• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computer aided design and analysis of a tunable muzzle brake

    2019-03-01 03:34:22EkanshChaturvediRaviDwivedi
    Defence Technology 2019年1期

    Ekansh Chaturvedi,Ravi K.Dwivedi

    Department of Mechanical Engineering,Maulana Azad National Institute of Technology,Bhopal,462003,India

    Keywords:Flow simulation Innovation Muzzle brake Tunability Set screws

    A B S T R A C T This research work deals with the design of a tunable muzzle brake[10]for a rifle chambered in 5.56×45 NATO ammunition.It proposes to solve the problem of handling differences from shooter to shooter by incorporating the feature of tunability.Beside this,it also solves the problem of requirement of optimum recoil in short recoil weapons.This innovation gives this design an edge over its already existing counterparts in the market.The product is designed using the internal ballistics calculations and the investigations been performed using solidworks flow simulation tool and ANSYS static structural to check the parameters like velocity distribution,pressure growth,and muzzle brake force along the series of ports and comparison of the so found results with those devised by the authors of the documents mentioned in references.This assures the market adaptability of the product for satisfactory performance,when brought among its already existing counterpart,though with a slight edge over them due to tunability.The results so found shall be concluded satisfactory regarding the performance of muzzle brake.

    1.Introduction

    A muzzle brake is a device that is attached to,or is integral with,the muzzle of a gun.Usually the brake has a series of baffles either perpendicular or nearly perpendicular to the gun tube axis.The brake is generally closed on the bottom to prevent escaping gases from endangering or annoying the gun crew.To maintain symmetrical peripheral loading and therefore balance,the top also is closed,leaving the sides open for the gases to escape after impinging on the baffles.Some standard configurations,adhering to either theoretical or empirical practice,have evolved through years of application.

    Here,the inspiration of the proposed design(Fig.1)has been taken from the Brockman's convertible muzzle brake[8]Coburn's adjustable muzzle brake[9]and which had symmetrically situated peripheral ports but only two positions,on and off.Therefore,attempts have been made to ameliorate the design by incorporating the feature of tunability[10]with enhancement in its degree or extent of variability.Although the design procedure includes consideration of so many factors,assumptions and calculations[2],but nevertheless,there always remain some traditional defects in the design of the muzzle brake.Thus,to some extent the approach remains limited and subjective.Hence,in order to verify the performance parameters through accurate algorithms,the flow simulation analysis becomes a primary necessity of the design.

    For predicting the port size over the periphery,some constraints have been put on parameters and then the calculations have been done using internal ballistics equations[2].The constraints,for instance deflecting angle,have been defined by considering geometrical and ergonomic factors.It may be noted here that the main purpose of the CFD analysis remains only to compare the maximum and minimum values of pressure decay,muzzle brake force and velocity distribution with those plotted in reference[1].Further,some inferences regarding the formation of shock waves have been drawn from those contours.

    2.Methodology and analysis

    2.1.The mechanics of muzzle gas flow[2]

    The quantitative analysis of the flow of propellant gases at the muzzle begins with the energy equation of internal ballistics:

    Where:

    Fig.1.Final design of tunable muzzle brake.

    Wc=weight of propellant(lbs)

    Wp=weight of projectile(lbs)

    R=gas constant

    T=temperature of propellant gas having done no external work(oR)

    T0=temperature of gas at shot ejection(oR)

    v0=muzzle velocity

    γ=ratio of specific heats

    δ=fractional heat loss to gun tube as function of shot energy

    Weight W is a force,a defined term,and is expressed in pounds(lb).Mass is a computed term M=W/g,lb-sec2/ft(slugs)where g is the acceleration of gravity.Other dimensions may be used provided that proper conversion of factors are used Hence,substituting γ=1.26 andδ=1/7,the equation simplifies to:-

    Appropriate values of RT,a characteristic of the propellant,are available in thermo chemical tables.In some ballistic operations,RT is called specific impetus the dimensions of which are ft-lb/lb;and RT/(γ-1),of the same dimensions,is the potential of the propellant.Numerically,RT/(γ -1)is about 6×106ft-lb/lb.

