• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無表面活性劑條件下一鍋法制備金屬/氧化鋅復(fù)合材料用于催化二氧化碳加氫制甲醇反應(yīng)

    2019-03-08 08:30:50劉艷芳尹雅芝劉國亮洪昕林
    物理化學學報 2019年2期
    關(guān)鍵詞:武漢大學氧化鋅活性劑

    劉艷芳,胡 兵,尹雅芝,劉國亮,洪昕林

    武漢大學化學與分子科學學院,武漢 430072

    1 Introduction

    Nanocomposites,especially functional metal oxide supported transition metal,have attracted intensive research attention in recent years1–5.The hybrid systems that consist of two or more components usually exhibit special synergic functionalities and novel optoelectronic,magnetic and catalytic properties over their individual counterparts,making them good candidates in a wide range of application areas,such as biology,solar cells,catalysis and optoelectronic devices6–9.Transition metals,especially noble metals,are known to have superior electronic and catalytic properties,which can be further promoted by metal oxide supports in catalysis due to the so-called strong-metalsupport-interaction (SMSI) effect10.More importantly,through controlling particle size and loading content of metals,their chemical properties can be finely tuned and optimized.

    Among transition metal/metal oxide nanocomposites,metal/ZnO (M/ZnO) system has been widely used as catalysts for several important chemical processes,such as catalytic conversion of syngas to low-carbon alcohols (Cu/ZnO)11,hydrogenation of CO2(Cu or Pd/ZnO)12,CO oxidation(Au/ZnO)13and ethanol stream reforming (Co or Ni/ZnO)14.In general,M/ZnO nanocomposites can be prepared following two strategies,one being physical routes such as ball-milling15(topdown),the other being chemical synthesis methods (bottom-up).The former allows the mass production of powder samples,but it is very difficult to achieve SMSI,which has been confirmed to be an important factor in heterogeneous catalysis10.Chemical methods could be a better solution to fabricate multi-component catalysts.For example,conventional co-precipitation and wetimpregnation are widely employed for preparation of supported metal catalysts.But they normally require an extra H2reduction step to obtain active metallic phase (M) from oxide precursor(MOx).As the synthesis of individual metal nanoparticles (NPs),especially noble metal NPs,is quite different from that of oxides,especially metal/ZnO,most of metal/oxide nanocomposites involve two or multi-steps synthesis.Therefore,it is of great significance to develop a one-step synthesis procedure.

    Since a “hot injection” method was reported by Murray et al.in 199316,many other strategies,such as thermal decomposition17,photodeposition18,in situ redox reactions19,20and thermal reduction21–23,have been also developed for size-control synthesis of metal or oxide NPs.However,most of the reported methods involve expensive or toxic reagents.Moreover,they normally require the use of surfactants,which,albeit effective in controlling the size of nanoparticles,turns out to be a headache for catalytic applications as the surfactants would block the catalytic surface and thus lower the activity24.Therefore,it is quite desirable to develop a simple and versatile route for size-control synthesis of metal/oxide nanocomposites without using any surfactants.

    2 Experimental section

    Here we present a simple one-pot surfactant-free method to synthesize Pd/ZnO nanocomposites in refluxed ethylene glycol by combining strategies of thermal decomposition and thermal reduction.Typically,a certain amount of Na2PdCl4,0.1 g of NaHCO3and 5 mmol of Zn(OAc)2were mixed with 45 mL of ethylene glycol,followed by a reflux treatment for 30 min (see detailed procedure in ESI).The particle size and loading content of Pd can be easily tailored by changing the dosage of NaHCO3and Na2PdCl4 in the recipe.This new process also proved versatile and can be applied to the fabrication of Au/ZnO,Ag/ZnO,and Cu/ZnO.In addition,we have shown that M/ZnO nanocomposites mixed with Al2O3can be used as catalysts for CO2hydrogenation to methanol.After screening,the Pd/ZnO catalyst with a Pd/Zn ratio of 1 :9 showed the highest methanol yield.

    3 Results and discussion

    As we know,ethylene glycol,serving as a mild reducing agent and solvent,has been widely used in the synthesis of noble metal NPs25.As illustrated in Fig.1,alcohol hydroxyl groups are capable to reduce Pd ions to generate Pd crystals in refluxing conditions.The “thermal reduction” allows the nucleation and growth of Pd particles without using extra reducing agents.To control the size of Pd NPs,NaHCO3,which acts as a size-control agent,is employed in the system by changing the alkaline conditions.Meanwhile,such high temperature would favor a thermal decomposition of Zn(OAc)2 to form ZnO nanocrystals26.When combining the two routes together,one may expect to obtain hybrid Pd/ZnO in one pot.In our surfactant-free system,the new-born species (Pd and ZnO nanoclusters) would stabilize each other from further aggregation by reducing their individual surface energy in the growth process.Importantly,this approach can be extended to fabricate (Au,Cu,and Ag)/ZnO hybrid nanomaterials by simply changing the metal precursor,verifying the effectiveness and feasibility of this novel approach.

