• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Interaction of TATB with Cu and Cu+1.A DFT study

    2019-03-01 03:34:04Lemirker
    Defence Technology 2019年1期

    Lemi Türker

    Middle East Technical University,Department of Chemistry, üniversiteler,Eskis?ehir Yolu No:1,06800 ?ankaya/Ankara,Turkey

    Keywords:Triaminitrinitrobenzene TATB Tautomerism Copper DFT Pull-push

    A B S T R A C T Symmetric triaminotrinitrobenzene known as TATB decomposes in contact with some heavy metals,such as copper.Presently,TATB and some of its important tautomers are subjected to B3LYP/6-31G(d,p)level of treatment.Some molecular orbital energies have been obtained and compared.Then,interaction of these species with Cu and Cu+are investigated.Although TATB has been found to be affected little by either Cu or Cu+,undergoing only some bond length changes and/or distortions,the resonance-assisted tautomers having one to three aci groups decompose by the in fluence of Cu atom.In each case,only one N-OH bond rupture occurs.

    1.Introduction

    The thermal stability is one of the most important properties of a high explosive(HE)effective on its practicality when employed as a constituent of either conventional or nuclear weapons.Regarding to the formulation,processing,and handling of an HE,thermal stability is of main concern but also important for its safety including fuel fires,propellant fires,and even a potential for sympathetic detonation.An increased emphasis on such hazards has renewed interest in understanding the fundamental relationship between molecular structure and reactivity of energetic materials.

    It has been long known that 1,3,5-triamino-2,4,6-trinitrobenzene(TATB)is a reasonably powerful high explosive having thermal and shock stability which is considerably greater than that of any other known material of comparable energy.Consequently,it is a very attractive candidate for the main HE charge in many weapons.Desirable properties of TATB has made it the subject of numerous studies.

    The first mention of TATB in the literature goes back to 1888.It was obtained by Jacson and Wing by treating 1,3,5-tribromo-2,4,6-trinitrobenzene with cold alcoholic solution of ammonia[1,2].It decomposes at 360°C without melting[3].It is a yellow crystalline solid that is insoluble in most solvents.The best solvent is hot concentrated sulfuric acid.After II world war,research efforts focused on high energetic materials for safer and more heat resistant explosives[4].

    The compound TATB has been known for its unusual thermal properties since the 1950s.A striking feature of TATB is the strong and extensive hydrogen bonding,both inter-and intramolecular,between NO2and NH2groups[5,6].The first important work on the reason for this unique stability was done in 1965 b y Cady and Lar s on,who determined the crystal structure of TATB[5].Since then intense research has been done on TATB[7-18].Manaa and Fried reported the results of second-order M?ller-Plesset(MP2)and density functional theory(DFT)calculations of the rotational barrier and torsional potential for intramolecular rotation of the nitro group in TATB[19].Geometrical parameters,aromaticity,and conformational flexibility of the set of polysubstituted benzenes(including TATB)with different number and position of nitro and amino groups were calculated theoretically[20].Zhang et al.considered TATB/Graphene sandwich type complex computationally[21].Synthetic TATB processes quantum-chemically were investigated by Radhakrishnan et al.using density functional theory(DFT)[22].DFT was employed in order to study the thermodynamic parameters of TATB and its fullerene derivatives[23].

    In the present study,some important tautomeric forms of TATB and interaction of them with some copper species have been investigated within the realm of DFT.

    2.Method of calculations

    In the present treatise,the geometry optimizations were performed on conformationally stable(MM2 molecular mechanics calculations)forms.Then the optimizations were achieved by PM3,HF and then density functional theory(DFT)[24]calculations using B3LYP hybrid exchange-correlation potential[25].For closed shell systems B3LYP/6-31G(d,p)and open-shell systems UB3LYP/6-31++G(d,p)[26]type calculations were performed.Note that 6-31++G(d,p)basis set is available for copper[26,27].The exchange term of B3LYP consists of hybrid Hartree-Fock and local spin density(LSD)exchange functions with Becke's gradient correlation to LSD exchange[28].The correlation term of B3LYP consists of the Vosko,Wilk,Nusair(VWN3)local correlation functional[29]and Lee,Yang,Parr(LYP)correlation correction functional[30].The BLYP method gives a better improvement over the SCF-HF results.The optimizations in the present study have been obtained by the use of SPARTAN 06 program[31].

    3.Results and discussion

    TATB molecule,having alternatingly substituted nitro and amino groups should allow existence of push-pull type interaction.Below some contemplation on the structure of TATB has been presented.

    3.1.Structure of TATB

    Manaa and Fried by studying the rotational barrier and torsional potential for intramolecular rotation of the nitro groups in TATB found that the calculated rotational barrier two to three times higher than that of nitrobenzene and nitroethylene[19].They attributed this result to very strong intramolecular hydrogen bonding in this molecule.Their MP2 optimization resulted in a nonplanar structure,while the B3LYP produced a planar one similar to the experimentally observed structure in the crystalline form.Omelchenko et al.,studied geometrical parameters,aromaticity,and conformational flexibility of the set of polysubstituted benzenes with different number and position of nitro and amino groups[20]and concluded that the presence of nitro and amino groups in vicinal positions formed strong intramolecular resonance-assisted hydrogen bonds.Also they studied TATB molecule,which possesses alternatingly substituted nitro and amino groups and should have strong intramolecular resonanceassisted hydrogen bonds.