    2.2.Gas deflection and nozzle flow[2]

    The passages in a muzzle brake are treated by the onedimensional theory of nozzles,without allowance for friction at the walls.Furthermore,the gas is assumed to fill the nozzle completely;true only if the nozzle is so designed that there is no break away from the walls.To prevent this,the semi-angle of a conical nozzle should never exceed 30°,a rather large angle.Smaller angles result in larger nozzles,thereby increasing muzzle brake weight.If more weight can be tolerated,a smaller semi-angle of about 20°is preferred.Semi-angles below 15°offer no appreciable advantage over their immediate larger counterparts.

    Here(Fig.2),

    Fig.2.Schematic diagram of muzzle brake.

    A=bore area

    Ab=area of projectile passage

    Ae=exit area of baffle passage

    Ai=inner area of baffle passage

    ne=exit speed-up factor

    ni=inner speed-up factor

    v0=muzzle velocity

    αbaffle deflecting angle

    ф semi-angle of nozzle

    Wc=weight of propellant gases

    Because of the projectile passage,not all of the gas will go through the baffle passage;a portion will continue straight ahead,the amount depending on the ratio of exit areas.The weight of the quantity of gas diverted through the baffles is expressed as:

    Similarly,weight of gas passing through projectile passage:-

    Therefore,thrust on the baffles:Fb=Δim(vi-vecosα),Where m=mass of gas impinging on the baffle.it can be written as:

    Whereλ=speed up factor and is dependent onΔiand angle of deflection.

    For minimum forward thrust generated,assuming niand nebe equal,and equal to 1 andα=1350;we have,λ={Ai/(Ai+Ab)}(1-cos135°)

    Here,the value of deflecting angle has been randomly constrained to 135°because the design procedure intends to calculate the port size for other constraining parameters having fixed values.

    2.3.Thrust calculations

    Hugoniot derived the expression for rate of change of muzzle gas momentum[2].

    At t=0,that is when the bullet is about to leave muzzle,the rate of change of momentum M’is maximum and is given by the following expression:

    Where,

    Lb=length of barrel from the breech end(inch)

    g=gravitational acceleration(32.2 ft/s2)

    Including the effects of vortices and turbulence an extremely small amount of gas can be used to get favourable work,this expression isdecreasedby a factorof Ckwhich can be in orderof10-2.

    Therefore,

    Now this rate of change of momentum must be equal to the thrust generated by the brake baffles.Hence,equating equations(5)and(8)we get,

    With the help of equations(6)and(9),we can obtain the value ofΔiand hence the values of cross section area of ports.

    Here it is to be noted that to simplify the calculation procedure,it has been assumed that whole of the mass of gases flows through the series of ports in one go(instead of intermittent flow through the no.of series).It is assumed due to the fact that gases rush out at very high velocities and hence there is practically negligible time difference in the gas flow through first series of baffles and the flow through the second series.Hence,the expressions mentioned in this section form the foundation of the design procedure of the muzzle brake.

    2.4.Engineering data and assumptions

    It is to be mentioned here that the muzzle brakes are designed for a particular type of rifle that fires a particular type of ammunition powered by a specific kind of propellant.

    Here it was aimed to design a tunable muzzle brake for a rifle that fires most popular round throughout the world,i.e.the 5.56×45 NATO,for which,the required data is as follows:

    RT value of IMR propellant=1.54×106(ft-lbs/lbs)[2].

    Wc=2.98 gm=0.0066 lbs[4,5].

    Wp=4 gm(62 grain)=0.0089 lbs[4,5].

    Lb=16.

    v0=2800 ft/s,which in SI is equal to 853.44 m/s[6,7].

    2.5.Calculation of peripheral port diameter

    Given that,

    m=Wi/g=Δi·Wc/g,Ab=π/4(5.6 mm)2

    On putting value ofλfrom equation(9)into(6),we get the value of Ai(for 18 ports).Thus,Ai=18×πd2/4.

    Assuming the value of Ckbe around 20%of the total gas potential used to provide braking effect,the values ofλand d come to be 1.54 and 4 mm(approx).

    2.6.Design specifications of muzzle brake

    Type:-closed,multi-baffled type brake.

    · Angle of deflection=135°.

    ·Port size=4 mm in diameter

    ·No.of ports=6×3(6 rows having 3 each)

    ·Length total=70 mm

    ·Outer diameter=20 mm

    ·Inner half cone angle=30 deg.