    Fig.2a shows the X-ray diffraction (XRD) pattern of the Pd/ZnO sample with a Pd/Zn ratio of 1 :6.Clearly,the signals at 31.8°,34.4° and 36.3° can be assigned to (100),(002) and(101) diffraction peaks of wurtzite-ZnO crystals (JCPDS#21-1486),suggesting the existence of ZnO.Meanwhile,the peaks at 40.2°,46.6° and 68.1° correspond to the (111),(200) and (220)planes of a face centered cubic (fcc) lattice of metallic Pd(JCPDS#65-6174).No impurity phase was detected by XRD analysis,indicating that the obtained materials were solely comprised of crystallized Pd and ZnO lattices.Fig.2b shows a transmission electron microscopy (TEM) image of the Pd/ZnO sample.It reveals pseudo sphere-like ZnO crystals,decorated with small-sized Pd particles,as distinguished from different contrasts.The average size of ZnO NPs is around 30 nm,while that of Pd is estimated to be about 8 nm.The high-resolution TEM image in Fig.2c shows a d-spacing value of 0.23 nm,which can be assigned to the characteristic (111) lattice plane of metallic Pd27.

    For comparison,pure ZnO sample was synthesized under the same conditions without adding Pd precursor.The TEM image(Fig.2d) shows some big spherical aggregates that consist of irregular ZnO NPs.The size of these aggregates ranges from 30 nm to 100 nm.It seems that Pd plays an important role in preventing aggregation of ZnO nanocrystals.This could be explained by the decrease of the surface energy of ZnO NPs after the decoration of new-born Pd nanoclusters on the surface of ZnO.

    Fig.1 Schematic illustration of hybrid Pd/ZnO nanoparticle fabrication.

    To further confirm the formation of Pd/ZnO hybrid material,XPS analysis was performed.Fig.3a displays a wide-range XPS spectrum of the Pd/ZnO sample,confirming the coexistence of Zn,Pd,O and C.More specifically,Fig.3b shows the highresolution spectra of Zn 2p.The binding energy at 1021.5 and 1044.6 eV can be assigned to Zn(II) 2p3/2and 2p1/2in the form of ZnO,respectively.The deconvolution of O 1s using curve fitting in Fig.2c clearly shows two main peaks,one being lattice oxygen (O2-) from ZnO,the other being adsorbed oxygen on the surface of the composite28.The Pd 3d spectrum (Fig.3d)consists of two main peaks at binding energies of 339.9 and 334.6 eV,corresponding to Pd 3d3/2and 3d5/2of metallic Pd species29.Interestingly,the Pd 3d region can be divided into two peak groups,and the signals of higher binding energies (341.2 and 335.8 eV) come from partially oxidized Pd (δ+),which accounts for around 21% of total surface Pd content.Many studies on oxide-supported metal clusters show that surface defects of the supports could serve as anchoring sites for metal clusters30.When Pd are immobilized onto the surface of ZnO,Pd-O-Zn interfaces would form.This part of Pd normally shows positive charge via electron transfer from Pd to ZnO,indicating strong interactions between Pd and ZnO (SMSI)31.

    Fig.2 (a) XRD pattern,(b) TEM and (c) high resolution TEM images of the Pd/ZnO sample prepared at a Pd/Zn ratio of 1 :6,and(d) TEM image of pure ZnO sample.

    Fig.3 XPS analysis of the Pd/ZnO nanocomposite.(a) The wide-range XPS spectrum;high resolution spectra of (b) Zn 2p,(c) Pd 3d,(d) O 1s.

    A series of Pd/Zn molar ratios were investigated using this simple synthesis method.The final products were analyzed using ICP-MS to check the actual elemental compositions,as listed in Table S1 (in Supporting Information).The detected atomic ratios of Pd/Zn are well consistent with the theoretical recipe value,evidencing a total conversion of initial Pd and Zn species to their corresponding products.It is quite advantageous to achieve a precise control of multi-component ratios by using this simple method.Fig.S1 shows XRD patterns of a series of Pd/ZnO composites with the Pd/Zn ratio varying from 1 :2 to 1 :48.As expected,when the ratio is reduced,the peak intensity ratio of Pd (111)/ZnO (002) decreases continually.At the same time,the widening of Pd (111) reveals a decreasing trend of the Pd size.According to the Scherrer formula,the particle size calculated on a basis of the Pd (111) peak goes up from 6.14 nm at Pd/Zn molar ratio = 1 :12 to 10.12 nm at Pd/Zn molar ratio = 1 :2.Fig.S2 shows TEM images of the Pd/ZnO samples.Despite different Pd loading,all composites show similar morphology,with small Pd dots on sphere-like ZnO crystals.All ZnO particles have similar size of around 30 nm,while the size of Pd particles varies with the Pd/Zn molar ratios,as shown in Fig.4a.When the Pd loading goes up,the corresponding Pd particle size also increases,in good agreement with aforementioned XRD analysis.This phenomenon may be attributed to relatively insufficient surface defects of ZnO to anchor extra Pd species,thus losing control of the growth of Pd particles.