    Fig.1.Two optimized resonance forms of TATB(B3LYP/6-31G(d,p))and their numbering.

    Fig.1 shows two canonical structures of TATB and their numbering,together with optimized structures such that in the shown form 1 and 2 possess aromatic benzene ring and notaromatic hexagonal ring,respectively.In the later case the nitro and amino substituents have exocyclic carbon-nitrogen double bonds.Structure 2 is an interesting highly charge separated resonance form obtained from 1.

    Supplementary tables,Table S1 and S2 show the coordinates of structures 1 and 2,respectively.Note that respective atoms in those structures not only have different bonding topology but also have different coordinates.Tables S3 and S4 display the Mulliken bond order matrices for those structures.

    Fig.2 displays some tautomeric forms of TATB molecule.Tautomerism in TATB destroys the aromatic nature of it.So,none of the structures in Fig.2 is aromatic.Note that of the various possible tautomeric forms,Fig.2 includes one(3),two(4)and three acigroup having structures of which 5 and 6 stand for an asymmetric and symmetric triply tautomeric forms,respectively.

    All the tautomers shown in the figure are 1,5-proton tautomers which are in general less likely to occur as compared to 1,3-tautomers,however presence of some special structural conditions may stabilize them.Also note that 1,3-tautomerism is not suitable for TATB molecule.

    Fig.3 stands for bond lengths of TATB in aromatic(1)and notaromatic(2)forms.As seen in the figure structures seem to be equivalent(any specific bond lengths calculated are equal in these structures up to two significant figures).

    Apparently identical calculated IR-spectra have been obtained for structures 1 and 2(Fig.4)although frequencies are slightly different.Most of the modes are coupled with each other yielding apparently identical spectra.Note that one of the N-H stretchings(symmetric)has lower amplitude compared to the other(asymmetric).

    Fig.2.Some tautomeric forms of TATB(B3LYP/6-31G(d,p)).

    Fig.3.Bond lengths of TATB in aromatic(1)and not-aromatic(2)forms(B3LYP-6-31G(d,p)).

    Fig.4.IR spectra of TATB structures 1 and 2(B3LYP-6-31G(d,p)).

    Table 1 Various energies of TATB species(B3LYP/6-31G(d,p)).

    Various energies of TATB species are shown in Table 1.The stability of structures follow the order of 1> 2>3> 6>4> 5.Also B3LYP/6-31++G(d,p)level of calculations predict 1 to be more stable than 2 but comparable.Note that structure 2-6 are all notaromatic.Structures 1 and 2 could be considered as resonance forms because they are converted to each other via series of electron shifts.However they have different coordinates(See Tables S1 and S2).However,push-pull interactions operative between amino and nitro groups in the proximity(1,2-positions)or through 1,4-positions causes structures 1 and 2 to be closely related.The energy data of structures 1-6 are shown in Table 1 where ZPE,E and Ecare zeropoint vibrational energy,total electronic energy and the corrected total electronic energy values,respectively.The table indicates that the contribution of structure 2 into the resonance hybrid of TATB is almost as high as structure 1.Structure 2 may form various resonance-assisted tautomeric forms 3-6.Omelchenko et al.employing various aromaticity indices concluded that structure 2 has very low aromatic character[20].Although it is not aromatic,it is almost as stable as structure 1.They related this fact with hydrogen bonding between adjacent NH2and NO2groups assisted by push-pull effect.The total energy of hydrogen bonding was found to be very high.As evident from the order of stabilities,the tautomeric forms are less stable than either of 1 or 2.Asymmetric triply tautomeric form(5)is the least stable due to improper conformational form and highly charge separated character of it.The PM3 calculations over B3LYP/6-31G(d,p)optimized structures indicate that all of them are endothermic.Note that 5 is the most endothermic structure.Tautomers 3,4 and 6 are less endothermic than both 1 and 2.Note also that the least stable structure is 5 and its heat of formation value far exceeds the others because,as mentioned above,it has two aci-NO2groups whose conformations are not preferable for any suitable hydrogen bonding.Structure 1 is the most stable and mostendothermic one in Table 1.Although,in 2 aromaticity is lost,the push-pull type interaction and consequent favorable charge-charge interactions through space stabilize it.

    Fig.5 shows the HOMO,LUMO,HOMO-1(NEXTHOMO)and LUMO+1(NEXTLUMO)patterns of two forms of TATB(1 and 2 are aromatic and not-aromatic,respectively).Although their HOMO-1,HOMO and LUMO+1,patterns are different,they have identical LUMO pattern.

    Fig.6 shows the distribution of some molecular orbital energy levels of structures 1 and 2.Although they appear to be the same in Fig.6,there exist some energy differences.See Table 2 for the HOMO,LUMO energies and interfrontier energy gaps(Δε=εLUMO-εHOMO).

