成年人免费黄色播放视频| 亚洲欧美日韩卡通动漫| 精品酒店卫生间| 久久国产亚洲av麻豆专区| 成人免费观看视频高清| 免费观看性生交大片5| 国产欧美亚洲国产| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 高清不卡的av网站| 在线观看www视频免费| 一级片免费观看大全| 在线免费观看不下载黄p国产| 这个男人来自地球电影免费观看 | 日韩一本色道免费dvd| 亚洲人与动物交配视频| 丝袜人妻中文字幕| 欧美成人午夜精品| 亚洲美女黄色视频免费看| 免费看av在线观看网站| 69精品国产乱码久久久| 男人舔女人的私密视频| 国产极品粉嫩免费观看在线| 99久久人妻综合| 99久久中文字幕三级久久日本| 夜夜爽夜夜爽视频| 一级a做视频免费观看| 国产精品人妻久久久久久| 久久热在线av| 91精品三级在线观看| 亚洲色图综合在线观看| 成人亚洲精品一区在线观看| 午夜91福利影院| 九九在线视频观看精品| 五月天丁香电影| 亚洲精品自拍成人| 热re99久久精品国产66热6| 五月伊人婷婷丁香| 久久精品国产a三级三级三级| 最近最新中文字幕免费大全7| 国产色婷婷99| 亚洲精品国产色婷婷电影|