• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無表面活性劑條件下一鍋法制備金屬/氧化鋅復(fù)合材料用于催化二氧化碳加氫制甲醇反應(yīng)

    2019-03-08 08:30:50劉艷芳尹雅芝劉國亮洪昕林
    物理化學學報 2019年2期
    關(guān)鍵詞:武漢大學氧化鋅活性劑

    劉艷芳,胡 兵,尹雅芝,劉國亮,洪昕林

    武漢大學化學與分子科學學院,武漢 430072

    1 Introduction

    Nanocomposites,especially functional metal oxide supported transition metal,have attracted intensive research attention in recent years1–5.The hybrid systems that consist of two or more components usually exhibit special synergic functionalities and novel optoelectronic,magnetic and catalytic properties over their individual counterparts,making them good candidates in a wide range of application areas,such as biology,solar cells,catalysis and optoelectronic devices6–9.Transition metals,especially noble metals,are known to have superior electronic and catalytic properties,which can be further promoted by metal oxide supports in catalysis due to the so-called strong-metalsupport-interaction (SMSI) effect10.More importantly,through controlling particle size and loading content of metals,their chemical properties can be finely tuned and optimized.

    Among transition metal/metal oxide nanocomposites,metal/ZnO (M/ZnO) system has been widely used as catalysts for several important chemical processes,such as catalytic conversion of syngas to low-carbon alcohols (Cu/ZnO)11,hydrogenation of CO2(Cu or Pd/ZnO)12,CO oxidation(Au/ZnO)13and ethanol stream reforming (Co or Ni/ZnO)14.In general,M/ZnO nanocomposites can be prepared following two strategies,one being physical routes such as ball-milling15(topdown),the other being chemical synthesis methods (bottom-up).The former allows the mass production of powder samples,but it is very difficult to achieve SMSI,which has been confirmed to be an important factor in heterogeneous catalysis10.Chemical methods could be a better solution to fabricate multi-component catalysts.For example,conventional co-precipitation and wetimpregnation are widely employed for preparation of supported metal catalysts.But they normally require an extra H2reduction step to obtain active metallic phase (M) from oxide precursor(MOx).As the synthesis of individual metal nanoparticles (NPs),especially noble metal NPs,is quite different from that of oxides,especially metal/ZnO,most of metal/oxide nanocomposites involve two or multi-steps synthesis.Therefore,it is of great significance to develop a one-step synthesis procedure.

    Since a “hot injection” method was reported by Murray et al.in 199316,many other strategies,such as thermal decomposition17,photodeposition18,in situ redox reactions19,20and thermal reduction21–23,have been also developed for size-control synthesis of metal or oxide NPs.However,most of the reported methods involve expensive or toxic reagents.Moreover,they normally require the use of surfactants,which,albeit effective in controlling the size of nanoparticles,turns out to be a headache for catalytic applications as the surfactants would block the catalytic surface and thus lower the activity24.Therefore,it is quite desirable to develop a simple and versatile route for size-control synthesis of metal/oxide nanocomposites without using any surfactants.

    2 Experimental section

    Here we present a simple one-pot surfactant-free method to synthesize Pd/ZnO nanocomposites in refluxed ethylene glycol by combining strategies of thermal decomposition and thermal reduction.Typically,a certain amount of Na2PdCl4,0.1 g of NaHCO3and 5 mmol of Zn(OAc)2were mixed with 45 mL of ethylene glycol,followed by a reflux treatment for 30 min (see detailed procedure in ESI).The particle size and loading content of Pd can be easily tailored by changing the dosage of NaHCO3and Na2PdCl4 in the recipe.This new process also proved versatile and can be applied to the fabrication of Au/ZnO,Ag/ZnO,and Cu/ZnO.In addition,we have shown that M/ZnO nanocomposites mixed with Al2O3can be used as catalysts for CO2hydrogenation to methanol.After screening,the Pd/ZnO catalyst with a Pd/Zn ratio of 1 :9 showed the highest methanol yield.

    3 Results and discussion

    As we know,ethylene glycol,serving as a mild reducing agent and solvent,has been widely used in the synthesis of noble metal NPs25.As illustrated in Fig.1,alcohol hydroxyl groups are capable to reduce Pd ions to generate Pd crystals in refluxing conditions.The “thermal reduction” allows the nucleation and growth of Pd particles without using extra reducing agents.To control the size of Pd NPs,NaHCO3,which acts as a size-control agent,is employed in the system by changing the alkaline conditions.Meanwhile,such high temperature would favor a thermal decomposition of Zn(OAc)2 to form ZnO nanocrystals26.When combining the two routes together,one may expect to obtain hybrid Pd/ZnO in one pot.In our surfactant-free system,the new-born species (Pd and ZnO nanoclusters) would stabilize each other from further aggregation by reducing their individual surface energy in the growth process.Importantly,this approach can be extended to fabricate (Au,Cu,and Ag)/ZnO hybrid nanomaterials by simply changing the metal precursor,verifying the effectiveness and feasibility of this novel approach.