    The amount of NaHCO3is another key factor to control the size of Pd NPs.By keeping the molar ratio of Pd/Zn at 1 :6,we investigated the effect of the added amount of NaHCO3on Pd size.Fig.S3 shows the XRD patterns of fresh samples with the dosage of NaHCO3varying from 0,0.1,0.4,0.6,1.0 to 1.5 g.Accordingly,the Pd (111) peak (at 40.24°) became widened and weakened,revealing a decrease of Pd size.The average sizes are calculated and shown in Fig.4b.Clearly,it decreases gradually from 8.0 to 4.4 nm with increased amount of NaHCO3.This can be further confirmed by TEM observation,as seen in Fig.S4.It has been accepted that alkaline conditions would accelerate the initial nucleation of noble metals,thus favoring a smaller particle size32.Therefore,NaHCO3 can serve as a size-control tool for Pd NPs.

    Fig.4 Histogram of Pd particle size versus (a) the mole ratio of Pd to Zn and (b) the amount of NaHCO3.

    Fig.5 XRD patterns of ZnO and M/ZnO (M = Pd,Au,Ag,and Cu) synthesized at a M/Zn molar ratio of 1 :6.

    We also synthesized other M/ZnO nanocomposites including Au/ZnO,Ag/ZnO and Cu/ZnO following the same strategy.XRD patterns (Fig.5) confirm the formation of corresponding metal NPs supported on ZnO.Precisely,all metals show their typical (111) diffraction peaks at a scanning region from 38° to 45°.The intensity and width of diffraction peaks vary for different samples,indicative of apparent size difference.Among the three M/ZnO systems,Au NPs show the largest size with around 30 nm,Ag the second with around 15 nm,Cu the smallest with only 9 nm,as calculated from Scherrer formula.The size difference may be explained by different reduction potentials for selected metal precursors,thus affecting the subsequent growth process.Fig.S5 shows TEM images of the three samples and pure ZnO.Clearly,we can see the incorporation of Au,Ag and Cu species can also stabilize ZnO NPs from aggregation,similar to the aforementioned Pd/ZnO system.

    Cu/ZnO/Al2O3 composite is a well-known catalyst towards the catalytic hydrogenation of CO2to produce methanol33.Other metal/ZnO composites are also catalytically active for this reaction,such as Pd/ZnO34.We tested our one-pot synthesized M/ZnO nanomaterials mixed with Al2O3 (33.3% (w)) as catalysts for the hydrogenation of CO2(see Table 1).For the Cu/ZnO and Ag/ZnO catalyst,the methanol selectivity is very low,with a value of 23% and 26% respectively.The Au/ZnO catalyst favors the highest methanol selectivity (82%),but lowest CO2conversion,with only 6.6%.When the Pd/ZnO is used,the CO2 conversion reaches 20.7% while the methanol selectivity is still kept at a high value (71%),giving the highest methanol yield (14.7%).The excellent catalytic performance may be explained by the following two factors:one is that Pd is a good catalyst for the dissociation of H2to give active H atoms35,the other being that SMSI between Pd and ZnO would favour the formation of surface oxygen vacancies on ZnO36.

    Reaction temperatures were then investigated over the Pd/ZnO (1 :6) system.When the temperature is reduced from 260 to 240 °C,the CO2conversion slightly decreases from 20.7% to 19.0% while the methanol selectivity goes up marginally from 71% to 77%,maintaining a nearly identical methanol yield (14.6%).When the temperature further drops to 220 °C,the CO2conversion decreases to only 9.8% although a higher methanol selectivity (84%) is achieved.The final methanol yield drops significantly from 14.6% to 8.2%.A lower temperature would be favourable for the selectivity of methanol because this route is exothermic whilst the CO2-to-CO route is endothermic33.However,the total CO2conversion rate would drop quickly with the decrease of temperature.Therefore,it is of great significance to choose a proper temperature for a desirable methanol yield.