    Fig.5.HOMO,LUMO,HOMO-1 and LUMO+1 patterns of two forms of TATB(B3LYP-6-31G(d,p)).

    Fig.6.Some molecular orbital energies of structures 1 and 2(B3LYP-6-31G(d,p)).

    As seen in Fig.6 and Table 2,Δε values of 1 and 2 are very comparable with each other.Therefore,their UV-VIS spectra are almost the same(Fig.7).The conjugated paths in 2 should be short because it does not have an aromatic core for the extended conjugation.However,inspection of the HOMO patterns of 1 and 2 indicates that not only 2 but also structure 1 possesses short conjugation paths embedded.Thus,they have very similar UV-VIS spectra absorbing in the UV region.The Δε values follow the order of 5<4<1<6<2<3.

    3.2.Interaction with copper species

    As indicated in the above section structure 2 has great resemblance to structure 1 in terms of geometrical properties and energetics.It has been reported that TATB in contact with heavy metals such as copper undergoes decomposition[3].Figs.8 and 9 show the optimized structures of some TATB+Cu,TATB+Cu+species(7-10)and their bond lengths,respectively.Note that notation,TATB+Cu,used here denotes the composite system but not cuprous ion.Also note that structures 7-10 originally related to structure 1 which has an initially an aromatic nucleus.Also note that calculations for the open-shell systems the level of calculations are UB3LYP/6-31++G(d,p).From the figures it is evident that the copper atom and cuprous ion do not affect much structures 1 and 2,except some distortions and bond length changes(no bond cleavages occur!).

    From Figs.8 and 9 it is observed that Cu atom in 7 and 8 are in between NH2and NO2moieties.Whereas in 9 and 10,Cu+ion is nearby the NH2substituent but in the vicinity of NO2in 10.Note that 9 and 10 are originated from 1 and 2,respectively.Although,1 and 2 have many common characteristics,by the presence of copper atom or cuprous ion differential behavior arises.

    Figs.10 and 11 show the electrostatic charges(ESP)on the systems of present concern.The ESP charges are obtained by the program based on a numerical method that generates charges that reproduce the electrostatic potential field from the entire wavefunction[31]From Fig.10 one realizes that structures 1 and 2,resembling each other from many aspects some what differ in terms of charge distribution.In each case copper atom donates some electron population to organic molecule acquiring itself some positive charge.

    Fig.12 shows the frontier molecular orbital paterns of TATB+Cu composites 7 and 8 originating from structures 1 and 2,respectively.Note that UB3LYP/6-31++G(d,p)level of calculations have been performed(because of unpaired electron of copper atom)thus αandβtype orbitals arise.As seen in the figure,the copper atom has great contribution to HOMO orbitals both in 7 and 8.Whereas,some minute contribution to LUMO orbitals occurs.In the case of 7 α-HOMO spreads over the oxygens of the nearby nitro group andthe copper atom.Theβ-HOMO covers the ortho amino group,the above mentioned nitro group and the copper atom.A similar pattern occurs in the case of structure 8.

    Table 2 The HOMO,LUMO energies and interfrontier energy gaps(Δε)of TATB species.

    Fig.7.UV-VIS spectra of structures 1 and 2(B3LYP/6-31G(d,p)).

    Fig.8.Optimized structures of some TATB+Cu(7,8)(UB3LYP/6-31++G(d,p))and TATB+Cu+(9,10)(B3LYP/6-31++G(d,p))species.

    Fig.9.Bond lengths of optimized structures of some TATB+Cu(7,8)(UB3LYP/6-31++G(d,p))and TATB+Cu+(9,10)(B3LYP/6-31++G(d,p))species(hydrogens not shown).

    Fig.10.Electrostatic charges(ESP)on TATB+Cu species(UB3LYP/6-31++G(d,p)).

    Fig.11.Electrostatic charges(ESP)on TATB+Cu+species(B3LYP/6-31++G(d,p)).

    Fig.12 shows that cuprous cation gets some electron population from the organic molecule and its initial positive charge decreases.So,Cu+acts as an oxidizing agent.Note that the position of Cu+ion,that is nearby the NH2moiety in the case of structure 9(originates from 1)but next to the NO2in the case of 10(originates from 2).

    Effectof cupric ion on 1 and 2 has been not considered presently,because copper atom in the neutral state has striking effect on the tautomers to decompose them prior to formation of cuprous and cupric ions.Due to similar type of reasoning,the effect of cuprous ion on the tautomers has not been investigated.On the other hand,structure 5(one of the tautomers of TATB)is the least stable tautomer.It formed by the transfer of proton from the inconvenient site of NH2group to NO2.Therefore,it was not considered for Cu containing species.

    Fig.13 reveals that in the case of tautomeric TATB species,the copper atom has tendency to donate some electron population and aci N-OH bond breaks down to generate OH-ion.So,TATB tautomers act as oxidizing agent.

