張琳 于舒婷 張苗苗
[摘要]目的:比較三維及二維頭影測量差異,并初步建立Ricketts分析法測量項目的正常值范圍。方法:樣本由30名正常牙合成人組成,同時拍攝錐形束CT(CBCT)和頭顱側(cè)位片,對Rickitts分析法的16個項目進(jìn)行測量。CBCT圖像導(dǎo)入Simplant O&O軟件進(jìn)行三維頭影測量。頭顱側(cè)位片用硫酸紙描圖定點進(jìn)行二維頭影測量。用組內(nèi)相關(guān)系數(shù)(ICC)評價操作者的測量信度,采用配對t檢驗對兩組間的差異進(jìn)行比較。結(jié)果:10個測量項目的測量結(jié)果具有統(tǒng)計學(xué)意義,包括軟組織測量項目:Ls-EP,Em-OP;角度:FH-NPog,MP-NPog,F(xiàn)H/NA,PP-FH,F(xiàn)H-MP,BaN-FH;線距:L1-APog,L1-OP。CBCT組ICC均值為0.871,2D組為0.935。結(jié)論:CBCT的測量與頭顱側(cè)位片的測量結(jié)果中,10個測量項目的測量結(jié)果比較有顯著性差異,CBCT的可靠度和精確性較好。初步推斷出哈爾濱地區(qū)Ricketts分析法部分參數(shù)的CBCT三維頭影測量正常牙合參考值范圍。
[關(guān)鍵詞]錐形束CT;頭影側(cè)位片;頭影測量;正常牙合;三維
[中圖分類號]R783.5 [文獻(xiàn)標(biāo)志碼]A [文章編號]1008-6455(2019)01-0115-04
Study on CBCT of Normal Occlusion in Harbin Area by Rickitts Method
ZHANG Lin,YU Shu-ting, ZHANG Miao-miao
(Department of Orthodontics,College of Stomatology,Harbin Medical University, Harbin 150000,Heilongjiang,China)
Abstract: Objective To compare the differences between the three-dimensional and two-dimensional cephalometric measurements and to establish the normal value range of the project. Methods The samples were composed of 30 normal tooth synthesizers, and the CBCT and Lateral cephalometric radiograph were taken to measure the 16 items of Rickitts analysis. The CBCT image was imported into Simplant O& O software for 3D cephalometric measurement. The Lateral cephalometric radiograph was measured with the point of the sulfate paper. The correlation coefficient (ICC) was used to evaluate the measurement reliability in the operator, and the difference between the two groups was compared by the paired t test. Results The measurement results of 10 measurement items were statistically significant, including the soft tissue measurement project: Ls-EP, Em-OP; Angle: FH-NPog, MP-NPog, FH/NA, PP-FH, FH-MP, BaN-FH; Line distance: L1-APog, L1-OP. The ICC mean of CBCT group is 0.871, and the 2D group is 0.935. Conclusion The measurement results of CBCT and Lateral cephalometric radiograph were significantly different in 10 measurement items, and the reliability and accuracy of CBCT group were better than that of 2D group. It is inferred that the three-dimensional cephalometric of the CBCT of partial parameters of the Ricketts analysis method in the Harbin region is used to measure the normal tooth conjoint reference range.