    ·Threading for muzzle end=M12×1

    ·Threading for set screws=M4×0.5

    2.7.Boundary conditions data for flow simulation

    Fluid used:Although the products of the burning propellant comprise of many gases for instance,CO2,H2O,NOXand some amount of CO;but the major part in constituted by CO2(almost 94%).Hence,for the CFD analysis, fluid used is CO2(real gas).This approach has been used,unlike using absolute characteristics of powder gas[3],to conduct a similar but simpler study in order to verify the results.

    Pressure at inlet of brake/outlet of muzzle:From figures shown in Refs.[6,7],pressure values at the end of a 16 inch(barrel were taken as 7200 psi(50 MPa).

    Temperature of propellant gas at inlet:Assuming that the propellant continues to burn even at the outlet of muzzle,the temperature was assumed to be slightly less than the burning temperature of IMR4475,i.e.2000 K[7].

    Volume flow rate at inlet:It is to be mentioned that due to changes in density,volume flow rate is given preference over the mass flow rate.Assuming continuous flow throughout the barrel,Q=Ab.v0=0.0222 m3/s.

    Ambient conditions:The ambient conditions at the outlets of ports and the brake end were assumed to be atmospheric,i.e.pressure 105Pa and temperature 300 K.

    Strength testing for set screws:Maximum pressure acting at the bottom of the screw has been taken as 108Pa,which is well more than the maximum pressure at the muzzle end of the barrel.Though it is significantly less than the maximum chamber pressure,being 3.6×108Pa[4].The body of the brake has been assumed as rigid support of structural steel as the chosen material.

    3.Results

    1.The simulation of a basic design(Fig.3)expresses the pressure decrement along the length of the brake.It clearly shows the vigorous decrement in violent pressures(Pa)at first series of peripheral ports to the outlet of muzzle brake.The static pressure plot is shown in Fig.4 while Fig.5 is the comparison plot of static pressure(MPa)taken from Ref.[1].It is to be clearly mentioned here that in context of Figs.4 and 5,the independent parameters on X-axis,although being different from each other,the figures can nevertheless be used for comparing the peak values and the least values of pressures.ref[1]constitutes a transient CFD analysis to count for the time related variation of pressure,whereas the purpose to conduct this steady state CFD analysis was to check the maximum and minimum pressures,independent of time as a parameter.

    2.The simulation(Fig.6)expresses the velocity distribution of gases along the peripheral ports.The sudden increment in velocity at the outlet is a proof of the generation of shock waves.Hence,there's an abrupt change in mach no.across the length of flow.

    3.The plot in Fig.7 shows the average muzzle brake force generated.The Fig.8[1]shows the muzzle brake force distribution taken as reference for comparison.Again,the difference in independent parameters shown on X-axis in both the plots is due to different solver type.This work indeed utilised steady state CFD simulation to compare the minimum and maximum values and subsequent distribution of muzzle brake force with that generated by the transient analysis conducted by the authors of the mentioned reference work,which included time dependence as a parameter as well.Plots showing force(in KN)corresponding to each series of slats have been shown in Fig.8;whereas Fig.7 shows the mean value of force(in N×10-3)generated by all the three series of the muzzle brake.Their purpose was to check the distribution of entities with respect to time(in milliseconds);whereas the purpose been served here as to just check the maximum generated muzzle brake force by the designed brake.

    4.The factor of safety shown in Fig.9 was found to be more than enough for M4 screws to be brought in use in this muzzle brake.

    Fig.3.Pressure decay along the length of the brake and across the peripheral ports.

    Fig.4.Mean static pressure distribution of all the three series of ports along the length of the designed brake.

    4.Conclusion

    Fig.5.Plot representing pressure decay corresponding to each series of slats in reference work[1].

    1.The computed spectrums of pressure values and muzzle brake force values were found to be in good agreement with those shown in mentioned reference works.The different independent parameters on X-axis shown in Figs.4 and 5 and Figs.7 and 8 respectively,only exhibits the difference of a transient analysis been conducted in the referenced works.The purpose to check the maximum and minimum values of pressures and muzzle brake force computed by the solver(independent on time as a parameter)was thus fulfilled and the objectified results were found to be in good congruence with those of the referenced works.Figs.4 and 7 showed the mean values distribution of the respective dependent entities while Figs.5 and 8 showed the specific time dependent distribution corresponding to each series of slats of the referenced muzzle brake design.

    Fig.6.Gas velocity distribution along the length of the muzzle brake.

    Fig.7.Mean muzzle brake force of all the three series of ports.Peak value is 25 kN.