    Figs.14 and 15 display the optimized structures of some tautomeric TATB+Cu species and their bond lengths,respectively.It is evident from the figures that tautomeric forms are not stable in the presence of Cu.Since,copper atom causes their decomposition,interaction of them with Cu+has been ignored because normally Cu+accompanies copper or Cu2+,having intermediate oxidation state between them.

    The ruptured bond in the tautomers of interest is the aci N-OH linkage and only one of them is affected if there exist more then one of them.

    Table 3 tabulates various energies of the Cu and Cu+containing composite structures presently concerned.Structures 7 and 8 which are originated from 1 and 2,respectively have comparable energies,7 being more stable one.Structure 9 originating from 1 is favored energetically over 10 which is related to structure 2.The stability order is 11>13>12>7>8>9>10.

    As for the copper composites of tautomeric forms(11-13),they have the stability order of 11>13>12.Since,after the bond cleavage,the remaining organic moiety has positive charge,the stabilization of it depends on the position and kind of the substituents and the extent of hydrogen bonding present in the tautomeric structures.Thus the above stability order arises.

    Fig.12.Frontier molecular orbital paterns of TATB+Cu composites structures 7 and 8(UB3LYP/6-31++G(d,p)).

    Considering TATB-originated structures as host(H),Cu or Cu+as guest(G)and the composite structures(H°G)(as suggested in general by Anslyn and Dougherty[32])binding energies have been calculated.The relative binding energies for structures 7-13 are shown in Table 4 and the order is 13>11>9>10>12>7>8 within the constraints of the host-guest model.The order indicates that not-aromatic structure 2,has greater interaction with Cu or Cu+(to form 9 and 10)than structure 1(to form 7 and 8)because 2,beside the other factors,is more charge-separated structure.However,in each case,the interaction with Cu+is less than it has been with Cu.The tautomeric structures(11-13.)which have progressively increasing number of tautomeric sites are characterized with the order of 13>11>12.

    Fig.13.Electrostatic charges(ESP)on tautomeric TATB+Cu species(UB3LYP/6-31++G(d,p)).

    Fig.14.Optimized structures of some tautomeric TATB+Cu species(UB3LYP/6-31++G(d,p)).

    Fig.15.Bond lengths of optimized structures of some tautomeric TATB+Cu(UB3LYP/6-31++G(d,p))species(hydrogens not shown).

    Fig.16 shows some of the molecular orbital energy distribution of tautomeric TATB+Cu species(11-13)compared to 7.Note that 7 originates from 1 and the others are tautomeric forms.Also note that all the structure in Fig.16 are isomeric Cu composites.Since Cu atom has an unpaired electron,the calculations have been performed at the unrestricted level(UB3LYP/6-31++G(d,p)).

    Table 5 displays the HOMO,LUMO energies and the interfrontier molecular orbital energy gaps(Δε)for Cu and Cu+composites of TATB species.As evident from Table 5,the HOMO and LUMO energies of 8 are lower than the respective values of 7.The HOMO and LUMO energies of 9 is lower then 10 butΔε of 10 is greater than 9,because Cu+ion unequally affects the HOMO and LUMO energies so Δε order is reversed.The number of aci groups and their positions are in fluential on the extentof conjugations.So,the aci groups raise or lower the HOMO and LUMO energies and consequently dictate Δε values.

    Table 3 Various energies of some TATB+Cu species.

    4.Conclusion

    The present study puts some light on to some quantum chemical properties of sym-triamminotrinitrobenzene which is an important insensitive energetic material.Density functional treatment reveals that Cu and Cu+species interact with sym-TATB without any bond cleavage.However,the resonance-assisted tautomers of it are destructively affected by Cu atom undergoing rapture of only one N-OH linkage of the aci form.Therefore,in preparation of certain ammunition with TATB,the other components/additives should not induce or shift the tautomeric equilibria to the side of resonance-assisted tautomers.

    Table 4 Relative binding energies of Cu or Cu+containing TATB-originated structures.

    Fig.16.Effect of copper on some of orbital energies of TATB and its tautomers presently considered(UB3LYP/6-31++G(d,p)).

    Table 5 The HOMO,LUMO energies and interfrontier energy gaps of some TATB+Cu species.

    Appendix A.Supplementary data

    Supplementary data related to this article can be found at https://doi.org/10.1016/j.dt.2018.05.001.