    The loading of Pd in Pd/ZnO catalysts was further studied at a reaction temperature of 240 °C,as summarized in Table 1.When Pd loading is increased,the methanol yield increases first and then decreases,with a maximum of 21.0% at a Pd/Zn ratio of 1 :9.Similarly,the CO2conversion also reached a peak(30.49%) for this sample,along with an acceptable methanol selectivity (68.7%).In general,the activity of Pd/ZnO is closely related to the exposed Pd surface sites which determine the amount of dissociated H species.In our case,the Pd particle size shows an increased trend with increased loading content,which would in turn decrease the effective Pd surface sites.Therefore,the activity of Pd/ZnO catalysts from our synthesis method would be very sensitive to the loading content of Pd.

    Table1 Catalytic performance of M/ZnO/Al2O3 catalysts (M = Ag,Cu,Au,and Pd).

    4 Conclusions

    In summary,we demonstrate a facile one-pot surfactant-free synthesis of M/ZnO (M = Pd,Au,Ag,and Cu) nanocomposites in ethylene glycol under the refluxing condition.In this strategy,Pd and ZnO can stabilize each other from further aggregation.Pd loading can be precisely tailored by changing recipe Pd/Zn ratios.NaHCO3can serve as a size-control tool for Pd particles by adjusting alkaline conditions.It is also found that the Pd/ZnO sample prepared by this simple method shows strong interactions between Pd and ZnO,which promotes a high methanol yield at a Pd/Zn ratio of 1 :9.This facile method would open up a new route for one-pot synthesis of M/ZnO nanocomposites with clean surface for catalysis.

    Supporting Information:available free of charge via the internet at http://www.whxb.pku.edu.cn.