    Fig.8.Muzzle brake force distribution corresponding to each slat series.Peak value is 18 kN.

    Fig.9.Volumetric distribution of factor of safety for set screw subjected to muzzle blast pressures.

    2.Since the performance been verified,it can be concluded that the extra feature of tunability(through combinations of open and closed peripheral ports,by unscrewing some of the setscrews)definitely gives it an edge over other existing designs.This feature not only intends to make the weapon much more operator friendly,but also can control fire rate in recoil operated weapons.In case of recoil weapons,this can work as a recoil“optimizer”as well.It means that in adverse environmental situations,for instance exceptionally cold climate or a dirty environment,where some extra recoil is required to make the weapon function reliably,this device can optimize it to a level such that the recoil generated would be enough to make it function without any failure,but wouldn't be excessive as to produce handling problems.

    3.A much simpler design,with all the dimensions same as those in the detailed design,was used for conducting CFD flow simulation in order to ensure proper meshing,faster response from the system,and to facilitate the iterations in design for verifying the performance of the designed brake.Nonetheless,this study is hindered by a number of limitations.The chemical reactions between the propellant gases were not considered in the analysis.The stress test was not verified because of the limitation of experiment condition.The necessity of a time dependent analysis was not considered.In future works,the simulation results should be verified by stress tests,a time dependent transient analysis including thermal effects.

    Acknowledgements

    This work was supported by Department of Mechanical Engineering,Maulana Azad National Institute of Technology(MANIT)Bhopal,India.The author expresses his deep appreciation and gratitude to department for providing access to softwares.