Key words: CBCT; lateral cephalometric radiograph; cephalometric; normal teeth; the three dimensional
現(xiàn)代影像技術(shù),如MRI和CT,使得對顱頜面的三維評估有了更高的準(zhǔn)確性和重復(fù)性。然而,這兩種技術(shù)在常規(guī)正畸治療中,由于成本高、MRI獲取時間長以及CT的高輻射水平而受到限制。1992年,日本學(xué)者Arai開發(fā)了口腔頜面部專用的錐形束CT(CBCT),CBCT目前被認(rèn)為是頜面部成像的首選三維方法[1],與多層螺旋CT相比輻射水平低,對骨骼、牙齒分辨率高,目前CBCT具有廣泛的臨床應(yīng)用前景,可用于阻生牙定位[2]、正畸牽引[3]、正畸前后對比[4]、腭中縫擴(kuò)弓評價[5-6],評價腺樣體[7],唇腭裂療效評價[8],頜骨水平評估[9]、種植支抗[10]、偏牙合診斷[11]、正頜手術(shù)[12-13]、根長分析[14],阻塞性睡眠呼吸暫停分析[15]等。雖然CBCT使用廣泛,然而三維頭影測量正常牙合數(shù)據(jù)較少。本文旨在研究應(yīng)用SimplantO&O軟件對Rickitts分析法的16個測量項目進(jìn)行測量,對2D組和3D組的差異性和可靠度進(jìn)行分析,并得出三維頭影測量的參考值。
1 材料和方法
1.1 研究對象:選擇30名哈爾濱地區(qū)正常牙合成人志愿者為研究對象,其中男16名,女14名。在拍攝前,已獲得研究對象的知情同意。
納入標(biāo)準(zhǔn):①年齡20~30歲;②符合個別正常牙合標(biāo)準(zhǔn),擁有28顆恒牙(智齒除外),無牙體缺損及明顯畸形;③第一磨牙、尖牙,頜骨中性關(guān)系;④牙齒排列整齊,無擁擠;⑤上下頜牙中線對齊,面部無偏斜;⑥無正頜手術(shù)史,正畸治療史及顳下頜關(guān)節(jié)疾病。
1.2 數(shù)據(jù)采集:應(yīng)用口腔全景X線機(jī)(Sinora)拍攝頭顱側(cè)位片,取自然頭位。采用CBCT(KaVo)機(jī)對30名志愿者進(jìn)行掃描,拍攝時取坐位,F(xiàn)H平面與地面平行,嘴唇自然閉合,上下牙保持牙尖交錯牙合,曝光條件為電壓120kv,電流5mA,層厚0.3mm。以DICOM格式將圖片輸出。
1.3 影像測量:用硫酸紙描圖定點、0.3mm鉛筆對2D組進(jìn)行頭影測量。CBCT組拍攝后數(shù)據(jù)導(dǎo)入SimplantO&O軟件,進(jìn)行三維測量,采用MPR法(軸向,矢狀向,冠狀向)聯(lián)合定點,對Rickitts 分析法的16個測量項目進(jìn)行測量。每組16個項目測量3次,每次間隔10d,均由同一人完成。見圖1,表1。
1.4 統(tǒng)計學(xué)處理:研究采用SPSS 17.0軟件進(jìn)行統(tǒng)計分析,用組內(nèi)相關(guān)系數(shù)(ICC)評價這些測量的重復(fù)性,計算各參數(shù)的均值和標(biāo)準(zhǔn)差,采用配對t檢驗對兩組間的差異進(jìn)行比較,P<0.05表示差異有統(tǒng)計學(xué)意義。
2 結(jié)果
CBCT的測量與頭顱側(cè)位片的測量結(jié)果中,10個測量項目結(jié)果比較有顯著性差異,包括軟組織測量項目:Ls-EP,Em-OP;角度:FH-NPog,MP-NPog,F(xiàn)H/NA,PP-FH,F(xiàn)H-MP,BaN-FH;線距:L1-APog,L1-OP。CBCT組ICC均值為0.871,2D組為0.935。二維及三維測量的ICC均大于0.75,說明可信度較好。見表2~3。
3 討論
自1931年Broadbent提出新的X線技術(shù)以來,許多人提出從矢狀面、水平面及軸面來實現(xiàn)三維分析正畸患者,CBCT于1998年引入口腔科,于2001年批準(zhǔn)在美國使用,CBCT不像傳統(tǒng)CT一樣單獨(dú)切片捕獲圖像,而是產(chǎn)生一束錐形X射線束,這樣可以在一次拍攝捕獲圖像,獲取個性化、無重疊的數(shù)字成像。與傳統(tǒng)CT相比,設(shè)備和拍攝成本較低,輻射水平低,骨骼、牙齒分辨率較高,CBCT可以將數(shù)據(jù)輸入和輸出到其他應(yīng)用程序,為了最大限度地利用CBCT提供診斷分析能力,三維頭影測量分析的發(fā)展,需要對三維平面上的標(biāo)志點進(jìn)行充分的操作定義,并對其可靠性、重復(fù)性進(jìn)行鑒定,關(guān)于CBCT的測量數(shù)據(jù)仍然很少,評估由CBCT數(shù)據(jù)生成或重建的頭影測量圖像的準(zhǔn)確性及正常值參考范圍對正畸醫(yī)師非常重要。