    猜你喜歡
    武漢大學氧化鋅活性劑
    武漢大學
    校訓展示墻
    在武漢大學拜謁李達塑像
    氧化鋅中氯的脫除工藝
    銦摻雜調(diào)控氧化鋅納米棒長徑比
    AOS-AA表面活性劑的制備及在浮選法脫墨中的應(yīng)用
    中國造紙(2015年7期)2015-12-16 12:40:48
    化學降解表面活性劑的開發(fā)
    來源于微生物的生物表面活性劑
    氯霉素氧化鋅乳膏的制備及質(zhì)量標準
    隆重慶祝武漢大學建校120周年(1893-2013)
    久久亚洲精品不卡| 色av中文字幕| 日本a在线网址| 自线自在国产av| 自线自在国产av| 婷婷精品国产亚洲av在线| 欧美绝顶高潮抽搐喷水| 午夜久久久在线观看| 免费在线观看黄色视频的| 国产精品 国内视频| 久久精品影院6| 国产不卡一卡二| 亚洲专区中文字幕在线| 亚洲色图av天堂| 99国产精品99久久久久| 黄片播放在线免费| 久久伊人香网站| 成人国语在线视频| 久99久视频精品免费| 老鸭窝网址在线观看| 午夜福利免费观看在线| 久久久久久久久久黄片| 国产高清激情床上av| 久久久国产欧美日韩av| ponron亚洲| 亚洲国产高清在线一区二区三 | 日日摸夜夜添夜夜添小说| 欧美中文综合在线视频| e午夜精品久久久久久久| 两性夫妻黄色片| 啪啪无遮挡十八禁网站| 国内毛片毛片毛片毛片毛片| www.999成人在线观看| 日韩欧美一区二区三区在线观看| 久久国产乱子伦精品免费另类| 嫩草影视91久久| 亚洲 国产 在线| 少妇粗大呻吟视频| 亚洲精品国产区一区二| 侵犯人妻中文字幕一二三四区| 精品卡一卡二卡四卡免费| 中文字幕久久专区| 亚洲 欧美一区二区三区| xxx96com| 99久久综合精品五月天人人| 欧美色欧美亚洲另类二区| 国产精品亚洲av一区麻豆| 久99久视频精品免费| 最近最新中文字幕大全免费视频| 亚洲成av片中文字幕在线观看| 一级a爱片免费观看的视频| 每晚都被弄得嗷嗷叫到高潮| 国产爱豆传媒在线观看 | 日日夜夜操网爽| 日本一本二区三区精品| 国产v大片淫在线免费观看| 免费在线观看成人毛片| 欧美色视频一区免费| 国产成人精品无人区| 黄色视频不卡| 国产精品,欧美在线| 国产野战对白在线观看| 亚洲全国av大片| 日本黄色视频三级网站网址| 欧美日韩精品网址| 久久 成人 亚洲| 看片在线看免费视频| 久久国产亚洲av麻豆专区| 成人18禁高潮啪啪吃奶动态图| 午夜久久久在线观看| 级片在线观看| 国产激情久久老熟女| 人人妻人人澡人人看| 青草久久国产| 欧美在线一区亚洲| 国产一区二区激情短视频| 深夜精品福利| 午夜福利欧美成人| 色哟哟哟哟哟哟| 国产精品乱码一区二三区的特点| 色婷婷久久久亚洲欧美| 人妻丰满熟妇av一区二区三区| svipshipincom国产片| 欧美一级毛片孕妇| 女警被强在线播放| 18禁裸乳无遮挡免费网站照片 | 国产成人一区二区三区免费视频网站| 麻豆av在线久日| 午夜福利在线观看吧| 国内毛片毛片毛片毛片毛片| 深夜精品福利| 一进一出好大好爽视频| 久久香蕉国产精品| 亚洲第一av免费看| 日韩成人在线观看一区二区三区| 午夜免费成人在线视频| 国产真人三级小视频在线观看| www日本黄色视频网| 亚洲专区中文字幕在线| 亚洲av成人不卡在线观看播放网| 日韩欧美 国产精品| 亚洲国产高清在线一区二区三 | 不卡一级毛片| 国产视频一区二区在线看| 好男人电影高清在线观看| 久久天堂一区二区三区四区| 制服丝袜大香蕉在线| 51午夜福利影视在线观看| 一个人免费在线观看的高清视频| 一二三四社区在线视频社区8| 免费在线观看完整版高清| 男人舔女人下体高潮全视频| 午夜视频精品福利| 亚洲人成网站在线播放欧美日韩| 99国产精品一区二区三区| 中文字幕精品免费在线观看视频| 国产成人精品久久二区二区免费| 免费在线观看视频国产中文字幕亚洲| 色婷婷久久久亚洲欧美| 欧美国产精品va在线观看不卡| 久久久久久久久中文| 中文字幕高清在线视频| 看免费av毛片| 9191精品国产免费久久| av免费在线观看网站| www日本在线高清视频| 在线观看免费视频日本深夜| 国产精品99久久99久久久不卡| 夜夜看夜夜爽夜夜摸| 国产精品综合久久久久久久免费| 神马国产精品三级电影在线观看 | 美女国产高潮福利片在线看| 久热爱精品视频在线9| 黄色成人免费大全| 亚洲专区字幕在线| 老司机在亚洲福利影院| 又紧又爽又黄一区二区| 日本成人三级电影网站| 欧美一级毛片孕妇| 免费在线观看黄色视频的| 免费在线观看成人毛片| 久久久国产成人免费| 精品熟女少妇八av免费久了| 亚洲成人久久爱视频| 美女 人体艺术 gogo| 亚洲欧美精品综合久久99| 亚洲欧洲精品一区二区精品久久久| 啦啦啦韩国在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 中文字幕av电影在线播放| 国产亚洲精品综合一区在线观看 | www.