• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cross-Lingual Non-Ferrous Metals Related News Recognition Method Based on CNN with A Limited Bi-Lingual Dictionary

    2019-02-28 07:08:44XudongHongXiaoZhengJinyuanXiaLinnaWeiandWeiXue
    Computers Materials&Continua 2019年2期
    關(guān)鍵詞:有色金屬金屬

    Xudong Hong, Xiao Zheng, , Jinyuan Xia, Linna Wei and Wei Xue

    Abstract: To acquire non-ferrous metals related news from different countries’ internet,we proposed a cross-lingual non-ferrous metals related news recognition method based on CNN with a limited bilingual dictionary. Firstly, considering the lack of related language resources of non-ferrous metals, we use a limited bilingual dictionary and CCA to learn cross-lingual word vector and to represent news in different languages uniformly.Then, to improve the effect of recognition, we use a variant of the CNN to learn recognition features and construct the recognition model. The experimental results show that our proposed method acquires better results.

    Keywords: Non-ferrous metal, CNN, cross-lingual, text classification, word vector.

    1 Introduction

    With the increasing internationalization of non-ferrous metals industry, more and more enterprises pay attention to other countries’ marketing environment, industrial development,policies, and regulations, etc. which, if could be timely acquired, can effectively support enterprises’ business decision. A great deal of such information could be easily found in online news on different countries’ websites, providing us with a convenient way to acquire them. However, considering the various topics of the news and different languages they are using, how to accurately recognize non-ferrous metals related news on different countries’ Internet is a key issue to be solved.

    The recognition of news related to non-ferrous metals is essentially a text classification problem, i.e. to determine whether a piece of news is non-ferrous metal related or not.Due to the news on different countries’ Internet are in different languages, if monolingual text classification method is adopted directly, the training corpus and classification model need to be constructed for different languages respectively, which will consume a large amount of manual effort and lingual resources. We would like to adopt a method that uses only one classifier and monolingual training corpus, to complete the classification of news in different languages. That is cross-lingual text classification method.

    There are many studies on cross-lingual text classification. Most of them focus on how to construct a cross-lingual feature space to uniformly represent news in different languages.Methods proposed include the use of machine translation, bilingual dictionaries, multilingual knowledge base, parallel corpus, comparable corpus and other language resources.

    And on this base, the monolingual text classification method will be used. However,based on the fact that machine translation are not available for many languages yet, nonferrous metals domain is short of language resources, and currently existing methods classify texts on cross-lingual feature space directly, which do not take into account the unique features of non-ferrous metals related news, there is no doubt that these methods will not work well for cross-lingual non-ferrous metals related news recognition.

    This paper, taking the news of Chinese and Vietnamese as the research object, proposed a cross-lingual non-ferrous metals related news recognition method. Firstly, a limited bilingual dictionary and CCA (canonical correlation analysis) were selected to conduct cross-lingual word vectors training for all different languages words. Then the acquired cross-lingual word vectors were adopted to uniformly represent news in different languages and a variant CNN was modified to learn the unique features of non-ferrous metals related news, to construct the recognition model and to recognize the emerging news of different languages.

    2 Related work

    The direct way to achieve cross-lingual text classification is to use machine translation tools to translate different language texts into the same language and then to classify.However, machine translation tools are not yet available to some languages and further research on machine translation in specific domains need to be carried out. Most current methods firstly use cross-lingual resources, including bilingual dictionaries, multilanguage knowledge bases, parallel corpora, comparable corpora, etc. to construct a cross-lingual feature space and uniformly represent different language texts. Secondly,they use traditional monolingual text classification methods to classify, e.g., K-nearest Neighbor [Shin, Abraham and Han (2006)], Naive Bayes [Kim, Han, Rim et al. (2006)],Support Vector Machines [Martens, Huysmans, Setiono et al. (2008)] and so on. The main difference between different methods is the construction of cross-lingual feature space.

    To construct a cross-lingual feature space, Rigutini et al. [Rigutini, Maggini and Liu(2005)] uses bilingual dictionaries to translate words from one language to another and the translated bilingual word pairs as the cross-lingual features. Gliozzo et al. [Gliozzo(2006); Balamurali (2012)] uses the multilingual concepts of WordNet as the crosslingual features. Due to the ambiguity of the words and the limited coverage of dictionaries or knowledge bases, the effect of these methods is poor. Littman et al.[Littman, Dumais and Landaue (1998)] represents the parallel corpus as a matrix of document-bilingual words, conduct LSI on the matrix to acquire the cross-lingual representations of the different language documents. Xiao et al. [Xiao and Guo (2014)]puts parallel corpus, labeled documents of source language, and documents to be classified of target language together into the matrix of document-bilingual words: NMF is first used to fill the matrix, then conduct LSI on the matrix in the same way as mentioned. Li et al. [Li and Shawe-Taylor (2006)] uses KCCA to analyze the correlation between words of different languages on parallel corpus and find a language-independent cross-lingual feature space to represent different language documents. These methods perform better. However, parallel corpus requires strict mutual translation between different languages documents. The construction of parallel corpus is effort costly.