    老司机影院成人| 午夜视频精品福利| av网站免费在线观看视频| 天堂8中文在线网| 免费在线观看完整版高清| 久久久国产一区二区| 国产日韩欧美在线精品| 午夜老司机福利片| 日韩一区二区三区影片| 天堂中文最新版在线下载| 啦啦啦视频在线资源免费观看| 久久久久精品人妻al黑| 久久久久久久精品精品| 精品人妻熟女毛片av久久网站| 两个人看的免费小视频| 成年动漫av网址| 亚洲精品乱久久久久久| 在线观看人妻少妇| 日本撒尿小便嘘嘘汇集6| 日日摸夜夜添夜夜添小说| 亚洲国产看品久久| 久久久国产一区二区| 久久精品熟女亚洲av麻豆精品| 久久久久视频综合| 日本91视频免费播放| 亚洲免费av在线视频| 亚洲全国av大片| 久久这里只有精品19| 老司机靠b影院| 国产精品成人在线| 久久久久久免费高清国产稀缺| 国产精品偷伦视频观看了| 侵犯人妻中文字幕一二三四区| 中国美女看黄片| 亚洲中文字幕日韩| 亚洲天堂av无毛| 亚洲国产成人一精品久久久| 午夜老司机福利片| 免费黄频网站在线观看国产| 成人三级做爰电影| 久久毛片免费看一区二区三区| 欧美另类亚洲清纯唯美| 80岁老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 国产精品二区激情视频| 亚洲精品av麻豆狂野| 日韩视频一区二区在线观看| 欧美性长视频在线观看| 国产精品 国内视频| 日韩一区二区三区影片| 欧美人与性动交α欧美精品济南到| 另类亚洲欧美激情| 日韩电影二区| a级毛片黄视频| 久久ye,这里只有精品| 国产成人av教育| 亚洲欧美精品自产自拍| 王馨瑶露胸无遮挡在线观看| 99国产精品一区二区蜜桃av | netflix在线观看网站| 日韩视频一区二区在线观看| 女性被躁到高潮视频| 国产黄频视频在线观看| 纯流量卡能插随身wifi吗| 久久综合国产亚洲精品| 国产人伦9x9x在线观看| 满18在线观看网站| 在线观看免费视频网站a站| 亚洲三区欧美一区| 在线观看免费高清a一片| 青春草亚洲视频在线观看| 国产伦人伦偷精品视频| 一边摸一边抽搐一进一出视频| 免费高清在线观看视频在线观看| 国产高清视频在线播放一区 | 精品福利观看| 国产一区二区三区av在线| 丁香六月天网| 成人影院久久| 99国产综合亚洲精品| 久久国产精品影院| 国产极品粉嫩免费观看在线| 丝袜喷水一区| 黑人欧美特级aaaaaa片| 午夜福利在线免费观看网站| 在线十欧美十亚洲十日本专区| 这个男人来自地球电影免费观看| 日韩制服丝袜自拍偷拍| 美女扒开内裤让男人捅视频| 国产av精品麻豆| 精品福利观看| 精品久久久久久电影网| 蜜桃在线观看..| 欧美日韩国产mv在线观看视频| 18在线观看网站| 午夜福利视频在线观看免费| 国产日韩一区二区三区精品不卡| 欧美激情高清一区二区三区| 精品国产超薄肉色丝袜足j| 日韩大片免费观看网站| 亚洲久久久国产精品| 女性被躁到高潮视频| 亚洲欧美成人综合另类久久久| 青春草视频在线免费观看| 国产免费视频播放在线视频| av网站免费在线观看视频| 国产深夜福利视频在线观看| 男女国产视频网站| 国产一区二区激情短视频 | 亚洲,欧美精品.| 超碰成人久久| 麻豆国产av国片精品| 成年动漫av网址| 中文字幕高清在线视频| 久久久久国内视频| 午夜影院在线不卡| 啦啦啦视频在线资源免费观看| 日韩人妻精品一区2区三区| 乱人伦中国视频| 人人澡人人妻人| 国产成人精品无人区| 丝瓜视频免费看黄片| 国产高清国产精品国产三级| 91av网站免费观看| 少妇粗大呻吟视频| 高清在线国产一区| 高清黄色对白视频在线免费看| 黑人巨大精品欧美一区二区蜜桃| 青春草亚洲视频在线观看| 久久精品国产亚洲av高清一级| 嫩草影视91久久| 成人影院久久| 久久99一区二区三区| 18禁观看日本| 成人影院久久| 99国产精品一区二区蜜桃av | 亚洲精品美女久久久久99蜜臀| 又紧又爽又黄一区二区| 国产成人欧美在线观看 | bbb黄色大片| 午夜福利一区二区在线看| 色婷婷久久久亚洲欧美| 精品久久久久久电影网| 亚洲国产日韩一区二区| 午夜两性在线视频| 国产精品欧美亚洲77777| 日本a在线网址| 欧美av亚洲av综合av国产av| 精品国产一区二区三区四区第35| 18禁国产床啪视频网站| 自线自在国产av| 亚洲精品国产区一区二| 一二三四在线观看免费中文在| 精品卡一卡二卡四卡免费| 1024视频免费在线观看| 精品国产一区二区三区四区第35| 欧美 亚洲 国产 日韩一| 各种免费的搞黄视频| 