熟女人妻精品国产| 国产精品电影一区二区三区| 黄片播放在线免费| 欧美久久黑人一区二区| 中文字幕av电影在线播放| 99国产精品一区二区三区| 亚洲 欧美 日韩 在线 免费| 久久久久久人人人人人| 日韩精品青青久久久久久| 男女午夜视频在线观看| 国产蜜桃级精品一区二区三区| 丰满的人妻完整版| 一a级毛片在线观看| 少妇被粗大的猛进出69影院| 亚洲精品色激情综合| 国产精品九九99| 精品国产乱码久久久久久男人| 免费看十八禁软件| 国产精品久久久久久人妻精品电影| 久久久久国内视频| 久久天躁狠狠躁夜夜2o2o| 亚洲精华国产精华精| 青草久久国产| 女警被强在线播放| 欧美丝袜亚洲另类 | 国产日本99.免费观看| 亚洲欧美日韩高清在线视频| 在线观看www视频免费| 波多野结衣高清无吗| 国产精品免费一区二区三区在线| 18禁美女被吸乳视频| 中亚洲国语对白在线视频| 91麻豆av在线| 又黄又粗又硬又大视频| 每晚都被弄得嗷嗷叫到高潮| 天天躁夜夜躁狠狠躁躁| 久久狼人影院| 变态另类丝袜制服| 免费观看人在逋| av超薄肉色丝袜交足视频| 99在线视频只有这里精品首页| 欧美色欧美亚洲另类二区| 91老司机精品| 国产成+人综合+亚洲专区| 久久香蕉精品热| 女同久久另类99精品国产91| 亚洲国产欧美日韩在线播放| 波多野结衣av一区二区av| 久久亚洲精品不卡| 深夜精品福利| 久久久久久国产a免费观看| 国产精品爽爽va在线观看网站 | 人成视频在线观看免费观看| 1024视频免费在线观看| 久久亚洲真实| 最近在线观看免费完整版| 午夜激情福利司机影院| 99久久综合精品五月天人人| 中文字幕最新亚洲高清| 日日夜夜操网爽| 欧美日本视频| 亚洲va日本ⅴa欧美va伊人久久| 777久久人妻少妇嫩草av网站| 999久久久精品免费观看国产| www.自偷自拍.com| 亚洲国产精品sss在线观看| 国产高清激情床上av| 免费高清视频大片| 日日干狠狠操夜夜爽| 久久午夜亚洲精品久久| 国内精品久久久久精免费| 国产精品国产高清国产av| 精品人妻1区二区| 久久狼人影院| 国产亚洲欧美在线一区二区| 99久久无色码亚洲精品果冻| 欧美日韩福利视频一区二区| 人妻久久中文字幕网| 91老司机精品| 色播在线永久视频| 免费无遮挡裸体视频| 欧美亚洲日本最大视频资源| 韩国精品一区二区三区| 一区二区日韩欧美中文字幕| 亚洲精品粉嫩美女一区| 亚洲精品中文字幕一二三四区| 91国产中文字幕| 99热6这里只有精品| e午夜精品久久久久久久| www国产在线视频色| 一本久久中文字幕| 午夜福利视频1000在线观看| 精品久久蜜臀av无| 亚洲国产精品久久男人天堂| 成人欧美大片| 啦啦啦观看免费观看视频高清| 中文字幕av电影在线播放| 激情在线观看视频在线高清| 国产精品电影一区二区三区| 亚洲色图av天堂| 一级黄色大片毛片| 婷婷精品国产亚洲av在线| 久久久久久大精品| 中亚洲国语对白在线视频| 国产v大片淫在线免费观看| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 亚洲国产看品久久| 免费高清视频大片| 69av精品久久久久久| 在线观看日韩欧美| 校园春色视频在线观看| 九色国产91popny在线| 国产精品亚洲美女久久久| 999久久久精品免费观看国产| 国产精品香港三级国产av潘金莲| a级毛片a级免费在线| 亚洲五月婷婷丁香| 久久久久久亚洲精品国产蜜桃av| 高潮久久久久久久久久久不卡| 手机成人av网站| 久久人人精品亚洲av| 波多野结衣高清作品| 欧美成人一区二区免费高清观看 | 亚洲精品在线美女| 色在线成人网| www.999成人在线观看| 人成视频在线观看免费观看| 国产成人av教育| 欧美国产日韩亚洲一区| 欧美日本视频| 妹子高潮喷水视频| 国内揄拍国产精品人妻在线 | 欧美成狂野欧美在线观看| 色综合欧美亚洲国产小说| 久久久久久久久免费视频了| 欧美精品啪啪一区二区三区| 大型黄色视频在线免费观看| 亚洲成人国产一区在线观看| 亚洲av第一区精品v没综合| bbb黄色大片| 最近最新中文字幕大全电影3 | 亚洲国产欧美日韩在线播放| 久久婷婷人人爽人人干人人爱| 亚洲性夜色夜夜综合| 91国产中文字幕| 法律面前人人平等表现在哪些方面| 国产激情偷乱视频一区二区| 精品国产亚洲在线| 国产高清激情床上av| 高清毛片免费观看视频网站| 制服人妻中文乱码| 老司机在亚洲福利影院| 欧美一区二区精品小视频在线| 