Periago[16]等對23個人體顱骨研究認(rèn)為,當(dāng)將3D測量值與顱骨直接測量值進(jìn)行比較時,發(fā)現(xiàn)平均相差1.2%,這一差異在臨床上是無關(guān)緊要的。Gribel[17]等對13名受試者研究得出頭顱側(cè)位片和CBCT相應(yīng)測量有顯著差異,正畸醫(yī)師可以使用三維CT中的線性和角度測量方法,類似于常規(guī)的二維頭顱圖分析方法。吳明明[18]等對30名正常牙合受試者研究,初步推斷哈爾濱地區(qū)Steiner和Jarabak分析法的CBCT三維頭影測量參考值范圍。張國強(qiáng)[19]等建立了以香港華人為基礎(chǔ)的三維頭影測量數(shù)據(jù)庫。
本研究的目的是通過對Ricketts分析法的部分測量項目的測量,來評估三維頭影測量方法的可靠性。本實驗使用的是Simplant O&O軟件。用2D方法對三維結(jié)構(gòu)進(jìn)行評估會造成信息丟失[20],像所有傳統(tǒng)的X線拍攝技術(shù)一樣,頭顱側(cè)位片只是將三維結(jié)構(gòu)折疊到二維平面上。由此產(chǎn)生的解剖結(jié)構(gòu)疊加使圖像解釋和標(biāo)志點復(fù)雜化,這種扭曲和放大可能導(dǎo)致測量精度降低。如:下頜骨下緣往往會產(chǎn)生雙重圖像,這是由于患者左右兩側(cè)的放大率不同,與圖像感受器的接近程度不同。本實驗所用下頜平面為頦下點與兩側(cè)下頜角下緣點所組成的平面,避免了二維的投影誤差,結(jié)果顯示關(guān)于FH-MP,MP-NPog有統(tǒng)計學(xué)意義。
在本實驗中,L1-OP,L1-Apog有統(tǒng)計學(xué)差異,這是因為通過MPR三維定點,能精確地找到下切牙切緣點。在75%的病例中,頭影側(cè)位X線片的觀察者對下切牙切緣的定位不確定[21],二維常規(guī)X線片難以識別下切牙邊緣,特別是在前牙擁擠患者的頭顱圖上很難找到下切牙點,因為使用的是最突出的切牙的切牙點,但在側(cè)位片上的中切牙和側(cè)切牙的區(qū)分似乎很困難。但是,如果側(cè)切牙比中切牙更突出,則可能會出現(xiàn)誤差。利用三維CT成像可以方便地定位這些標(biāo)志,獲得可靠的測量值,利用三維技術(shù),可以最大限度地減小投影和識別誤差造成的頭影測量誤差。L1-OP,Em-OP有統(tǒng)計學(xué)意義,Rickitts分析法中,使用的是功能牙合平面,以側(cè)位片確定牙合平面時,因上下磨牙重疊。后牙咬合接觸點定點困難,在CBCT中,矢狀向和水平向能精確地確定咬合接觸點,并形成牙合平面。
本次測量結(jié)果線性測量,如Ls-EP、ANS-Em,顯示出最小的標(biāo)準(zhǔn)差,測量中矢狀面的標(biāo)準(zhǔn)偏差一致<3。這與Farhadian等的研究類似[23]。而最高的標(biāo)準(zhǔn)差來自于U1/L1的測量,即U1/L1、U1/APog、L1/APog。CBCT組ICC均值為0.871,2D組為0.935。大多數(shù)的測量值與頭顱側(cè)位片比,均有顯著性差異(P<0.05),有統(tǒng)計學(xué)意義。原因可能是因為3D測量涉及到骨骼結(jié)構(gòu)和對稱性的考慮,導(dǎo)致結(jié)果的差異。
本文還對Rickitts分析法中的軟組織測量項目進(jìn)行測量,如ANS-Em 、Ls-EP、Em-OP,結(jié)果顯示Ls-EP、Em-OP有統(tǒng)計學(xué)意義,之前很多學(xué)者都只是對硬組織進(jìn)行測量,傳統(tǒng)X線軟硬組織界限不清。但是有些標(biāo)志點還無法確定,如下頜支中心點(Xi),對于這種需要其他多個標(biāo)志點定義的點,無法在該軟件中定點,所以ANS-Xi-pm無法測量,軟件對于復(fù)雜的標(biāo)志點還無法完成。
三維頭影測量分析目前的主要缺點是費(fèi)用較高,CT輻射量大。由于輻射對人體有累積效應(yīng),大多數(shù)正畸患者都是處于生長期的兒童,任何減少輻射暴露都是有益的,Silva等指出[24],從輻射防護(hù)的角度,傳統(tǒng)的影像仍能向患者提供最低劑量的輻射。因此,在這種情況下,CBCT應(yīng)只有在臨床檢查完成后,有可能提供新信息的情況下,才應(yīng)要求拍攝,而不是常規(guī)掃描[25]。有證據(jù)表明CBCT掃描可能會改變大約30%的治療計劃[26]。如今,3D測量更適合那些復(fù)雜的頜面畸形,如不對稱畸形或腭裂,埋伏阻生齒以及需要正畸手術(shù)患者的診斷。通過本次研究,認(rèn)為三維頭影分析可以成為一種相當(dāng)可靠的方法。由于樣本量限制,本實驗只是初步得出了Ricketts分析法的部分參數(shù)正常牙合三維頭影測量參考范圍,為三維頭影測量的建立提供參考。今后隨著樣本量的積累還將繼續(xù)進(jìn)行深入研究。