大陆偷拍与自拍| 999久久久国产精品视频| 亚洲色图综合在线观看| 久久性视频一级片| 成人av一区二区三区在线看 | 飞空精品影院首页| 国产又爽黄色视频| 成人国产一区最新在线观看| 亚洲一区中文字幕在线| 国产亚洲精品一区二区www | 久久久国产欧美日韩av| 人妻 亚洲 视频| 免费日韩欧美在线观看| 国产精品亚洲av一区麻豆| 色94色欧美一区二区| 国产高清视频在线播放一区 | 亚洲第一av免费看| 高清欧美精品videossex| 啦啦啦啦在线视频资源| 青春草视频在线免费观看| www.999成人在线观看| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 少妇人妻久久综合中文| 久久中文字幕一级| 久久狼人影院| 精品少妇一区二区三区视频日本电影| 亚洲av电影在线观看一区二区三区| 国产色视频综合| 女性生殖器流出的白浆| 在线观看人妻少妇| 午夜激情av网站| 国产精品一区二区免费欧美 | 又黄又粗又硬又大视频| 亚洲国产欧美在线一区| av超薄肉色丝袜交足视频| 午夜福利,免费看| 18禁观看日本| 夜夜骑夜夜射夜夜干| 免费久久久久久久精品成人欧美视频| 最近最新免费中文字幕在线| 国产一卡二卡三卡精品| 亚洲精品中文字幕在线视频| 精品少妇内射三级| 亚洲精品乱久久久久久| 美女大奶头黄色视频| 黄片小视频在线播放| 成年av动漫网址| 在线十欧美十亚洲十日本专区| 欧美少妇被猛烈插入视频| 波多野结衣一区麻豆| 久久人妻福利社区极品人妻图片| 欧美黑人精品巨大| 婷婷色av中文字幕| 女人爽到高潮嗷嗷叫在线视频| 少妇的丰满在线观看| 老鸭窝网址在线观看| 少妇被粗大的猛进出69影院| 妹子高潮喷水视频| 午夜91福利影院| 2018国产大陆天天弄谢| 黄片大片在线免费观看| 精品人妻熟女毛片av久久网站| 日本五十路高清| 777久久人妻少妇嫩草av网站| 成人18禁高潮啪啪吃奶动态图| 日本wwww免费看| 69av精品久久久久久 | 亚洲精品中文字幕在线视频| 亚洲成人手机| 欧美一级毛片孕妇| 亚洲黑人精品在线| 国产亚洲精品第一综合不卡| 真人做人爱边吃奶动态| 色婷婷av一区二区三区视频| 国产免费现黄频在线看| 十八禁高潮呻吟视频| 又黄又粗又硬又大视频| 欧美另类亚洲清纯唯美| 久久天堂一区二区三区四区| av免费在线观看网站| 高清在线国产一区| 久久精品亚洲av国产电影网| 国产精品九九99| 老熟女久久久| av一本久久久久| 久久久久久久久久久久大奶| 十八禁网站网址无遮挡| 国产精品影院久久| 我要看黄色一级片免费的| 亚洲avbb在线观看| 十八禁人妻一区二区| 久久久国产欧美日韩av| 一边摸一边抽搐一进一出视频| 精品一区在线观看国产| 高清黄色对白视频在线免费看| 午夜免费观看性视频| 国产日韩欧美视频二区| 黄色怎么调成土黄色| 欧美黄色淫秽网站| 亚洲激情五月婷婷啪啪| 十八禁网站网址无遮挡| 国产亚洲精品第一综合不卡| 下体分泌物呈黄色| 看免费av毛片| 免费av中文字幕在线| 天天躁日日躁夜夜躁夜夜| 亚洲va日本ⅴa欧美va伊人久久 | av在线播放精品| 国产成人a∨麻豆精品| 久久午夜综合久久蜜桃| 女警被强在线播放| 亚洲国产精品一区二区三区在线| 波多野结衣av一区二区av| 国产精品一区二区精品视频观看| 一级毛片女人18水好多| 少妇的丰满在线观看| tocl精华| 狠狠婷婷综合久久久久久88av| 国产又色又爽无遮挡免| 国产精品影院久久| 国产视频一区二区在线看| 久久狼人影院| 一级片免费观看大全| 男女边摸边吃奶| 久久精品亚洲av国产电影网| 最黄视频免费看| 日韩大片免费观看网站| 人人澡人人妻人| 中文字幕精品免费在线观看视频| 午夜成年电影在线免费观看| 中文字幕人妻熟女乱码| 久久免费观看电影| 日韩熟女老妇一区二区性免费视频| 国产真人三级小视频在线观看| 国产日韩欧美视频二区| 夜夜骑夜夜射夜夜干| 中文精品一卡2卡3卡4更新| 亚洲免费av在线视频| 亚洲熟女精品中文字幕| 国产亚洲欧美在线一区二区| av在线app专区| 国产国语露脸激情在线看| 精品国产一区二区三区久久久樱花| 欧美老熟妇乱子伦牲交| 国产又爽黄色视频| 纯流量卡能插随身wifi吗| 97人妻天天添夜夜摸| 亚洲欧美一区二区三区久久| 多毛熟女@视频| 国产精品亚洲av一区麻豆| 后天国语完整版免费观看| 男女免费视频国产| 国产亚洲欧美在线一区二区| 久热这里只有精品99| 日韩欧美国产一区二区入口| 热re99久久精品国产66热6| 