    尾随美女入室| 丰满乱子伦码专区| 国产真实伦视频高清在线观看| 亚洲精华国产精华液的使用体验| 国产亚洲精品久久久com| 岛国毛片在线播放| 久久这里有精品视频免费| 麻豆精品久久久久久蜜桃| 国产综合精华液| 国产av国产精品国产| 少妇人妻 视频| 爱豆传媒免费全集在线观看| 男女免费视频国产| 日韩欧美 国产精品| 我的老师免费观看完整版| 日韩人妻高清精品专区| 亚洲精品自拍成人| 欧美激情极品国产一区二区三区 | 免费大片黄手机在线观看| 国产欧美亚洲国产| 内射极品少妇av片p| 国内精品宾馆在线| 亚洲精品乱久久久久久| 国产精品人妻久久久影院| 国产一区二区三区av在线| 99热网站在线观看| 91久久精品国产一区二区三区| 永久免费av网站大全| 最近中文字幕2019免费版| 国产精品麻豆人妻色哟哟久久| 亚洲美女搞黄在线观看| 人人妻人人看人人澡| 亚洲,欧美,日韩| 亚洲av日韩在线播放| 免费观看a级毛片全部| 国产 一区精品| 亚洲欧美日韩无卡精品| 欧美bdsm另类| 一级a做视频免费观看| 97在线视频观看| 国产高潮美女av| 国产精品福利在线免费观看| 免费播放大片免费观看视频在线观看| 97超视频在线观看视频| 久久ye,这里只有精品| 亚洲成人手机| 美女cb高潮喷水在线观看| 少妇人妻精品综合一区二区| 91精品国产九色| 青春草视频在线免费观看| 免费看光身美女| 亚洲电影在线观看av| 日本黄大片高清| 欧美日韩视频精品一区| 免费观看a级毛片全部| 亚洲精品乱久久久久久| 久久影院123| 毛片一级片免费看久久久久| 高清欧美精品videossex| 久久久久性生活片| 内地一区二区视频在线| 亚洲人成网站高清观看| 日本黄色日本黄色录像| 精品熟女少妇av免费看| 有码 亚洲区| av女优亚洲男人天堂| 久久国产精品男人的天堂亚洲 | 国产高清国产精品国产三级 | 亚洲熟女精品中文字幕| 一区二区三区免费毛片| 伊人久久国产一区二区| 国产免费一级a男人的天堂| 啦啦啦在线观看免费高清www| 毛片女人毛片| 成人美女网站在线观看视频| 国产精品一区二区性色av| 日韩三级伦理在线观看| 国产黄色视频一区二区在线观看| 99国产精品免费福利视频| 日产精品乱码卡一卡2卡三| 日韩强制内射视频| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av涩爱| 美女主播在线视频| 美女福利国产在线 | 欧美亚洲 丝袜 人妻 在线| 狂野欧美激情性xxxx在线观看| 久久久久性生活片| 久久久久国产网址| 精品一区二区免费观看| 一级毛片我不卡| 一个人免费看片子| 日本免费在线观看一区| 久久久久视频综合| 99久国产av精品国产电影| 精品视频人人做人人爽| 亚洲精品视频女| 日韩视频在线欧美| 免费看不卡的av| 久久久久久久久久成人| 一个人看的www免费观看视频| 欧美xxⅹ黑人| 99热国产这里只有精品6| 麻豆国产97在线/欧美| 亚洲婷婷狠狠爱综合网| 韩国高清视频一区二区三区| 麻豆精品久久久久久蜜桃| 国产成人a区在线观看| 久久鲁丝午夜福利片| 1000部很黄的大片| 国产真实伦视频高清在线观看| 97超视频在线观看视频| 少妇裸体淫交视频免费看高清| 2021少妇久久久久久久久久久| 国产精品伦人一区二区| 精品一区二区三卡| 亚洲av二区三区四区| 蜜臀久久99精品久久宅男| 国产精品人妻久久久影院| 国产 精品1| 国产精品不卡视频一区二区| 日本wwww免费看| 欧美成人一区二区免费高清观看| 亚洲三级黄色毛片| 一区在线观看完整版| 欧美zozozo另类| 国产深夜福利视频在线观看| www.av在线官网国产| 夫妻性生交免费视频一级片| 在线 av 中文字幕| 高清毛片免费看| 十八禁网站网址无遮挡 | 亚洲成色77777| av国产免费在线观看| 丰满乱子伦码专区| 精品一区在线观看国产| 狂野欧美白嫩少妇大欣赏| 男女无遮挡免费网站观看| 老司机影院毛片| 少妇被粗大猛烈的视频| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 国产精品99久久久久久久久| h日本视频在线播放| 欧美人与善性xxx| 高清午夜精品一区二区三区| 岛国毛片在线播放| 国产极品天堂在线| 欧美bdsm另类| 久久久久人妻精品一区果冻| 人妻系列 视频| 极品教师在线视频| 国产精品.