国产一卡二卡三卡精品| cao死你这个sao货| 国产亚洲欧美98| 国产激情偷乱视频一区二区| 国产99白浆流出| 草草在线视频免费看| 听说在线观看完整版免费高清| 亚洲一卡2卡3卡4卡5卡精品中文| 国产久久久一区二区三区| 不卡av一区二区三区| 大型黄色视频在线免费观看| 中文字幕人妻丝袜一区二区| 老鸭窝网址在线观看| 亚洲一区高清亚洲精品| 亚洲精品av麻豆狂野| 精品不卡国产一区二区三区| 国产一区在线观看成人免费| 淫秽高清视频在线观看| 好男人在线观看高清免费视频 | 久久久久久九九精品二区国产 | 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 午夜精品在线福利| 成人18禁在线播放| 日韩精品中文字幕看吧| 免费看a级黄色片| 日韩三级视频一区二区三区| 一区二区三区精品91| 国产成人啪精品午夜网站| 亚洲专区字幕在线| 最好的美女福利视频网| 亚洲精品粉嫩美女一区| 1024手机看黄色片| 久久午夜综合久久蜜桃| 国产精品国产高清国产av| 波多野结衣av一区二区av| 国产一区二区三区在线臀色熟女| 男人操女人黄网站| 国产高清videossex| 老司机在亚洲福利影院| 精华霜和精华液先用哪个| 亚洲性夜色夜夜综合| 久久这里只有精品19| 日日爽夜夜爽网站| 12—13女人毛片做爰片一| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片 | 午夜激情av网站| 欧美av亚洲av综合av国产av| 久久国产精品男人的天堂亚洲| 90打野战视频偷拍视频| 俺也久久电影网| 最近最新中文字幕大全电影3 | 中文字幕人成人乱码亚洲影| 国产精品精品国产色婷婷| 中出人妻视频一区二区| 岛国在线观看网站| 97人妻精品一区二区三区麻豆 | 热99re8久久精品国产| 亚洲天堂国产精品一区在线| 女性被躁到高潮视频| 999久久久国产精品视频| 欧美黑人欧美精品刺激| 国产av又大| 国产97色在线日韩免费| 亚洲中文日韩欧美视频| 亚洲av成人不卡在线观看播放网| 听说在线观看完整版免费高清| 欧美中文日本在线观看视频| 老司机深夜福利视频在线观看| 亚洲国产精品sss在线观看| 搡老妇女老女人老熟妇| 久久久久国产一级毛片高清牌| 国产亚洲精品综合一区在线观看 | 一二三四在线观看免费中文在| 香蕉av资源在线| 一区二区三区精品91| 国产精品电影一区二区三区| 伊人久久大香线蕉亚洲五| www日本黄色视频网| 老汉色av国产亚洲站长工具| 高清毛片免费观看视频网站| 一本精品99久久精品77| 色老头精品视频在线观看| 麻豆久久精品国产亚洲av| 一级a爱片免费观看的视频| 久热这里只有精品99| 日韩高清综合在线| 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看 | 日本免费一区二区三区高清不卡| 国产欧美日韩精品亚洲av| 国产极品粉嫩免费观看在线| 99久久99久久久精品蜜桃| 精品久久久久久,| 少妇裸体淫交视频免费看高清 | 叶爱在线成人免费视频播放| xxxwww97欧美| 欧美绝顶高潮抽搐喷水| 国产又色又爽无遮挡免费看| 麻豆av在线久日| 久久 成人 亚洲| 女人高潮潮喷娇喘18禁视频| 亚洲七黄色美女视频| 色尼玛亚洲综合影院| 亚洲五月色婷婷综合| 国产成年人精品一区二区| 久久香蕉激情| www日本在线高清视频| 日韩欧美三级三区| 日本一区二区免费在线视频| 国产成+人综合+亚洲专区| 亚洲成人国产一区在线观看| 午夜精品久久久久久毛片777| 美国免费a级毛片| 一二三四社区在线视频社区8| 成年免费大片在线观看| 亚洲三区欧美一区| 亚洲中文av在线| 欧美黄色淫秽网站| 岛国在线观看网站| 亚洲激情在线av| 无人区码免费观看不卡| 成人永久免费在线观看视频| 国产又色又爽无遮挡免费看| 91国产中文字幕| 波多野结衣巨乳人妻| 人人妻人人澡欧美一区二区| 亚洲一码二码三码区别大吗| 最近最新中文字幕大全电影3 | av欧美777| 亚洲成av人片免费观看| 久久久久久久久中文| 色在线成人网| 精品久久久久久久末码| 看免费av毛片| 波多野结衣av一区二区av| 中国美女看黄片| 丁香六月欧美| 亚洲国产精品sss在线观看| 国产欧美日韩一区二区精品| 国产亚洲精品一区二区www| 久久婷婷人人爽人人干人人爱| 禁无遮挡网站| 免费在线观看视频国产中文字幕亚洲| 久久精品国产清高在天天线| 一进一出抽搐动态| 色老头精品视频在线观看| 亚洲,欧美精品.