    Fig.2a shows the X-ray diffraction (XRD) pattern of the Pd/ZnO sample with a Pd/Zn ratio of 1 :6.Clearly,the signals at 31.8°,34.4° and 36.3° can be assigned to (100),(002) and(101) diffraction peaks of wurtzite-ZnO crystals (JCPDS#21-1486),suggesting the existence of ZnO.Meanwhile,the peaks at 40.2°,46.6° and 68.1° correspond to the (111),(200) and (220)planes of a face centered cubic (fcc) lattice of metallic Pd(JCPDS#65-6174).No impurity phase was detected by XRD analysis,indicating that the obtained materials were solely comprised of crystallized Pd and ZnO lattices.Fig.2b shows a transmission electron microscopy (TEM) image of the Pd/ZnO sample.It reveals pseudo sphere-like ZnO crystals,decorated with small-sized Pd particles,as distinguished from different contrasts.The average size of ZnO NPs is around 30 nm,while that of Pd is estimated to be about 8 nm.The high-resolution TEM image in Fig.2c shows a d-spacing value of 0.23 nm,which can be assigned to the characteristic (111) lattice plane of metallic Pd27.

    For comparison,pure ZnO sample was synthesized under the same conditions without adding Pd precursor.The TEM image(Fig.2d) shows some big spherical aggregates that consist of irregular ZnO NPs.The size of these aggregates ranges from 30 nm to 100 nm.It seems that Pd plays an important role in preventing aggregation of ZnO nanocrystals.This could be explained by the decrease of the surface energy of ZnO NPs after the decoration of new-born Pd nanoclusters on the surface of ZnO.

    Fig.1 Schematic illustration of hybrid Pd/ZnO nanoparticle fabrication.

    To further confirm the formation of Pd/ZnO hybrid material,XPS analysis was performed.Fig.3a displays a wide-range XPS spectrum of the Pd/ZnO sample,confirming the coexistence of Zn,Pd,O and C.More specifically,Fig.3b shows the highresolution spectra of Zn 2p.The binding energy at 1021.5 and 1044.6 eV can be assigned to Zn(II) 2p3/2and 2p1/2in the form of ZnO,respectively.The deconvolution of O 1s using curve fitting in Fig.2c clearly shows two main peaks,one being lattice oxygen (O2-) from ZnO,the other being adsorbed oxygen on the surface of the composite28.The Pd 3d spectrum (Fig.3d)consists of two main peaks at binding energies of 339.9 and 334.6 eV,corresponding to Pd 3d3/2and 3d5/2of metallic Pd species29.Interestingly,the Pd 3d region can be divided into two peak groups,and the signals of higher binding energies (341.2 and 335.8 eV) come from partially oxidized Pd (δ+),which accounts for around 21% of total surface Pd content.Many studies on oxide-supported metal clusters show that surface defects of the supports could serve as anchoring sites for metal clusters30.When Pd are immobilized onto the surface of ZnO,Pd-O-Zn interfaces would form.This part of Pd normally shows positive charge via electron transfer from Pd to ZnO,indicating strong interactions between Pd and ZnO (SMSI)31.

    Fig.2 (a) XRD pattern,(b) TEM and (c) high resolution TEM images of the Pd/ZnO sample prepared at a Pd/Zn ratio of 1 :6,and(d) TEM image of pure ZnO sample.

    Fig.3 XPS analysis of the Pd/ZnO nanocomposite.(a) The wide-range XPS spectrum;high resolution spectra of (b) Zn 2p,(c) Pd 3d,(d) O 1s.