久久久| 少妇人妻 视频| av在线播放精品| 中文字幕制服av| 国产探花极品一区二区| 中文天堂在线官网| 久久久久精品久久久久真实原创| 舔av片在线| 久久国内精品自在自线图片| 97在线人人人人妻| 蜜桃在线观看..| 日韩国内少妇激情av| 亚洲国产高清在线一区二区三| 亚洲美女黄色视频免费看| 噜噜噜噜噜久久久久久91| 热99国产精品久久久久久7| 精品亚洲成a人片在线观看 | 亚洲欧美成人综合另类久久久| 色视频在线一区二区三区| 色视频www国产| videos熟女内射| 91狼人影院| 精品人妻视频免费看| 欧美一区二区亚洲| 欧美xxxx性猛交bbbb| 国产久久久一区二区三区| 一个人看的www免费观看视频| 国产高潮美女av| 国产高清国产精品国产三级 | 亚洲欧美成人精品一区二区| 国产免费福利视频在线观看| 深夜a级毛片| 日本爱情动作片www.在线观看| 日日啪夜夜爽| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看| 女性被躁到高潮视频| 日韩欧美一区视频在线观看 | 国产真实伦视频高清在线观看| 亚洲精品国产色婷婷电影| 国产精品熟女久久久久浪| 精品久久久噜噜| 插逼视频在线观看| 久久久久久久久大av| 亚洲综合精品二区| 国产大屁股一区二区在线视频| 国产淫语在线视频| 亚洲精品亚洲一区二区| 中国三级夫妇交换| 亚洲欧美中文字幕日韩二区| 蜜桃在线观看..| 亚洲欧美精品自产自拍| 寂寞人妻少妇视频99o| 亚洲国产av新网站| 国产高清有码在线观看视频| 亚洲精品第二区| 国产一区有黄有色的免费视频| 精品酒店卫生间| 日本vs欧美在线观看视频 | 熟女人妻精品中文字幕| 成年女人在线观看亚洲视频| 亚洲国产高清在线一区二区三| 久久影院123| 午夜免费鲁丝| 欧美丝袜亚洲另类| 久久久久国产网址| 高清日韩中文字幕在线| 亚洲婷婷狠狠爱综合网| 欧美 日韩 精品 国产| 久久鲁丝午夜福利片| 国产一区二区在线观看日韩| 91在线精品国自产拍蜜月| 中文字幕制服av| 国产欧美亚洲国产| 精品国产乱码久久久久久小说| 欧美另类一区| 国产精品国产三级国产专区5o| 久久av网站| 自拍偷自拍亚洲精品老妇| 舔av片在线| 一级av片app| 国产精品人妻久久久久久| 欧美精品人与动牲交sv欧美| 欧美国产精品一级二级三级 | 一级黄片播放器| 久久这里有精品视频免费| 日日啪夜夜撸| 2018国产大陆天天弄谢| 国产片特级美女逼逼视频| 久久这里有精品视频免费| 久久久久久九九精品二区国产| 少妇人妻久久综合中文| 男男h啪啪无遮挡| 国产一区有黄有色的免费视频| 成年美女黄网站色视频大全免费 | 午夜免费男女啪啪视频观看| 亚洲成人中文字幕在线播放| 成人无遮挡网站| 观看免费一级毛片| 亚洲中文av在线| 黄片wwwwww| 欧美zozozo另类| 亚洲av综合色区一区| 亚洲精品一二三| 午夜福利在线在线| 亚洲内射少妇av| 最近的中文字幕免费完整| 国产精品国产av在线观看| 欧美亚洲 丝袜 人妻 在线| 国产精品一区二区在线不卡| 婷婷色av中文字幕| 天堂中文最新版在线下载| 一边亲一边摸免费视频| 春色校园在线视频观看| 中文字幕人妻熟人妻熟丝袜美| 成人亚洲欧美一区二区av| 日韩三级伦理在线观看| 美女cb高潮喷水在线观看| 成年女人在线观看亚洲视频| 蜜臀久久99精品久久宅男| 91精品伊人久久大香线蕉| 新久久久久国产一级毛片| 亚洲精品亚洲一区二区| 男女国产视频网站| 亚洲精品成人av观看孕妇| 国产又色又爽无遮挡免| 久久人妻熟女aⅴ| 中文字幕av成人在线电影| 99九九线精品视频在线观看视频| 国产 精品1| 高清毛片免费看| 精品久久久噜噜| .国产精品久久| 免费观看在线日韩| 国产男人的电影天堂91| 国产精品嫩草影院av在线观看| 午夜视频国产福利| 精品人妻视频免费看| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| 高清黄色对白视频在线免费看 | 亚洲精品国产色婷婷电影| 日本黄色片子视频| 国产精品一区二区三区四区免费观看| 99热网站在线观看| 乱系列少妇在线播放| 国产淫语在线视频| 亚洲精品亚洲一区二区| 99九九线精品视频在线观看视频| 特大巨黑吊av在线直播| 成人亚洲欧美一区二区av| 国产欧美另类精品又又久久亚洲欧美| av女优亚洲男人天堂| 色5月婷婷丁香| 久久精品久久久久久噜噜老黄| 日韩欧美精品免费久久| 99热这里只有是精品50| 2022亚洲国产成人精品| 国产高清有码在线观看视频| tube8黄色片| 亚洲精品自拍成人| 久久精品久久精品一区二区三区| 99久久人妻综合| 三级国产精品欧美在线观看| 青春草亚洲视频在线观看| 国产成人精品一,二区| 久久久久精品久久久久真实原创| 欧美极品一区二区三区四区| 欧美bdsm另类| 狠狠精品人妻久久久久久综合| 欧美日韩在线观看h| 国产成人aa在线观看| 亚洲av日韩在线播放| 18禁裸乳无遮挡免费网站照片| 性高湖久久久久久久久免费观看| 日本av手机在线免费观看| 蜜桃在线观看..