    Recently many researchers use comparable corpus to construct cross-lingual feature space. Since comparable corpus just requires different languages documents describe the same entities or events, the construction of that is relatively easier. Ni et al. [Ni, Sun, Hu et al. (2011)] uses the different languages documents that explain the same concept in Wikipedia as the comparable corpus and uses the bi-lingual topic model to do the bilingual topic mining. The bi-lingual topics acquired will be used as cross-lingual features.To achieve the same effect, the methods based on comparable corpus require a larger corpus than the methods based on parallel corpus.

    As lacking language resources related to non-ferrous metals, these methods are difficult to be directly applied to cross-lingual non-ferrous metals related news recognition. In addition,these methods do not take into account the unique features of the non-ferrous metal related news, and it is difficult to achieve good results. In recent years, neural networks, due to its capacity of features learning, have achieved good results on vector representation of words’semantic [Yoshua (2003); Mikolov (2013)] and document classification [Collobert (2011);Kim (2014)]. In this paper, we will study how to use fewer languages resources to construct cross-lingual word vector to overcome languages barrier, and how to use CNN, neural networks, to recognize non-ferrous metals related news.

    3 Cross-lingual word vector training

    Cross-lingual word vector represents different languages words’ semantics in the same space, measures the semantic similarity between different language words, and is the foundation of our method. Considering non-ferrous metals domain lack of bilingual resources, firstly we train monolingual word vector for different languages words respectively; then use a limited bi-lingual dictionary and CCA to conduct cross-lingual word vector training.

    Table 1: Bi-lingual lexicon of non-ferrous metals domain

    We train the monolingual word vectors respectively, according to whether the words belong to the non-ferrous metals domain or not. For the words that do not belong to the non-ferrous metals domain, different languages news crawled from the different countries Internet are used as training corpus; NLPIR2NLPIR: http://ictclas.nlpir.org.and JvnTextPro3JvnTextPro: http://jvntextpro.sourceforge.net/.are used for Chinese and Vietnamese Word Segmentation respectively; CBOW of word2vec4word2vec: https://code.google.com/archive/p/word2vec/.is used for word vectors training. For the words that belong to the non-ferrous metals domain, considering they seldom appear in this news, a pre-collected bi-lingual lexicon of non-ferrous metals domain is used, as shown in Tab. 1. We search the different language words of the lexicon in Google. The recalled sentences containing those words are used as the training corpus. The words of non-ferrous metals domain in the sentences are recognized by means of Maximum Matching. In the word vectors training of these words, the word vectors of the words that are not non-ferrous metals related are fixed to the previous training results.

    Let CW ∈ Rn1×d1and VW ∈ Rn2×d2be the acquired n1and n2monolingual word vectors of Chinese and Vietnamese words. d1and d2are the vectors’ dimension. M ∈ Rd1×dand N ∈ Rd2×dare two mapping matrices, can map different languages words vectors to a new feature space of d dimension, d=min{rank(CW?),rank(VW?)}. Thus we can obtain CW′∈ Rn1×dand VW′∈ Rn2×d, by Eq. (1). CW′and VW′are the new representation of different languages words in the d-dimensional language-independent feature space.

    Let CW?? CW, VW?? VW. CW??VW?be a limited dictionary which contain n Chinese-Vietnamese words transliteration pairs, CW?∈ Rn×d1, VW?∈ Rn×d1. The Chinese and Vietnamese words in them are one-to-one correspondence. Let x and y be the monolingual word vectors of a translation pair in CW?and CW?, thus x′=xM, y′=yN will be the new representation of the words in the new space.

    The semantics of translated words should be similar. To make the acquired words vectors in the new space be computable, the correlation between word vectors of translated words in the new space should be higher. Based on that, we use CCA to maximize the correlation p(x′,y′) for all x′and y′to get M and N. p(x′,y′) is the Pearson correlation coefficient between x′and y′.

    E(x′y′) is expectations of the inner product of x′and y′. The principle of CCA can be expressed as Eq. (3). We used a Matlab toolkit to get the solution procedure of CCA5CCA: http://www.mathworks.com/help/stats/canoncorr.html..

    After obtaining M and N, CW′and VW′can be obtained by Eq. (1). The feature space acquired will be the cross lingual feature space. CW′and VW′will be the cross lingual word vectors of the Chinese and Vietnamese words.