老司机深夜福利视频在线观看 | 久久国产精品影院| 天天躁日日躁夜夜躁夜夜| 黄色怎么调成土黄色| 自拍欧美九色日韩亚洲蝌蚪91| 在线观看免费日韩欧美大片| 亚洲欧美精品自产自拍| 女性生殖器流出的白浆| 精品人妻在线不人妻| tube8黄色片| 久久久久久久大尺度免费视频| 日韩一区二区三区影片| 久久精品国产综合久久久| 黄片播放在线免费| 极品人妻少妇av视频| 制服诱惑二区| av网站免费在线观看视频| 亚洲国产欧美日韩在线播放| 在线 av 中文字幕| 黑人操中国人逼视频| 国产av国产精品国产| 中国国产av一级| 欧美日韩亚洲国产一区二区在线观看 | av网站免费在线观看视频| 免费女性裸体啪啪无遮挡网站| 亚洲视频免费观看视频| 亚洲欧美色中文字幕在线| 嫩草影视91久久| 纯流量卡能插随身wifi吗| 狂野欧美激情性bbbbbb| 在线 av 中文字幕| 一本大道久久a久久精品| 在线观看免费高清a一片| 午夜成年电影在线免费观看| 操美女的视频在线观看| 久久精品久久久久久噜噜老黄| 久久免费观看电影| 亚洲一码二码三码区别大吗| 精品国产一区二区三区久久久樱花| 十八禁网站免费在线| 久久av网站| 久久av网站| 深夜精品福利| 国产又色又爽无遮挡免| 一区二区日韩欧美中文字幕| 亚洲第一av免费看| 亚洲第一av免费看| 无遮挡黄片免费观看| 波多野结衣av一区二区av| www.自偷自拍.com| 亚洲国产成人一精品久久久| 啦啦啦啦在线视频资源| 久久久精品区二区三区| 日韩一区二区三区影片| 黄网站色视频无遮挡免费观看| 欧美成人午夜精品| 久久人人爽人人片av| a级毛片黄视频| 亚洲午夜精品一区,二区,三区| 国产老妇伦熟女老妇高清| 免费日韩欧美在线观看| 大片免费播放器 马上看| 中文字幕高清在线视频| 亚洲色图综合在线观看| 国产1区2区3区精品| 亚洲第一欧美日韩一区二区三区 | 丝袜美腿诱惑在线| 精品国产一区二区三区久久久樱花| 90打野战视频偷拍视频| 三级毛片av免费| 午夜福利视频精品| 亚洲va日本ⅴa欧美va伊人久久 | 在线亚洲精品国产二区图片欧美| h视频一区二区三区| 国产一区有黄有色的免费视频| 国产一区有黄有色的免费视频| 日韩欧美一区视频在线观看| 国产不卡av网站在线观看| 一本一本久久a久久精品综合妖精| 高清视频免费观看一区二区| 亚洲精品粉嫩美女一区| 精品国产一区二区三区久久久樱花| 99国产综合亚洲精品| 香蕉丝袜av| 日韩人妻精品一区2区三区| 交换朋友夫妻互换小说| 十八禁人妻一区二区| 十八禁人妻一区二区| 青青草视频在线视频观看| 18禁观看日本| 一本一本久久a久久精品综合妖精| 一级片免费观看大全| 国产成人欧美在线观看 | 91精品伊人久久大香线蕉| 丝袜在线中文字幕| 女人被躁到高潮嗷嗷叫费观| 欧美av亚洲av综合av国产av| 精品人妻在线不人妻| 在线天堂中文资源库| 黄片小视频在线播放| 久久久国产精品麻豆| 国产男女超爽视频在线观看| 国产成人精品无人区| 亚洲精华国产精华精| 大香蕉久久成人网| 视频区图区小说| 中文精品一卡2卡3卡4更新| av一本久久久久| 久久国产亚洲av麻豆专区| 又黄又粗又硬又大视频| 亚洲欧美日韩另类电影网站| 一级,二级,三级黄色视频| 成年人黄色毛片网站| 久久久久久亚洲精品国产蜜桃av| 高清av免费在线| 久久综合国产亚洲精品| 黑人操中国人逼视频| 老司机在亚洲福利影院| 欧美 亚洲 国产 日韩一| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲av日韩在线播放| 两性夫妻黄色片| 自线自在国产av| 他把我摸到了高潮在线观看 | 精品久久久久久电影网| bbb黄色大片| 黑人猛操日本美女一级片| 丁香六月欧美| 欧美国产精品va在线观看不卡| 亚洲精品第二区| 丝瓜视频免费看黄片| 国产亚洲精品第一综合不卡| 国产一卡二卡三卡精品| 一个人免费在线观看的高清视频 | 国产欧美日韩一区二区三区在线| av天堂在线播放| 宅男免费午夜| 亚洲性夜色夜夜综合| 久久精品亚洲av国产电影网| 中文字幕色久视频| xxxhd国产人妻xxx| 老司机在亚洲福利影院| 日本av免费视频播放| 少妇人妻久久综合中文| 国产一区二区 视频在线| 91老司机精品| 老司机深夜福利视频在线观看 | 每晚都被弄得嗷嗷叫到高潮| 一区福利在线观看| 日本a在线网址| 亚洲欧美成人综合另类久久久| 久久久精品94久久精品| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 