| 精品久久国产蜜桃| a级一级毛片免费在线观看| 中文精品一卡2卡3卡4更新| 免费黄频网站在线观看国产| 亚洲精品乱久久久久久| 国产精品麻豆人妻色哟哟久久| 菩萨蛮人人尽说江南好唐韦庄| 欧美 日韩 精品 国产| 国产黄频视频在线观看| 欧美3d第一页| 日本色播在线视频| 免费在线观看成人毛片| 只有这里有精品99| 干丝袜人妻中文字幕| 婷婷色麻豆天堂久久| 日韩亚洲欧美综合| 交换朋友夫妻互换小说| 国产成人aa在线观看| 永久免费av网站大全| 亚洲av免费高清在线观看| av天堂中文字幕网| 丰满少妇做爰视频| 九九在线视频观看精品| 99久久精品国产国产毛片| 美女脱内裤让男人舔精品视频| 国产成人a∨麻豆精品| 黄色一级大片看看| 六月丁香七月| 免费少妇av软件| 少妇人妻一区二区三区视频| 久久久色成人| 国产v大片淫在线免费观看| av女优亚洲男人天堂| 亚洲av成人精品一区久久| 日韩一本色道免费dvd| 天堂8中文在线网| 高清在线视频一区二区三区| 亚洲精品自拍成人| 王馨瑶露胸无遮挡在线观看| 18+在线观看网站| 一区二区av电影网| 亚洲精品第二区| h日本视频在线播放| 国产精品爽爽va在线观看网站| 国产深夜福利视频在线观看| 国产爱豆传媒在线观看| 国产成人a∨麻豆精品| 少妇的逼水好多| av免费在线看不卡| 建设人人有责人人尽责人人享有的 | 人人妻人人添人人爽欧美一区卜 | 日韩精品有码人妻一区| 亚洲av在线观看美女高潮| 亚洲av成人精品一二三区| 国产91av在线免费观看| 男女下面进入的视频免费午夜| 午夜精品国产一区二区电影| 精品一区二区免费观看| 亚洲国产精品国产精品| 国产成人91sexporn| av在线app专区| 少妇人妻久久综合中文| 国产成人a区在线观看| 国产成人精品婷婷| 另类亚洲欧美激情| 超碰av人人做人人爽久久| 91狼人影院| 观看美女的网站| 91狼人影院| 人人妻人人添人人爽欧美一区卜 | 欧美另类一区| 91狼人影院| 嫩草影院新地址| 看免费成人av毛片| 毛片一级片免费看久久久久| 全区人妻精品视频| a 毛片基地| 我的老师免费观看完整版| 在线 av 中文字幕| 亚洲av中文av极速乱| 国产精品一二三区在线看| 精品人妻偷拍中文字幕| 亚洲精品第二区| 国产精品福利在线免费观看| 国产精品蜜桃在线观看| 亚洲怡红院男人天堂| 欧美高清性xxxxhd video| www.色视频.com| 国产 一区 欧美 日韩| 国产精品偷伦视频观看了| 国产精品伦人一区二区| 亚洲怡红院男人天堂| 老师上课跳d突然被开到最大视频| 爱豆传媒免费全集在线观看| 久久精品熟女亚洲av麻豆精品| 一级毛片电影观看| 蜜桃在线观看..| 丰满迷人的少妇在线观看| 欧美97在线视频| 精品国产三级普通话版| 久久精品国产鲁丝片午夜精品| 色吧在线观看| av专区在线播放| 亚洲av电影在线观看一区二区三区| 久久亚洲国产成人精品v| 最近中文字幕高清免费大全6| 三级经典国产精品| 一级毛片我不卡| 国产熟女欧美一区二区| 久久精品久久精品一区二区三区| 亚洲国产毛片av蜜桃av| 日韩在线高清观看一区二区三区| 亚州av有码| 免费黄网站久久成人精品| 亚洲激情五月婷婷啪啪| 一本久久精品| 大陆偷拍与自拍| 免费大片18禁| 免费人成在线观看视频色| 搡女人真爽免费视频火全软件| 少妇 在线观看| 国产免费福利视频在线观看| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 亚洲综合色惰| 亚洲人成网站在线播| 日本与韩国留学比较| 一级黄片播放器| 国产永久视频网站| 我要看黄色一级片免费的| 岛国毛片在线播放| 亚洲精品久久午夜乱码| 国产又色又爽无遮挡免| 精品久久久久久久久av| 