    4 Recognition model construction

    We construct the recognition model based on a variant CNN6 model. The model architecture shown in Fig. 1, has 4 layers: word vectors layer, convolutional layer,pooling layer, fully connected layer.

    Figure 1: Recognition model based on CNN

    Word vectors layer represents different languages news by cross lingual word vectors of pre-training. Let xi∈Rdbe the d-dimensional cross-lingual word vector of the i-th word of the news. Thus the news of length s is represented as:

    where ⊕ is the concatenation operator. In general, let xi:jrefer to the concatenation of words xi, xi+1, . . . , xi+j.

    The convolutional layer contains several convolution kernels, A convolution kernel is applied to a window of ? words xi:i+?-1, to produce a new feature. A convolution operation can be represented as:

    In our work, f(?) is sigmoid function, W ∈ R?×d. We use 8 convolution kernels, for different convolution kernel, the values of W, b, ? and the calculation of W ?xi:i+?-1are different. No. 1 to 4 convolution kernels, as usual, calculate W ?xi:i+?-1as:

    b ∈ R, ci∈ R, and the values of ? are 2, 3, 4, 5 respectively. 5 to 8 convolution kernels are newly added by us, use a new way to calculate W ?xi:i+?-1. The calculation is shown as:

    b ∈ Rd, ci∈ Rd, the value of ? is 2, 3, 4, 5 respectively. These 8 convolution kernels are applied to each possible window of words in the news {xi:i+?-1|1< i< s-?+1} to produce 8 feature maps. Each feature map is C={ci}1×(s-h+1). The features map acquired from No. 1 to 4 is consist of coded ?-gram features of the news. The features maps acquired by No. 5-8 can be seen as the 4 different sematic representations of the news’d topics. The W, b of 8 convolution kernels are 32 × d+4 parameters to be solved.

    In pooling layer, we apply k-max pooling operation over the feature maps to choose features and pass the features acquired to the fully connected layer. For the feature map acquired by No. 1-4 convolution kernel, the k-max pooling operation can be represented as:

    The result can be seen as the k most meaningful n-gram features of the new. For the feature map acquired by No. 1-4 convolution kernel, the operation can be represented as:

    The result is a matrix of size d× k. The i-th row of the matrix can be seen as the most meaningful semantic representation of i-th topic.

    Fully connected layer, whose output is the probability of the news related to Non-ferrous Metals, whose input is the (8×k+1)×d features acquired from the pooling layer. Let φ be the concatenation of input features, θ be the weights of (8× k+1)×d connections.The probability calculation is shown as:

    If y > 0.5 the news is Non-ferrous Metals related. θ are the parameters to be solved.

    5 Model learning

    We use a supervised approach to learn the model. Let {y(1),y(2),…,y(n)} be the labels of n news for training. If the i-th news is Non-ferrous Metals related then y(i)=1 else y(i)=0. The loss function of the recognition model is shown as Eq. (11). {y1,y2,…,yn}are the outputs of the recognition model on the n news.

    We minimize the loss function to get the values of {W,b,θ}. Different values of{W,b,θ} represent different encoding methods of features.

    For the solution we use mini-batch gradient descent algorithm. For regularization, we employ dropout on the pooling layer with a constraint on l2-norms of the weight vectors[Hinton, Srivastava and Krizhevsky (2012)]. Dropout prevents co-adaptation of hidden units by randomly dropping out a proportion p of the chosen features during forward and back propagation. At training time, during forward propagation, dropout uses θT(φ °r)to replace the θTφ in Eq. (10), where ° is the element-wise multiplication operator and r is a vector of Bernoulli random variables with probability p of being 1. r has the same length with φ. During forward Gradients are back propagated only through the units of being 1. At test time, dropout uses p to scale the learned weights θT, i.e. use pθTφ to replace the θTφ. We additionally constrain l2-norms of the weights θTby rescaling θTto have ||θT||2 = ?whenever ||θT||2 >? after a gradient descent step.

    6 Experiments

    6.1 Data and evaluations

    Since there is no available corpus for cross-lingual non-ferrous metal related news recognition currently, to the best of our knowledge, we construct a corpus by ourselves.We crawled a number of non-ferrous metal related news from “smm”, “cnmn”, etc.Chinese websites and “Vinanet”, etc. Vietnamese websites, as positive data, And we crawled a number of news from the political, military, etc. non-ferrous metal unrelated channels on some comprehensive news website, as negative data, at the same times. The number of training and test data is shown in Tab. 2.

    Table 2: Data distribution of corpus

    We use Precision, Recall, and F-measure to evaluate the effect of our method, which are calculated as follow.

    TP is the number of true positive of recognition results. FP is the number of false positive of it P is the number of positive of test data.