[參考文獻(xiàn)]
[1]Fabian J?gera,James K.Mahb Axel Bumannc.Peridental bone changes after orthodontic tooth movement with fixed appliances: A cone-beam computed tomographic study[J].Angle Orthodont,2017,87(5):672-680.
[2]Isman O,Yilmaz HH,Aktan AMYi,et al.Indications for cone beam computed tomography in children and young patients in a Turkish subpopulation[J].Int J Paediatr Dent,2017,27(3):183-190.
[3]Silva AC,Capistrano A,Almeida-Pedrin RR,et al.Root length and alveolar bone level of impacted canines and adjacent teeth after orthodontic traction: a long-termevaluation[J].J Appl Oral Sci,2017,25(1):75-81.
[4]Alhammadi MS,F(xiàn)ayed MS,Labib A.Three-dimensional assessment of condylar position and joint spaces after maxillary first premolar extraction in skeletal Class II malocclusion[J].Orthod Craniofac Res,2017,20(2):71-78.
[5]Velasquez RL,Coro JC,Londono A,et al.Three-dimensional morphological characterization of malocclusions with mandibular lateral displacement usingcone-beam computed tomography[J].Cranio,2017,36(3):143-155.
[6]Park JJ,Park YC,Lee KJ,et al.Skeletal and dentoalveolar changes after miniscrew- assisted rapid palatal expansion in young adults: A cone-beam computed tomography study[J].Korean J Orthod,2017,47(2):77-86.
[7]Pacheco-Pereira C,Alsufyani NA,Major M,et al.Accuracy and reliability of orthodontists using cone-beam computerized tomography for assessment of adenoid hypertrophy[J].Am J Orthod Dentofacial Orthop,2016,150(5):782-788.
[8]Buyuk SK,Ercan E,Celikoglu MS,et al.Evaluation of dehiscence and fenestration in adolescent patients affected by unilateral cleft lip and palate: A retrospective cone beam computed tomography study[J].Angle Orthod,2016,86(3):431-436.
[9]Kawa D,Kunkel M,Heuser L,et al.What is the best position for palatal implants? A CBCT study on bone volume in the growing maxilla[J].Clin Oral Investig,2017,21(2):54
[10]Liu J,Chen HY,DoDo H,et al.Efficacy of cone-beam computed tomography in evaluating bone quality for optimum implant treatment planning[J].Implant Dent,2017,26(3):405-411.