日日啪夜夜爽| 深夜a级毛片| 亚洲成人一二三区av| 2022亚洲国产成人精品| 国产亚洲精品久久久com| 国产在线男女| xxx大片免费视频| 伊人久久国产一区二区| 又大又黄又爽视频免费| 91精品国产九色| 蜜臀久久99精品久久宅男| 欧美xxxx性猛交bbbb| 欧美精品一区二区大全| 午夜老司机福利剧场| 黑丝袜美女国产一区| 亚洲成人手机| 欧美日韩综合久久久久久| 亚洲综合精品二区| 熟女电影av网| 能在线免费看毛片的网站| 韩国av在线不卡| 一级二级三级毛片免费看| 精品视频人人做人人爽| 久久久久久伊人网av| 久久精品国产亚洲av天美| 欧美bdsm另类| 欧美丝袜亚洲另类| 国产高潮美女av| av不卡在线播放| 夫妻性生交免费视频一级片| 国产免费视频播放在线视频| 国产欧美亚洲国产| 久久青草综合色| 国产在线视频一区二区| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 成人影院久久| 在线播放无遮挡| 国产高清国产精品国产三级 | 永久免费av网站大全| 精品一区二区三区视频在线| 国产成人精品久久久久久| 2021少妇久久久久久久久久久| 欧美日韩一区二区视频在线观看视频在线| 好男人视频免费观看在线| 老司机影院毛片| 最后的刺客免费高清国语| 美女脱内裤让男人舔精品视频| 最后的刺客免费高清国语| 欧美区成人在线视频| 99久久精品国产国产毛片| 午夜福利在线观看免费完整高清在| 国产亚洲精品久久久com| 午夜福利网站1000一区二区三区| 久久精品久久久久久久性| 中文在线观看免费www的网站| 精品久久久久久久久亚洲| 美女高潮的动态| 免费高清在线观看视频在线观看| 国产片特级美女逼逼视频| 亚洲欧美一区二区三区黑人 | 亚洲精品自拍成人| 久久人人爽人人片av| 免费高清在线观看视频在线观看| 天堂俺去俺来也www色官网| 免费人妻精品一区二区三区视频| 99热这里只有是精品在线观看| 国产精品福利在线免费观看| 成人二区视频| 3wmmmm亚洲av在线观看| 成年av动漫网址| 亚洲欧洲国产日韩| 老熟女久久久| 丰满人妻一区二区三区视频av| 国产精品麻豆人妻色哟哟久久| 在线观看三级黄色| 亚洲丝袜综合中文字幕| 欧美少妇被猛烈插入视频| 人人妻人人看人人澡| 超碰av人人做人人爽久久| 内射极品少妇av片p| 插阴视频在线观看视频| 日日啪夜夜撸| 最近最新中文字幕大全电影3| 18禁在线播放成人免费| 日本-黄色视频高清免费观看| 婷婷色av中文字幕| 欧美精品国产亚洲| 伊人久久精品亚洲午夜| 国产精品久久久久久精品电影小说 | 久久午夜福利片| 这个男人来自地球电影免费观看 | a 毛片基地| 精品国产乱码久久久久久小说| 国产欧美日韩精品一区二区| 午夜福利视频精品| 午夜日本视频在线| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 国产精品.久久久| 少妇 在线观看| 十分钟在线观看高清视频www| 免费在线观看完整版高清| 亚洲精品国产av成人精品| 久久九九热精品免费| 欧美在线黄色| 中文字幕av电影在线播放| 久久久亚洲精品成人影院| 男人舔女人的私密视频| 国产视频首页在线观看| 亚洲九九香蕉| 啦啦啦啦在线视频资源| 大码成人一级视频| 国产在线免费精品| 久久国产精品影院| 精品一区二区三区四区五区乱码 | 精品久久蜜臀av无| 欧美激情极品国产一区二区三区| 国产精品免费视频内射| 七月丁香在线播放| 久久精品国产亚洲av涩爱| 一级毛片我不卡| a级毛片在线看网站| 亚洲熟女毛片儿| 日本午夜av视频| 国产无遮挡羞羞视频在线观看| 亚洲精品久久久久久婷婷小说| 国产一级毛片在线| 老司机午夜十八禁免费视频| 国产又爽黄色视频| 男女国产视频网站| 日韩,欧美,国产一区二区三区| 91精品伊人久久大香线蕉| 国产av精品麻豆| 亚洲国产精品成人久久小说| 91国产中文字幕| 国产在线一区二区三区精| 成人三级做爰电影| 国产成人一区二区在线| 9191精品国产免费久久| 免费女性裸体啪啪无遮挡网站| 黄色视频在线播放观看不卡| 亚洲色图 男人天堂 中文字幕| 精品人妻1区二区| 国产亚洲午夜精品一区二区久久| 99国产精品免费福利视频| av国产久精品久网站免费入址| 亚洲av欧美aⅴ国产| 国产精品久久久久久精品古装| 亚洲欧洲国产日韩| 美女中出高潮动态图| 午夜免费鲁丝|