| 国产区一区二久久| 久久国产精品影院| 国产精品av久久久久免费| 国产欧美日韩一区二区三| 99re在线观看精品视频| 两性夫妻黄色片| 一本综合久久免费| 国产91精品成人一区二区三区| 亚洲色图 男人天堂 中文字幕| 久久精品亚洲精品国产色婷小说| 他把我摸到了高潮在线观看| 非洲黑人性xxxx精品又粗又长| 国产精品一区二区精品视频观看| 19禁男女啪啪无遮挡网站| 老司机午夜福利在线观看视频| 女同久久另类99精品国产91| a级毛片a级免费在线| 亚洲国产精品久久男人天堂| 男人舔女人的私密视频| 亚洲国产精品成人综合色| 日日爽夜夜爽网站| 男人舔女人下体高潮全视频| 一级作爱视频免费观看| 岛国在线观看网站| 亚洲精品国产精品久久久不卡| 色av中文字幕| 国产爱豆传媒在线观看 | 亚洲精品国产精品久久久不卡| 99热这里只有精品一区 | 黑丝袜美女国产一区| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 99热6这里只有精品| 日本黄色视频三级网站网址| 日本a在线网址| 看黄色毛片网站| 久久中文看片网| 99久久综合精品五月天人人| 国产一区二区三区视频了| av视频在线观看入口| 亚洲 欧美一区二区三区| 亚洲精品在线观看二区| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品av麻豆狂野| 黄色女人牲交| 桃色一区二区三区在线观看| 亚洲一区二区三区色噜噜| 亚洲黑人精品在线| 91九色精品人成在线观看| 久久精品影院6| 午夜成年电影在线免费观看| av天堂在线播放| 男人操女人黄网站| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 中文字幕久久专区| 91麻豆精品激情在线观看国产| 一卡2卡三卡四卡精品乱码亚洲| 成人三级黄色视频| 十分钟在线观看高清视频www| 国内少妇人妻偷人精品xxx网站 | 美女国产高潮福利片在线看| 嫩草影院精品99| 亚洲av片天天在线观看| 亚洲熟妇熟女久久| 伦理电影免费视频| 精品国产一区二区三区四区第35| 国产日本99.免费观看| 久久婷婷成人综合色麻豆| 麻豆av在线久日| 少妇熟女aⅴ在线视频| 午夜福利免费观看在线| 91老司机精品| 久久精品夜夜夜夜夜久久蜜豆 | www.999成人在线观看| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播| 亚洲一卡2卡3卡4卡5卡精品中文| 日本成人三级电影网站| 国产高清有码在线观看视频 | 女警被强在线播放| 在线观看www视频免费| 亚洲精华国产精华精| 欧美精品啪啪一区二区三区| 日韩视频一区二区在线观看| 窝窝影院91人妻| 岛国视频午夜一区免费看| 午夜成年电影在线免费观看| 国产成人系列免费观看| 老司机午夜十八禁免费视频| 欧美一区二区精品小视频在线| 黄片大片在线免费观看| 国语自产精品视频在线第100页| 51午夜福利影视在线观看| 色播在线永久视频| 国产午夜精品久久久久久| 两个人看的免费小视频| 欧美黄色片欧美黄色片| 人妻丰满熟妇av一区二区三区| 18禁国产床啪视频网站| 黄片播放在线免费| 免费高清视频大片| 黑人欧美特级aaaaaa片| 他把我摸到了高潮在线观看| 国产精品久久电影中文字幕| 亚洲第一av免费看| 欧美中文日本在线观看视频| 欧美又色又爽又黄视频| 国产极品粉嫩免费观看在线| 色哟哟哟哟哟哟| 久久九九热精品免费| 成人特级黄色片久久久久久久| 免费看十八禁软件| 久久国产精品影院| 最近最新免费中文字幕在线| 激情在线观看视频在线高清| 成人午夜高清在线视频 | 天堂√8在线中文| 50天的宝宝边吃奶边哭怎么回事| 免费电影在线观看免费观看| 级片在线观看| 婷婷六月久久综合丁香| 国产成人啪精品午夜网站| 国产精品香港三级国产av潘金莲| 久久久久国产一级毛片高清牌| 国产在线观看jvid| 婷婷丁香在线五月| 欧美在线黄色| 成熟少妇高潮喷水视频| 亚洲第一av免费看| 婷婷丁香在线五月| 日韩 欧美 亚洲 中文字幕| 午夜福利成人在线免费观看| 一a级毛片在线观看| 欧美另类亚洲清纯唯美| 久久精品夜夜夜夜夜久久蜜豆 | 日韩欧美免费精品| 熟妇人妻久久中文字幕3abv| 性色av乱码一区二区三区2| 免费在线观看视频国产中文字幕亚洲| 少妇裸体淫交视频免费看高清 | 一进一出抽搐动态| 成人国产一区最新在线观看| 人人妻人人澡人人看| 嫩草影视91久久| 国内精品久久久久久久电影| 精品人妻1区二区| 久久久国产成人精品二区| 美女大奶头视频| 成熟少妇高潮喷水视频| avwww免费| 亚洲欧洲精品一区二区精品久久久| 免费av毛片视频| 国产在线精品亚洲第一网站| 亚洲久久久国产精品| 可以在线观看毛片的网站| 国产午夜精品久久久久久| 色播在线永久视频| 欧美激情高清一区二区三区| 欧美日韩瑟瑟在线播放| 亚洲一码二码三码区别大吗|