最近中文字幕2019免费版| 在线观看免费高清a一片| 国产精品久久久人人做人人爽| 老司机午夜十八禁免费视频| 另类精品久久| 亚洲av欧美aⅴ国产| 中文字幕av电影在线播放| 丝袜脚勾引网站| 欧美在线黄色| 中亚洲国语对白在线视频| xxxhd国产人妻xxx| 国产免费av片在线观看野外av| 国产有黄有色有爽视频| 18禁黄网站禁片午夜丰满| 国产日韩一区二区三区精品不卡| 久久精品亚洲熟妇少妇任你| 乱人伦中国视频| 亚洲精品国产精品久久久不卡| 黄片大片在线免费观看| 亚洲国产av新网站| √禁漫天堂资源中文www| 国产亚洲精品一区二区www | 色婷婷久久久亚洲欧美| 精品人妻一区二区三区麻豆| av有码第一页| 高清黄色对白视频在线免费看| 精品少妇久久久久久888优播| 日韩欧美一区二区三区在线观看 | 亚洲国产av新网站| 亚洲精品在线美女| 国产一区二区三区在线臀色熟女 | av在线app专区| 国产有黄有色有爽视频| 成人三级做爰电影| 亚洲三区欧美一区| 日本黄色日本黄色录像| 久久久久久亚洲精品国产蜜桃av| 黑人巨大精品欧美一区二区mp4| 亚洲av电影在线进入| 看免费av毛片| 午夜免费观看性视频| 国产欧美日韩综合在线一区二区| 国产精品1区2区在线观看. | 窝窝影院91人妻| 精品少妇一区二区三区视频日本电影| 男人添女人高潮全过程视频| 国产男女超爽视频在线观看| 女警被强在线播放| 精品国内亚洲2022精品成人 | 国产精品 国内视频| 2018国产大陆天天弄谢| 在线十欧美十亚洲十日本专区| 99久久人妻综合| 日韩三级视频一区二区三区| 免费观看a级毛片全部| 欧美精品av麻豆av| 亚洲精品成人av观看孕妇| 国产主播在线观看一区二区| 国产免费现黄频在线看| 99热国产这里只有精品6| 黄色怎么调成土黄色| av免费在线观看网站| 日韩欧美一区视频在线观看| 纵有疾风起免费观看全集完整版| 精品久久蜜臀av无| 欧美国产精品va在线观看不卡| 无遮挡黄片免费观看| 久久人妻熟女aⅴ| av网站在线播放免费| 美女国产高潮福利片在线看| 国产精品麻豆人妻色哟哟久久| 99国产综合亚洲精品| 欧美一级毛片孕妇| 亚洲精品中文字幕在线视频| 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 每晚都被弄得嗷嗷叫到高潮| 黄频高清免费视频| 淫妇啪啪啪对白视频 | 欧美97在线视频| 男人操女人黄网站| 亚洲专区字幕在线| 人人妻人人爽人人添夜夜欢视频| 欧美日韩一级在线毛片| 91精品国产国语对白视频| 欧美日韩黄片免| 国产亚洲精品久久久久5区| 窝窝影院91人妻| 美女高潮喷水抽搐中文字幕| 欧美日韩视频精品一区| 搡老乐熟女国产| 午夜两性在线视频| 蜜桃在线观看..| 亚洲一卡2卡3卡4卡5卡精品中文| 91大片在线观看| 亚洲精品中文字幕在线视频| 另类亚洲欧美激情| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图| 免费在线观看影片大全网站| 亚洲,欧美精品.| 欧美日韩一级在线毛片| 搡老熟女国产l中国老女人| 国产在线观看jvid| 日韩大码丰满熟妇| 啦啦啦在线免费观看视频4| 国产在线一区二区三区精| 精品免费久久久久久久清纯 | 永久免费av网站大全| 亚洲av电影在线观看一区二区三区| 一区二区三区激情视频| 久久久国产精品麻豆| 色综合欧美亚洲国产小说| 亚洲欧美激情在线| 亚洲精品美女久久av网站| 99久久国产精品久久久| 天天躁日日躁夜夜躁夜夜| 精品人妻在线不人妻| 别揉我奶头~嗯~啊~动态视频 | 狠狠精品人妻久久久久久综合| 久久中文字幕一级| 国产高清videossex| 12—13女人毛片做爰片一| 老司机影院毛片| 中文精品一卡2卡3卡4更新| 精品国产国语对白av| 美女午夜性视频免费| 欧美精品一区二区免费开放| 一区二区三区四区激情视频| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 久久久久久久久久久久大奶| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕在线视频| 91av网站免费观看| 亚洲av电影在线观看一区二区三区| 韩国精品一区二区三区| av超薄肉色丝袜交足视频| 窝窝影院91人妻| 日韩精品免费视频一区二区三区| 丝袜人妻中文字幕| 咕卡用的链子| 日本精品一区二区三区蜜桃| 菩萨蛮人人尽说江南好唐韦庄|