    4.2 Results and analysis

    Experiment 1: Compare with different methods of cross-lingual news classification.

    In this paper, we implement another two cross-lingual text classification methods presented in Gliozzo et al. [Gliozzo and Strapparava (2006)] and [Ni, Sun, Hu et al.(2011)]. The former bases on the bi-lingual dictionary. The latter bases on the comparable corpus. These two methods have the best performance in the methods that use the same bilingual resources.

    For the methods presented in Ni et al. [Ni, Sun, Hu et al. (2011)], we collected 3000 Chinese-Vietnamese document-pairs from Wikipedia by a web crawler. Each pair is a different language description of the same event, person, etc. We use these documentpairs as comparable corpus and apply bi-lingual topic model on it. According to Ni et al.[Ni, Sun, Hu et al. (2011)], we use topics number of 400, hyper-parameters α of 0.5/400 and β of 0.1, use SVM as a classifier.

    For the method presented in Gliozzo et al. [Gliozzo and Strapparava (2006)], since MultiWordNet does not contain Vietnamese and contains very few non-ferrous metal related words, we experiment with the bi-lingual lexicon that we pre-constructed as shown in Tab. 1. The classifier is SVM too.

    For our method, according to Hinton et al. [Hinton, Srivastava and Krizhevsky (2012)],we set dimension of cross-lingual word vectors d=400. The k of pooling layer is set to 10 after several trials. The performance is the best like that

    We train all these 3 methods on the same training data in Chinese and test them on the test data in Chinese and Vietnamese respectively and compare the results of 3 methods.The comparison results of these methods in monolingual environment are shown in Fig.2(a). The results in cross-lingual environment are shown in Fig. 2(b). In the figure “A” is the results of our method, “B” is the results of Ni et al. [Ni, Sun, Hu et al. (2011)], “C” is the results of Gliozzo et al. [Gliozzo and Strapparava (2006)].

    Figure 2 (a): Comparison results in monolingual environment

    Figure 2 (b): Comparison results in cross-lingual environment

    Experiment results show that our method has significantly improved the effect in both monolingual and cross-lingual environments compared with the other two methods. And in cross-language environments, our method improves the effect more obvious. It illustrates that using CNN to construct recognition model can improve the effect of recognition. Cross-lingual word vectors can better represent different language news and overcome languages barrier, so that improve the effect in cross-lingual environment.

    Experiment 2: Compare the experiment results of whether non-ferrous metals related words are recognized

    Before the training of cross-lingual word vector and the representation of news in different language, we both need to word segment. In our work, the words of non-ferrous metals related in the sentences are recognized in the segmentation by means of Maximum Matching. In order to explore the effect of that, we conduct this experiment on the whole test data include Chinese and Vietnamese test data. The results are shown in Fig. 3. “A”are the results of non-ferrous metals related words are recognized, “B” are the results of those are not recognized. Recognition or not will result in different representations of the news. For example, if the Chinese word “有色金屬” (Non-ferrous metal) in a news have not been recognized, it will be divided as “有/色/金屬” (have/colors/metal), then the meaning of the word and the representations of the news will be changed. That will affect the recognition result.

    Figure 3: Results of whether non-ferrous metals related words are identified or not

    Experiment results show that after non-ferrous metals related words are recognized the effect of recognition is improved obviously. It illustrates that recognizing the non-ferrous metals related words of the news is necessary for non-ferrous metals related news recognition. At the same time, it also illustrates that the non-ferrous metals related words of a piece of news are important to determine whether the news is non-ferrous metals related.

    Experiment 3: Explorer the effect of the newly added convolution kernels

    In the convolution layer of the CNN model, the No. 5-8 convolution kernels are newly added by us. They use a new calculation way. In order to explore the effect of the newly added kernels, we conduct this experiment on the whole test data. The results are shown in Fig. 4. “A” are the results of the model that uses the new kernels. “B” are the results of the model that doesn’t use.

    Experiment results show that the model that uses newly added kernels performs better. It illustrates that the convolution kernels newly added are useful for improving the recognition effect.

    7 Conclusion

    To timely and accurately acquire non-ferrous metals related news from different countries’ internet. In this paper, we proposed cross-lingual non-ferrous metals related news recognition method based on CNN with a limited dictionary. We use CCA and a limited dictionary to train cross-lingual word vectors; use the acquired cross-lingual word vectors represent news in different languages, overcome languages barrier; use CNN to learn the features of non-ferrous metals related news and construct recognition model,add new convolution kernels to the CNN based model. Experiments results show these can improve the cross-lingual recognition results obviously. Considering that sentences or words in different places of a piece of news have different ability to represent news semantics and in a cross-lingual situation, a word in one language can be translated into multiple words in another language. All these factors can affect the recognition result. In our future study, we will take these factors into consideration.