    A series of Pd/Zn molar ratios were investigated using this simple synthesis method.The final products were analyzed using ICP-MS to check the actual elemental compositions,as listed in Table S1 (in Supporting Information).The detected atomic ratios of Pd/Zn are well consistent with the theoretical recipe value,evidencing a total conversion of initial Pd and Zn species to their corresponding products.It is quite advantageous to achieve a precise control of multi-component ratios by using this simple method.Fig.S1 shows XRD patterns of a series of Pd/ZnO composites with the Pd/Zn ratio varying from 1 :2 to 1 :48.As expected,when the ratio is reduced,the peak intensity ratio of Pd (111)/ZnO (002) decreases continually.At the same time,the widening of Pd (111) reveals a decreasing trend of the Pd size.According to the Scherrer formula,the particle size calculated on a basis of the Pd (111) peak goes up from 6.14 nm at Pd/Zn molar ratio = 1 :12 to 10.12 nm at Pd/Zn molar ratio = 1 :2.Fig.S2 shows TEM images of the Pd/ZnO samples.Despite different Pd loading,all composites show similar morphology,with small Pd dots on sphere-like ZnO crystals.All ZnO particles have similar size of around 30 nm,while the size of Pd particles varies with the Pd/Zn molar ratios,as shown in Fig.4a.When the Pd loading goes up,the corresponding Pd particle size also increases,in good agreement with aforementioned XRD analysis.This phenomenon may be attributed to relatively insufficient surface defects of ZnO to anchor extra Pd species,thus losing control of the growth of Pd particles.

    The amount of NaHCO3is another key factor to control the size of Pd NPs.By keeping the molar ratio of Pd/Zn at 1 :6,we investigated the effect of the added amount of NaHCO3on Pd size.Fig.S3 shows the XRD patterns of fresh samples with the dosage of NaHCO3varying from 0,0.1,0.4,0.6,1.0 to 1.5 g.Accordingly,the Pd (111) peak (at 40.24°) became widened and weakened,revealing a decrease of Pd size.The average sizes are calculated and shown in Fig.4b.Clearly,it decreases gradually from 8.0 to 4.4 nm with increased amount of NaHCO3.This can be further confirmed by TEM observation,as seen in Fig.S4.It has been accepted that alkaline conditions would accelerate the initial nucleation of noble metals,thus favoring a smaller particle size32.Therefore,NaHCO3 can serve as a size-control tool for Pd NPs.

    Fig.4 Histogram of Pd particle size versus (a) the mole ratio of Pd to Zn and (b) the amount of NaHCO3.

    Fig.5 XRD patterns of ZnO and M/ZnO (M = Pd,Au,Ag,and Cu) synthesized at a M/Zn molar ratio of 1 :6.

    We also synthesized other M/ZnO nanocomposites including Au/ZnO,Ag/ZnO and Cu/ZnO following the same strategy.XRD patterns (Fig.5) confirm the formation of corresponding metal NPs supported on ZnO.Precisely,all metals show their typical (111) diffraction peaks at a scanning region from 38° to 45°.The intensity and width of diffraction peaks vary for different samples,indicative of apparent size difference.Among the three M/ZnO systems,Au NPs show the largest size with around 30 nm,Ag the second with around 15 nm,Cu the smallest with only 9 nm,as calculated from Scherrer formula.The size difference may be explained by different reduction potentials for selected metal precursors,thus affecting the subsequent growth process.Fig.S5 shows TEM images of the three samples and pure ZnO.Clearly,we can see the incorporation of Au,Ag and Cu species can also stabilize ZnO NPs from aggregation,similar to the aforementioned Pd/ZnO system.

    Cu/ZnO/Al2O3 composite is a well-known catalyst towards the catalytic hydrogenation of CO2to produce methanol33.Other metal/ZnO composites are also catalytically active for this reaction,such as Pd/ZnO34.We tested our one-pot synthesized M/ZnO nanomaterials mixed with Al2O3 (33.3% (w)) as catalysts for the hydrogenation of CO2(see Table 1).For the Cu/ZnO and Ag/ZnO catalyst,the methanol selectivity is very low,with a value of 23% and 26% respectively.The Au/ZnO catalyst favors the highest methanol selectivity (82%),but lowest CO2conversion,with only 6.6%.When the Pd/ZnO is used,the CO2 conversion reaches 20.7% while the methanol selectivity is still kept at a high value (71%),giving the highest methanol yield (14.7%).The excellent catalytic performance may be explained by the following two factors:one is that Pd is a good catalyst for the dissociation of H2to give active H atoms35,the other being that SMSI between Pd and ZnO would favour the formation of surface oxygen vacancies on ZnO36.

    Reaction temperatures were then investigated over the Pd/ZnO (1 :6) system.When the temperature is reduced from 260 to 240 °C,the CO2conversion slightly decreases from 20.7% to 19.0% while the methanol selectivity goes up marginally from 71% to 77%,maintaining a nearly identical methanol yield (14.6%).When the temperature further drops to 220 °C,the CO2conversion decreases to only 9.8% although a higher methanol selectivity (84%) is achieved.The final methanol yield drops significantly from 14.6% to 8.2%.A lower temperature would be favourable for the selectivity of methanol because this route is exothermic whilst the CO2-to-CO route is endothermic33.However,the total CO2conversion rate would drop quickly with the decrease of temperature.Therefore,it is of great significance to choose a proper temperature for a desirable methanol yield.