[11]Lee SY,Choi DS,Jang I,et al.The genial tubercle: A prospective novel landmark for the diagnosis of mandibular asymmetry[J].Korean J Orthod,2017,47(1):50-58.
[12]Navarro RL,Oltramari-Navarro PV,F(xiàn)ernandes TM,et al.Comparison of manual, digital and lateral CBCT cephalometric analyses[J].J Appl Oral Sci,2013,21(2):167-176.
[13]Bobek S,F(xiàn)arrell B,Choi C,et al.Virtual surgical planning for orthognathic surgery using digital data transfer and an intraoral fiducial marker: the charlotte method[J].J Oral Maxillofac Surg,2015,73(6):1143-1158.
[14]Honardar K,Assadian H,Shahab S,et al.Cone-beam computed tomography for the assessment of root-crown ratios of the maxillary and mandibular incisors in a Korean populatio[J].Korean J Orthod,2017,47(1):39-49.
[15]Bruwier A,Poirrier R,Albert Aet al.Three-dimensional analysis of craniofacial bones and soft tissues in obstructive sleep apnea using cone beam computed tomography[J].Int Orthod,2016,14(4):449-461.
[16]Periago DR,Scarfe M,Moshiri JP,et al.Linear accuracy and reliability of cone beam CT derived 3-dimensional images constructed using an orthodontic volumetric rendering program[J].Angle Orthod,2008,78:387-395.
[17]Gribel BF, Gribel MN, Manzi FR,et al.From 2D to 3D: an algorithm to derive normal values for 3-dimensional computerized assessment[J].Angle Orthod,2011,81(1):3-10.
[18]吳明明,劉志杰.個別正常牙合CBCT與頭顱側(cè)位片頭影測量的比較分析[J].口腔醫(yī)學(xué),2016,11(6):523-527.
[19]Cheung LK,Chan YM,Jayaratne YS,et al.Three-dimensional cephalometric norms of Chinese adults in Hong Kong with balanced facial profile[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2011,112:e56-e73.
[20]Shokri A,Miresmaeili A,F(xiàn)arhadian N,et al.Effect of changing the head position on accuracy of transverse measurements of the maxillofacial region made on cone beam computed tomography and conventional posterior-anterior cephalograms[J]. Dentomaxillofac Radio,2017,46(5):20160180.
[21]Stabrun AE,Danielsen K.Precision in cephalometric landmark identification[J]. Eur J Orthod,1982,4(3):185-196.
[22]Farhadian N,Miresmaeili AF,Mahvelati R,et al.A comparative cephalometric analysis between conventional and CBCT generated lateral cephalograms[J].Iran J Orthod,2009,7(4):308-321.
[23]Hariharan A,Diwakar NR,Jayanthi K,et al.The reliability of cephalometric measurements in oral and maxillofacial imaging: Cone beam computed tomography versus two-dimensional digital cephalograms[J].Indian J Dent Res,2016,27(4):370-377.
[24]Silva MA,Wolf U,Heinicke F,et al.Cone-beam computed tomography for routine orthodontic treatment planning:a radiation dose evaluation[J].Am J orthod Dentofacial Orthop,2008,133(5):640.
[25]Daniela G,Garib,Louise Resti Calil,et al.Is there a consensus for CBCT use in Orthodontics[J].Dental Press J Orthod,2014,19(5):136-149.
[26]Gorgulu S,Gokce SM,Olmez H,et al.Nasal cavity volume changes after rapid maxillary expansion in adolescents evaluated with 3-dimensional simulation and modeling programs[J].Am J Orthod Dentofacial Orthop,2011,140(5):633-640.
[收稿日期]2018-02-28 [修回日期]2018-05-12
編輯/李陽利
本文引用格式:張琳,于舒婷,張苗苗.應(yīng)用Ricketts分析法研究哈爾濱地區(qū)正常牙合錐形束CT[J].中國美容醫(yī)學(xué),2019,28(1):115-118.