    Acknowledgement:The Major Technologies R & D Special Program of Anhui, China(Grant No. 16030901060). The National Natural Science Foundation of China (Grant No.61502010). The Natural Science Foundation of Anhui Province (Grant No. 1608085QF146).The Natural Science Foundation of China (Grant No. 61806004).

    猜你喜歡
    有色金屬金屬
    金屬之美
    睿士(2023年10期)2023-11-06 14:12:16
    致命金屬
    “金屬的化學(xué)性質(zhì)”同步演練
    有色金屬“回暖” 中長期謹(jǐn)慎樂觀
    中國外匯(2019年7期)2019-07-13 05:45:02
    《有色金屬設(shè)計(jì)》2019年總目次
    筑底企穩(wěn)有色金屬行業(yè)已過最難階段
    資源再生(2017年4期)2017-06-15 20:28:30
    金屬美甲
    Coco薇(2015年5期)2016-03-29 23:14:09
    2015年我國十種有色金屬總產(chǎn)量達(dá)5090萬噸
    有色金屬設(shè)計(jì) 歡迎刊登廣告
    《有色金屬設(shè)計(jì)》2014年總目次
    天堂影院成人在线观看| 熟女电影av网| 久久精品久久久久久噜噜老黄| 国产精品三级大全| 国产淫片久久久久久久久| 又爽又黄a免费视频| www.av在线官网国产| 亚洲自拍偷在线| 麻豆国产97在线/欧美| 午夜福利视频1000在线观看| 丝瓜视频免费看黄片| 欧美高清成人免费视频www| 边亲边吃奶的免费视频| 色综合站精品国产| 亚洲精品日本国产第一区| 欧美成人午夜免费资源| 国产精品1区2区在线观看.| av国产免费在线观看| 久久综合国产亚洲精品| 超碰97精品在线观看| 国产在线男女| 只有这里有精品99| 国产黄色小视频在线观看| 国产中年淑女户外野战色| 日韩欧美国产在线观看| 午夜福利在线观看免费完整高清在| 草草在线视频免费看| 搡老妇女老女人老熟妇| 蜜桃亚洲精品一区二区三区| 伦理电影大哥的女人| 97人妻精品一区二区三区麻豆| 美女xxoo啪啪120秒动态图| 国产精品美女特级片免费视频播放器| 18+在线观看网站| 中文字幕av成人在线电影| 2018国产大陆天天弄谢| 最近的中文字幕免费完整| 美女被艹到高潮喷水动态| 大话2 男鬼变身卡| 久久精品综合一区二区三区| 久久久久性生活片| 国产午夜精品一二区理论片| 国产午夜精品久久久久久一区二区三区| 国产亚洲最大av| 国产精品久久久久久精品电影小说 | 成年女人看的毛片在线观看| 中文精品一卡2卡3卡4更新| 春色校园在线视频观看| 久久精品熟女亚洲av麻豆精品 | 91久久精品国产一区二区成人| 一级av片app| 亚洲在久久综合| 国产精品福利在线免费观看| 国产视频首页在线观看| 久热久热在线精品观看| 女人久久www免费人成看片| 91aial.com中文字幕在线观看| 亚洲最大成人av| 两个人视频免费观看高清| 午夜激情福利司机影院| 观看免费一级毛片| 成人亚洲欧美一区二区av| 日本wwww免费看| 午夜福利视频精品| 免费少妇av软件| 国产免费福利视频在线观看| 亚洲精品国产成人久久av| 三级毛片av免费| 午夜免费男女啪啪视频观看| 久久99蜜桃精品久久| 久久综合国产亚洲精品| 高清毛片免费看| 亚洲经典国产精华液单| 久久这里只有精品中国| 久久久精品94久久精品| 乱人视频在线观看| 最近中文字幕高清免费大全6| 欧美一区二区亚洲| 天美传媒精品一区二区| 精品久久久久久久末码| 能在线免费观看的黄片| 特大巨黑吊av在线直播| 成人一区二区视频在线观看| 亚洲国产日韩欧美精品在线观看| 黄色一级大片看看| 亚洲第一区二区三区不卡| 国产三级在线视频| 免费av毛片视频| 久久久精品欧美日韩精品| 午夜免费激情av| 成人亚洲精品av一区二区| 