    The loading of Pd in Pd/ZnO catalysts was further studied at a reaction temperature of 240 °C,as summarized in Table 1.When Pd loading is increased,the methanol yield increases first and then decreases,with a maximum of 21.0% at a Pd/Zn ratio of 1 :9.Similarly,the CO2conversion also reached a peak(30.49%) for this sample,along with an acceptable methanol selectivity (68.7%).In general,the activity of Pd/ZnO is closely related to the exposed Pd surface sites which determine the amount of dissociated H species.In our case,the Pd particle size shows an increased trend with increased loading content,which would in turn decrease the effective Pd surface sites.Therefore,the activity of Pd/ZnO catalysts from our synthesis method would be very sensitive to the loading content of Pd.

    Table1 Catalytic performance of M/ZnO/Al2O3 catalysts (M = Ag,Cu,Au,and Pd).

    4 Conclusions

    In summary,we demonstrate a facile one-pot surfactant-free synthesis of M/ZnO (M = Pd,Au,Ag,and Cu) nanocomposites in ethylene glycol under the refluxing condition.In this strategy,Pd and ZnO can stabilize each other from further aggregation.Pd loading can be precisely tailored by changing recipe Pd/Zn ratios.NaHCO3can serve as a size-control tool for Pd particles by adjusting alkaline conditions.It is also found that the Pd/ZnO sample prepared by this simple method shows strong interactions between Pd and ZnO,which promotes a high methanol yield at a Pd/Zn ratio of 1 :9.This facile method would open up a new route for one-pot synthesis of M/ZnO nanocomposites with clean surface for catalysis.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    武漢大學氧化鋅活性劑
    武漢大學
    校訓展示墻
    在武漢大學拜謁李達塑像
    氧化鋅中氯的脫除工藝
    銦摻雜調(diào)控氧化鋅納米棒長徑比
    AOS-AA表面活性劑的制備及在浮選法脫墨中的應(yīng)用
    中國造紙(2015年7期)2015-12-16 12:40:48
    化學降解表面活性劑的開發(fā)
    來源于微生物的生物表面活性劑
    氯霉素氧化鋅乳膏的制備及質(zhì)量標準
    隆重慶祝武漢大學建校120周年(1893-2013)