大香蕉久久网| 国产一区亚洲一区在线观看| 国产中年淑女户外野战色| 色5月婷婷丁香| 亚洲国产精品sss在线观看| 亚洲精品久久午夜乱码| 久久久久久久久久久丰满| 色网站视频免费| 日韩欧美三级三区| 久久人人爽人人片av| 国产伦理片在线播放av一区| 菩萨蛮人人尽说江南好唐韦庄| 插阴视频在线观看视频| 日韩电影二区| 深夜a级毛片| 亚洲aⅴ乱码一区二区在线播放| 高清毛片免费看| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 麻豆av噜噜一区二区三区| 一个人看视频在线观看www免费| 又大又黄又爽视频免费| 午夜免费激情av| 精品国内亚洲2022精品成人| 国产一区二区三区av在线| 国精品久久久久久国模美| 一级毛片久久久久久久久女| 久久久久九九精品影院| 国产精品不卡视频一区二区| 国产伦精品一区二区三区视频9| 人人妻人人澡人人爽人人夜夜 | 99热这里只有是精品在线观看| 精品少妇黑人巨大在线播放| 亚洲精品乱码久久久久久按摩| 91午夜精品亚洲一区二区三区| 午夜免费男女啪啪视频观看| 免费av不卡在线播放| 只有这里有精品99| 777米奇影视久久| 少妇裸体淫交视频免费看高清| 成年人午夜在线观看视频 | 夜夜爽夜夜爽视频| 全区人妻精品视频| 亚洲精品日韩av片在线观看| 国产男人的电影天堂91| 欧美精品国产亚洲| 国产av国产精品国产| 国语对白做爰xxxⅹ性视频网站| 男人狂女人下面高潮的视频| 国产伦在线观看视频一区| 人人妻人人澡欧美一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 成人一区二区视频在线观看| 全区人妻精品视频| 亚洲欧美日韩无卡精品| 精品久久久久久久久av| 午夜精品在线福利| 成年av动漫网址| a级一级毛片免费在线观看| 亚洲欧美精品自产自拍| 美女主播在线视频| 亚洲精品乱久久久久久| 免费大片18禁| 免费观看的影片在线观看| 免费看日本二区| 小蜜桃在线观看免费完整版高清| 国产精品一区二区三区四区免费观看| 一区二区三区高清视频在线| 亚洲国产av新网站| 一级毛片久久久久久久久女| 熟女人妻精品中文字幕| 亚洲av电影不卡..在线观看| 成人午夜精彩视频在线观看| 夫妻性生交免费视频一级片| 日韩中字成人| 天美传媒精品一区二区| 大又大粗又爽又黄少妇毛片口| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久| 人人妻人人看人人澡| 国产一区二区在线观看日韩| 精品人妻熟女av久视频| 人妻制服诱惑在线中文字幕| 国产亚洲午夜精品一区二区久久 | 欧美+日韩+精品| 免费av毛片视频| 国产黄色视频一区二区在线观看| 人体艺术视频欧美日本| 天美传媒精品一区二区| 午夜免费观看性视频| 免费观看a级毛片全部| 大片免费播放器 马上看| 国产淫语在线视频| 97人妻精品一区二区三区麻豆| 禁无遮挡网站| 岛国毛片在线播放| 舔av片在线| 直男gayav资源| av网站免费在线观看视频 | 日韩在线高清观看一区二区三区| 3wmmmm亚洲av在线观看| 亚洲最大成人手机在线| 看十八女毛片水多多多| 成人漫画全彩无遮挡| 日韩欧美国产在线观看| 精品久久久久久久久亚洲| 亚洲av一区综合| 亚洲国产精品成人综合色| 日本午夜av视频| www.色视频.com| 91在线精品国自产拍蜜月| 国产成人aa在线观看| 少妇熟女aⅴ在线视频| 日韩三级伦理在线观看| 国产v大片淫在线免费观看| 国产成人精品久久久久久| 视频中文字幕在线观看| 精品久久久久久久人妻蜜臀av| 国产不卡一卡二| 男人和女人高潮做爰伦理| 久久久久久久久久成人| 日韩av免费高清视频| 久热久热在线精品观看| 日日啪夜夜撸| 国语对白做爰xxxⅹ性视频网站| 中文资源天堂在线| 中文精品一卡2卡3卡4更新| 如何舔出高潮| 久久99精品国语久久久| 精品一区二区三区视频在线| 色综合色国产| 中国国产av一级| 男女那种视频在线观看| 久久99热这里只有精品18| 免费黄色在线免费观看| 欧美xxⅹ黑人| 亚洲精品影视一区二区三区av| 精品久久久久久久人妻蜜臀av| 精品一区二区免费观看| 久久草成人影院| 1000部很黄的大片| 国产在视频线精品| 