    亚洲av电影不卡..在线观看| 亚洲精品成人av观看孕妇| 亚洲在久久综合| 麻豆乱淫一区二区| 欧美成人一区二区免费高清观看| 中文字幕av在线有码专区| 国产黄片视频在线免费观看| 我的老师免费观看完整版| 国产午夜精品一二区理论片| av黄色大香蕉| 麻豆精品久久久久久蜜桃| 国产高潮美女av| 国产黄片视频在线免费观看| 国产精品久久久久久久电影| 美女被艹到高潮喷水动态| 久久精品国产亚洲网站| 肉色欧美久久久久久久蜜桃 | 亚洲人成网站在线播| 国产男人的电影天堂91| 哪个播放器可以免费观看大片| 韩国av在线不卡| 亚洲av电影在线观看一区二区三区 | 色网站视频免费| 免费看av在线观看网站| 色综合亚洲欧美另类图片| 看免费成人av毛片| 欧美成人精品欧美一级黄| 亚洲国产欧美人成| 国内精品美女久久久久久| 中文在线观看免费www的网站| 91在线精品国自产拍蜜月| 国产视频内射| 最近视频中文字幕2019在线8| 久久精品久久久久久噜噜老黄| 亚洲欧美一区二区三区黑人 | 国产一区有黄有色的免费视频 | 国产精品国产三级国产专区5o| 精品酒店卫生间| 午夜激情欧美在线| 天堂俺去俺来也www色官网 | 超碰av人人做人人爽久久| 亚洲电影在线观看av| 欧美高清成人免费视频www| 黄色欧美视频在线观看| 国产黄片视频在线免费观看| av免费在线看不卡| 久久精品夜夜夜夜夜久久蜜豆| 亚洲在线观看片| 国产人妻一区二区三区在| 乱人视频在线观看| 国产精品一区www在线观看| 亚洲国产av新网站| 看免费成人av毛片| 亚洲av电影不卡..在线观看| 欧美zozozo另类| 久久精品夜夜夜夜夜久久蜜豆| 大香蕉久久网| 日韩欧美国产在线观看| 亚洲自偷自拍三级| 一个人看视频在线观看www免费| 女人被狂操c到高潮| 男人爽女人下面视频在线观看| 精品久久久久久久末码| 女人十人毛片免费观看3o分钟| 国产综合精华液| 欧美精品一区二区大全| 蜜桃久久精品国产亚洲av| 一区二区三区乱码不卡18| 91久久精品国产一区二区成人| 又粗又硬又长又爽又黄的视频| 麻豆av噜噜一区二区三区| 日日干狠狠操夜夜爽| 我要看日韩黄色一级片| 亚洲综合色惰| 国产精品综合久久久久久久免费| 色综合色国产| 天堂网av新在线| 国产高清国产精品国产三级 | 男女国产视频网站| 国产真实伦视频高清在线观看| 久久精品人妻少妇| 亚洲av二区三区四区| 成年版毛片免费区| 国产高潮美女av| 国产av在哪里看| 日本wwww免费看| 天堂√8在线中文| 欧美性感艳星| 久久精品综合一区二区三区| 全区人妻精品视频| av线在线观看网站| 秋霞在线观看毛片| 一区二区三区免费毛片| 97在线视频观看| 九九久久精品国产亚洲av麻豆| 精品人妻偷拍中文字幕| 黄色一级大片看看| 亚洲三级黄色毛片| 国产精品伦人一区二区| 丰满少妇做爰视频| 综合色av麻豆| xxx大片免费视频| 亚洲在久久综合| 听说在线观看完整版免费高清| 我的女老师完整版在线观看| 久久久久久伊人网av| 亚洲熟女精品中文字幕| 国产一区二区在线观看日韩| 国产黄片美女视频| 99久久人妻综合| 嫩草影院入口| 六月丁香七月| 青春草亚洲视频在线观看| 高清毛片免费看| 亚洲国产最新在线播放| 久久国内精品自在自线图片| 日本免费a在线| 亚洲av免费在线观看| 国产亚洲91精品色在线| 久久久久精品久久久久真实原创| 国产精品福利在线免费观看| 国产片特级美女逼逼视频| 欧美zozozo另类| 久久久精品94久久精品| 国产精品一区二区三区四区久久| 国产一区亚洲一区在线观看| 国产成年人精品一区二区| 日韩av免费高清视频| 亚洲欧美成人综合另类久久久| 亚洲精品亚洲一区二区| 插逼视频在线观看| 国产午夜精品论理片| 免费人成在线观看视频色| 99久久人妻综合| 成年免费大片在线观看| 18禁在线无遮挡免费观看视频| 国产午夜精品久久久久久一区二区三区| 尾随美女入室| av黄色大香蕉| 国产高清三级在线| 国产欧美日韩精品一区二区| 91狼人影院| 国产探花在线观看一区二区| 久久国内精品自在自线图片| 日日摸夜夜添夜夜爱| 国产av国产精品国产| 嫩草影院入口| 免费高清在线观看视频在线观看| 一个人看视频在线观看www免费| 国产伦在线观看视频一区| 特级一级黄色大片| 久久久久久久国产电影| 一级av片app| 干丝袜人妻中文字幕| 欧美极品一区二区三区四区| 2021少妇久久久久久久久久久| 欧美日韩视频高清一区二区三区二| 亚洲av男天堂| 97人妻精品一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 亚州av有码| 亚洲国产精品专区欧美| 只有这里有精品99| 人妻夜夜爽99麻豆av| 亚洲av二区三区四区| 少妇熟女aⅴ在线视频| 亚洲国产日韩欧美精品在线观看| 中文在线观看免费www的网站| 成年av动漫网址| 亚洲国产色片| 一级二级三级毛片免费看| 婷婷六月久久综合丁香| 2021少妇久久久久久久久久久| 免费大片18禁| 街头女战士在线观看网站| 三级男女做爰猛烈吃奶摸视频| 男人爽女人下面视频在线观看| 听说在线观看完整版免费高清| 亚洲精品,欧美精品| 色综合色国产| 精品久久久久久成人av| 春色校园在线视频观看| 久久久精品欧美日韩精品| 精品久久久久久电影网| 男人舔奶头视频| 蜜桃亚洲精品一区二区三区| 国产黄色小视频在线观看| 亚洲国产欧美在线一区| 男女国产视频网站| 午夜福利在线观看吧| 久99久视频精品免费| 亚洲av不卡在线观看| 午夜福利成人在线免费观看| 嫩草影院精品99| 只有这里有精品99| 亚洲欧美精品自产自拍| 国产精品一区二区三区四区免费观看| 国产乱来视频区| 久久久精品欧美日韩精品| 观看美女的网站| 美女内射精品一级片tv| 一级片'在线观看视频| 夜夜看夜夜爽夜夜摸| 亚洲,欧美,日韩| 老女人水多毛片| 欧美日韩国产mv在线观看视频 | 亚洲国产av新网站| 九九久久精品国产亚洲av麻豆| 哪个播放器可以免费观看大片| 最近最新中文字幕免费大全7| 美女主播在线视频| 国产av在哪里看| 欧美bdsm另类| 免费在线观看成人毛片| a级一级毛片免费在线观看| 丝瓜视频免费看黄片| 亚洲精品久久午夜乱码| 久久久久久伊人网av| 2021天堂中文幕一二区在线观| 亚洲电影在线观看av| 国产精品一区二区三区四区免费观看| 欧美潮喷喷水| 国产69精品久久久久777片| 日本免费a在线| 久久久久久久午夜电影| 日本猛色少妇xxxxx猛交久久| 精品午夜福利在线看| 免费看a级黄色片| 成人毛片a级毛片在线播放| 亚洲av二区三区四区| 亚洲av成人精品一区久久| 国产综合懂色| 免费看不卡的av| 亚洲av在线观看美女高潮| 久久久久精品性色| 欧美zozozo另类| 综合色丁香网| 国产亚洲午夜精品一区二区久久 | 亚洲精品乱久久久久久| 亚洲欧美精品自产自拍| 精品少妇黑人巨大在线播放| 99久久精品一区二区三区| 美女高潮的动态| 在现免费观看毛片| 精品久久久精品久久久| 97热精品久久久久久| 中国国产av一级| 一区二区三区高清视频在线| 日日摸夜夜添夜夜添av毛片| 麻豆乱淫一区二区| 久久韩国三级中文字幕| 国产精品精品国产色婷婷| 国产精品人妻久久久影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97精品久久久久久久久久精品| 婷婷色av中文字幕| 午夜免费激情av| 一区二区三区乱码不卡18| 久久精品久久精品一区二区三区| 午夜免费激情av| 男插女下体视频免费在线播放| 禁无遮挡网站| 国产乱来视频区| 精品一区二区免费观看| 欧美激情国产日韩精品一区| 精品99又大又爽又粗少妇毛片| 啦啦啦啦在线视频资源| 97在线视频观看| 美女黄网站色视频| 国内揄拍国产精品人妻在线| av.在线天堂| av线在线观看网站| 久久精品国产亚洲网站| 99久国产av精品| 舔av片在线| 国产一级毛片七仙女欲春2| 成人高潮视频无遮挡免费网站| 一级爰片在线观看| 在线观看人妻少妇| 可以在线观看毛片的网站| 99热6这里只有精品| 五月天丁香电影| 97精品久久久久久久久久精品| 一级毛片我不卡| 欧美一区二区亚洲| 啦啦啦中文免费视频观看日本| 久久综合国产亚洲精品| 简卡轻食公司| 国产日韩欧美在线精品| kizo精华| 国产成人精品福利久久| 国产有黄有色有爽视频| 日本免费在线观看一区| 全区人妻精品视频| 一级毛片黄色毛片免费观看视频| 亚洲精品456在线播放app| 在线免费观看不下载黄p国产| 国产人妻一区二区三区在| 精品久久久精品久久久| 色综合亚洲欧美另类图片| 日本wwww免费看| 嫩草影院精品99| 美女cb高潮喷水在线观看| 婷婷色综合www| 简卡轻食公司| 春色校园在线视频观看| 久久久久久国产a免费观看| 国产精品精品国产色婷婷| 中国国产av一级| 一二三四中文在线观看免费高清| 欧美一区二区亚洲| 偷拍熟女少妇极品色| 美女黄网站色视频| 免费av毛片视频| 久久久久久久久大av| eeuss影院久久| 久久精品夜夜夜夜夜久久蜜豆| 哪个播放器可以免费观看大片| 国产一区二区三区av在线| 婷婷色麻豆天堂久久| 亚洲国产高清在线一区二区三| av.