高清视频免费观看一区二区 | 日韩欧美国产在线观看| 久久久久精品久久久久真实原创| 女人被狂操c到高潮| 日本-黄色视频高清免费观看| 嫩草影院新地址| 秋霞伦理黄片| 亚州av有码| 如何舔出高潮| 国产午夜精品久久久久久一区二区三区| 国产亚洲av嫩草精品影院| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 99热这里只有是精品50| 99久久精品热视频| 女的被弄到高潮叫床怎么办| 亚洲成人精品中文字幕电影| 在线免费观看不下载黄p国产| 高清午夜精品一区二区三区| 欧美xxxx黑人xx丫x性爽| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 日日啪夜夜爽| 哪个播放器可以免费观看大片| 午夜老司机福利剧场| 亚洲丝袜综合中文字幕| 日韩制服骚丝袜av| 老司机影院成人| 日本黄色片子视频| 国产精品精品国产色婷婷| 国内精品宾馆在线| 真实男女啪啪啪动态图| 两个人的视频大全免费| 国产精品三级大全| 禁无遮挡网站| 亚洲国产精品国产精品| 成人亚洲精品一区在线观看 | 春色校园在线视频观看| 久久久久久久亚洲中文字幕| 国产午夜福利久久久久久| 亚洲自偷自拍三级| 久久久色成人| 精品久久久久久久人妻蜜臀av| 男人舔奶头视频| 在线观看美女被高潮喷水网站| 亚洲精品456在线播放app| 国产毛片a区久久久久| 亚洲伊人久久精品综合| 久久精品久久久久久久性| 永久免费av网站大全| 一级毛片我不卡| 九草在线视频观看| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 国产综合精华液| 成人午夜精彩视频在线观看| 国产精品三级大全| 美女被艹到高潮喷水动态| 国产精品国产三级国产av玫瑰| 亚洲av电影不卡..在线观看| 美女主播在线视频| 99久国产av精品| 日日啪夜夜撸| 韩国av在线不卡| 1000部很黄的大片| 中文乱码字字幕精品一区二区三区 | 国产精品日韩av在线免费观看| 午夜久久久久精精品| 欧美bdsm另类| 中文字幕免费在线视频6| 国产极品天堂在线| 成人av在线播放网站| 夜夜看夜夜爽夜夜摸| 性插视频无遮挡在线免费观看| 久久久久久久久久成人| 视频中文字幕在线观看| 国产午夜精品论理片| 色哟哟·www| 天堂网av新在线| 国产 亚洲一区二区三区 | 婷婷色av中文字幕| 91aial.com中文字幕在线观看| 国产中年淑女户外野战色| 欧美精品一区二区大全| 精品人妻熟女av久视频| 中文字幕av成人在线电影| 亚洲精品日本国产第一区| 国产熟女欧美一区二区| 一区二区三区免费毛片| 一个人看的www免费观看视频| 视频中文字幕在线观看| 免费看光身美女| 最近视频中文字幕2019在线8| 中文字幕久久专区| 日本猛色少妇xxxxx猛交久久| 国产一区有黄有色的免费视频 | 亚洲欧美精品专区久久| 国产精品一区二区性色av| 91久久精品国产一区二区三区| 欧美日韩亚洲高清精品| 国产精品久久久久久久电影| 97在线视频观看| 婷婷色av中文字幕| av在线亚洲专区| 中文欧美无线码| 日本免费a在线| 久久精品国产亚洲av天美| 日韩欧美 国产精品| 日韩成人av中文字幕在线观看| 亚洲国产精品国产精品| 国产乱人视频| 91久久精品国产一区二区成人| 国产高清三级在线| 亚洲成人精品中文字幕电影| 禁无遮挡网站| 国产成人一区二区在线| 丰满人妻一区二区三区视频av| a级毛色黄片| 熟女电影av网| 综合色av麻豆| 丝袜喷水一区| 3wmmmm亚洲av在线观看| 亚洲成人久久爱视频| 国产黄片美女视频| 国产精品一区二区三区四区久久| 亚洲四区av| 国产黄片视频在线免费观看| 极品教师在线视频| 一个人看的www免费观看视频| 天堂√8在线中文| 免费看av在线观看网站| 成年女人看的毛片在线观看| 国产黄片视频在线免费观看| 国产淫语在线视频| 国内揄拍国产精品人妻在线| 国产成人aa在线观看| 夫妻性生交免费视频一级片| 久久久精品欧美日韩精品| 久久久a久久爽久久v久久| 国产真实伦视频高清在线观看| 久久国内精品自在自线图片| 伊人久久精品亚洲午夜| 亚洲欧洲日产国产| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲5aaaaa淫片| 