在线天堂| 国产女主播在线喷水免费视频网站 | 在线免费观看的www视频| 一级毛片 在线播放| 久久久久久久午夜电影| 一级毛片久久久久久久久女| 久久99热这里只频精品6学生| 国模一区二区三区四区视频| 国产91av在线免费观看| 亚洲婷婷狠狠爱综合网| 日韩强制内射视频| 最后的刺客免费高清国语| 九九爱精品视频在线观看| 日韩国内少妇激情av| 国产精品无大码| 国产伦一二天堂av在线观看| 狂野欧美白嫩少妇大欣赏| 国产老妇伦熟女老妇高清| 亚洲精品国产av成人精品| 嫩草影院精品99| 日日干狠狠操夜夜爽| 麻豆乱淫一区二区| 直男gayav资源| 久久精品国产亚洲网站| 午夜爱爱视频在线播放| 国产中年淑女户外野战色| 2021少妇久久久久久久久久久| 国产成人aa在线观看| 狂野欧美白嫩少妇大欣赏| 中文字幕制服av| 狠狠精品人妻久久久久久综合| 亚洲成人一二三区av| 国产视频内射| 亚洲不卡免费看| 精品人妻一区二区三区麻豆| 国产成人a区在线观看| 亚洲不卡免费看| 国产 一区 欧美 日韩| 亚洲国产成人一精品久久久| 天堂影院成人在线观看| 亚洲人成网站在线观看播放| 人妻一区二区av| 亚洲经典国产精华液单| 三级经典国产精品| 3wmmmm亚洲av在线观看| 亚洲国产精品sss在线观看| 久久国产乱子免费精品| 久久精品夜夜夜夜夜久久蜜豆| 男女边吃奶边做爰视频| 性色avwww在线观看| 亚洲精华国产精华液的使用体验| 成年av动漫网址| 美女内射精品一级片tv| 欧美xxxx黑人xx丫x性爽| 国产成人一区二区在线| 国产黄a三级三级三级人| 丝瓜视频免费看黄片| 国产黄频视频在线观看| 别揉我奶头 嗯啊视频| 乱系列少妇在线播放| 欧美日韩视频高清一区二区三区二| 综合色av麻豆| 一区二区三区四区激情视频| 久久韩国三级中文字幕| 国精品久久久久久国模美| 成人特级av手机在线观看| 欧美zozozo另类| 在线 av 中文字幕| 女的被弄到高潮叫床怎么办| 国产淫语在线视频| 久久久久国产网址| 欧美xxⅹ黑人| 国产真实伦视频高清在线观看| 国产精品福利在线免费观看| 色吧在线观看| 一夜夜www| 国内精品宾馆在线| 91精品国产九色| 免费少妇av软件| 精品国产露脸久久av麻豆 | 大陆偷拍与自拍| 国内精品美女久久久久久| 亚洲精品,欧美精品| 久久99热这里只有精品18| 九色成人免费人妻av| 国产精品精品国产色婷婷| 久久午夜福利片| 国产黄色小视频在线观看| 好男人在线观看高清免费视频| 国内精品美女久久久久久| 99视频精品全部免费 在线| av在线蜜桃| 91午夜精品亚洲一区二区三区| 国产精品无大码| 2018国产大陆天天弄谢| 视频中文字幕在线观看| 国语对白做爰xxxⅹ性视频网站| 麻豆av噜噜一区二区三区| 亚洲国产成人一精品久久久| 国产乱人偷精品视频| 韩国av在线不卡| 日韩av免费高清视频| 神马国产精品三级电影在线观看| 女人十人毛片免费观看3o分钟| 成人漫画全彩无遮挡| videossex国产| 亚洲精品日本国产第一区| 蜜桃亚洲精品一区二区三区| 乱码一卡2卡4卡精品| 女人被狂操c到高潮| 97热精品久久久久久| 黄片无遮挡物在线观看| 国产白丝娇喘喷水9色精品| 伦理电影大哥的女人| 超碰97精品在线观看| 超碰av人人做人人爽久久| 免费观看的影片在线观看| 在线免费观看不下载黄p国产| 啦啦啦啦在线视频资源| 一级爰片在线观看| 人妻制服诱惑在线中文字幕| 91久久精品电影网| 美女主播在线视频| 搡老乐熟女国产| 91精品国产九色| 三级国产精品片| 高清在线视频一区二区三区| 国产又色又爽无遮挡免| 九九在线视频观看精品| 熟女电影av网| 国产av在哪里看| 99久久精品热视频| 国产高清国产精品国产三级 | 国产黄频视频在线观看| 亚洲精品色激情综合| 中国国产av一级| 精品久久久久久久末码| 成人性生交大片免费视频hd| 男人狂女人下面高潮的视频| 色吧在线观看| 日韩视频在线欧美| 高清毛片免费看| 色尼玛亚洲综合影院| 91狼人影院| 1000部很黄的大片| 亚洲av男天堂| 18禁在线播放成人免费| 午夜爱爱视频在线播放| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 美女大奶头视频| 九色成人免费人妻av| 午夜老司机福利剧场| 婷婷色av中文字幕| 高清在线视频一区二区三区| 十八禁网站网址无遮挡 | 亚洲欧美日韩卡通动漫| 人妻制服诱惑在线中文字幕| 日本av手机在线免费观看| 免费人成在线观看视频色| 最近视频中文字幕2019在线8| 国产探花在线观看一区二区| 嫩草影院精品99| 成人欧美大片| 久久人人爽人人爽人人片va| 日本一本二区三区精品| 日韩中字成人| 久热久热在线精品观看| 国产av在哪里看| av线在线观看网站| 国产精品久久久久久精品电影| 精品一区二区三卡| 国产精品一区二区三区四区久久| 国产色婷婷99| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人无遮挡网站| 国产一区二区三区综合在线观看 | 久久久久久久久久久丰满| 国产色爽女视频免费观看| 中国美白少妇内射xxxbb| 看非洲黑人一级黄片| 国内精品宾馆在线| 国产亚洲av片在线观看秒播厂 | 日日啪夜夜撸| 天堂√8在线中文| 日韩亚洲欧美综合| 国产午夜精品一二区理论片| 久久99热这里只有精品18| 成年av动漫网址| 亚洲精品乱码久久久久久按摩| 亚洲国产精品成人综合色| 精品少妇黑人巨大在线播放| 亚州av有码| 又爽又黄无遮挡网站| 亚洲欧美一区二区三区黑人 | 午夜免费男女啪啪视频观看| 国产成人91sexporn| 美女高潮的动态| 久久精品国产自在天天线| 99久国产av精品| 在线观看av片永久免费下载| 午夜激情欧美在线| 精品人妻偷拍中文字幕| 国产精品久久久久久av不卡| 精品酒店卫生间| 国产精品女同一区二区软件| 欧美日韩一区二区视频在线观看视频在线 | 久久精品国产鲁丝片午夜精品| 国产精品福利在线免费观看| 日本一本二区三区精品| 欧美精品国产亚洲| 啦啦啦韩国在线观看视频| 高清日韩中文字幕在线| 一级爰片在线观看| 久久99热这里只频精品6学生| 国产毛片a区久久久久| 亚洲av免费高清在线观看| 国产一级毛片七仙女欲春2| 免费大片18禁| 国产老妇女一区| av在线播放精品| 我的老师免费观看完整版| 大片免费播放器 马上看| 不卡视频在线观看欧美| 亚洲欧美清纯卡通| 国产熟女欧美一区二区| 建设人人有责人人尽责人人享有的 | 国产精品爽爽va在线观看网站| 九草在线视频观看| 婷婷色综合www| 人人妻人人澡欧美一区二区| 中文在线观看免费www的网站| 噜噜噜噜噜久久久久久91| av福利片在线观看| 青春草国产在线视频| 日韩欧美三级三区| 伦精品一区二区三区| 亚洲欧美清纯卡通| 97人妻精品一区二区三区麻豆| 夜夜爽夜夜爽视频| 欧美激情在线99| 国内精品美女久久久久久| 99热全是精品| 亚洲av男天堂| 99re6热这里在线精品视频| 91久久精品国产一区二区成人| 久久久久久九九精品二区国产| 午夜爱爱视频在线播放| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕人妻熟人妻熟丝袜美| 听说在线观看完整版免费高清| 一个人看视频在线观看www免费| 亚洲精品日本国产第一区| 成人毛片a级毛片在线播放| 久久精品国产亚洲av天美| 久久精品国产自在天天线| 亚洲人成网站在线观看播放| 国产黄a三级三级三级人| 亚洲av二区三区四区| 好男人视频免费观看在线| 免费看a级黄色片| 亚洲av电影不卡..在线观看| 欧美日韩在线观看h| 中文乱码字字幕精品一区二区三区 | 狂野欧美激情性xxxx在线观看| 欧美成人午夜免费资源| 亚洲精品自拍成人| 男女下面进入的视频免费午夜| 亚洲av电影不卡..在线观看| av播播在线观看一区| videossex国产| 国产精品久久久久久久电影| 色播亚洲综合网| 十八禁网站网址无遮挡 | 亚洲18禁久久av| 在线观看人妻少妇| 国产成人精品婷婷| 极品少妇高潮喷水抽搐| 亚洲国产欧美在线一区| 国产乱人偷精品视频| 久久久久精品久久久久真实原创| 又爽又黄a免费视频| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 欧美日韩精品成人综合77777| 麻豆精品久久久久久蜜桃| 熟女电影av网| 乱系列少妇在线播放| 特级一级黄色大片| 亚洲av电影在线观看一区二区三区 | av网站免费在线观看视频 | 精品少妇黑人巨大在线播放| videossex国产| 国产精品不卡视频一区二区|