男人和女人高潮做爰伦理| 身体一侧抽搐| 亚洲欧美一区二区三区国产| 2021天堂中文幕一二区在线观| 建设人人有责人人尽责人人享有的 | 亚洲国产最新在线播放| 色网站视频免费| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 好男人在线观看高清免费视频| 1000部很黄的大片| 国产中年淑女户外野战色| 亚洲精品久久久久久婷婷小说| 三级国产精品片| 亚洲激情五月婷婷啪啪| 亚洲成人一二三区av| 亚洲成人中文字幕在线播放| 久久精品国产亚洲av天美| 久久久久久久久大av| 国产一区有黄有色的免费视频 | 尤物成人国产欧美一区二区三区| 国产精品人妻久久久影院| 精品国内亚洲2022精品成人| 搡老乐熟女国产| 人妻一区二区av| 69人妻影院| 色综合色国产| 免费观看的影片在线观看| 我的老师免费观看完整版| 人妻少妇偷人精品九色| 只有这里有精品99| 国产91av在线免费观看| 亚洲精品乱久久久久久| 精品久久久久久久人妻蜜臀av| 中国国产av一级| 伊人久久精品亚洲午夜| 能在线免费看毛片的网站| 亚洲欧美一区二区三区黑人 | 午夜福利成人在线免费观看| 六月丁香七月| 国产69精品久久久久777片| 国产精品.久久久| 色哟哟·www| 免费黄频网站在线观看国产| 国产一区二区在线观看日韩| 亚洲精品成人av观看孕妇| 三级国产精品欧美在线观看| 精品久久久久久久末码| 99re6热这里在线精品视频| 淫秽高清视频在线观看| 亚洲在线自拍视频| www.色视频.com| 欧美极品一区二区三区四区| 免费看a级黄色片| 国产精品久久久久久精品电影小说 | 亚洲欧洲国产日韩| 亚洲一区高清亚洲精品| 亚洲精品亚洲一区二区| 亚洲av免费高清在线观看| 久久久久久久久久人人人人人人| 少妇裸体淫交视频免费看高清| 亚洲精品日本国产第一区| 国产精品久久久久久久电影| 51国产日韩欧美| 国产黄频视频在线观看| 亚洲av电影不卡..在线观看| 国产精品国产三级国产av玫瑰| 国产免费又黄又爽又色| av在线天堂中文字幕| 国产成人精品福利久久| 午夜免费激情av| ponron亚洲| 亚洲一区高清亚洲精品| 亚洲国产精品专区欧美| 日韩欧美一区视频在线观看 | 不卡视频在线观看欧美| 久久韩国三级中文字幕| 亚洲第一区二区三区不卡| 欧美xxxx性猛交bbbb| 国产 一区精品| 国产久久久一区二区三区| 高清日韩中文字幕在线| 午夜免费观看性视频| 亚洲av一区综合| 大香蕉久久网| 亚洲最大成人手机在线| 男人舔奶头视频| 18禁动态无遮挡网站| 国产精品久久久久久精品电影| 国产探花在线观看一区二区| 18禁在线播放成人免费| 国产精品一区二区三区四区免费观看| 免费观看的影片在线观看| 亚洲精品日韩在线中文字幕| 国产精品蜜桃在线观看| 亚洲伊人久久精品综合| 精品久久久久久久人妻蜜臀av| 欧美性猛交╳xxx乱大交人| 久久久久久久久久久免费av| 亚洲国产色片| 精品人妻视频免费看| 亚洲精品乱码久久久v下载方式| 五月玫瑰六月丁香| 国产伦在线观看视频一区| 丝袜美腿在线中文| 亚洲欧美一区二区三区黑人 | 日韩伦理黄色片| 国产综合懂色| 我要看日韩黄色一级片| 网址你懂的国产日韩在线| 久久久色成人| 精品人妻视频免费看| 日韩欧美国产在线观看| av一本久久久久| 国产精品.久久久| 久久久久网色| 国产 一区精品| 乱码一卡2卡4卡精品| 夫妻午夜视频| 亚洲色图av天堂| 国产精品嫩草影院av在线观看| 2021天堂中文幕一二区在线观| 日本三级黄在线观看| 国产成人福利小说| 国产毛片a区久久久久| 久久久色成人| 中文欧美无线码| 熟妇人妻不卡中文字幕| 床上黄色一级片| 人妻制服诱惑在线中文字幕| 97热精品久久久久久| 欧美日韩综合久久久久久| 国产精品久久视频播放| 三级国产精品片| 成年版毛片免费区| 天美传媒精品一区二区| 久久久久免费精品人妻一区二区| 激情五月婷婷亚洲| 国产激情偷乱视频一区二区| 亚洲av男天堂| 国产色爽女视频免费观看| 亚洲av免费在线观看| 天堂网av新在线| 国产国拍精品亚洲av在线观看| 黄色欧美视频在线观看| 一级a做视频免费观看| 日韩一区二区视频免费看| 久久精品综合一区二区三区| 国产又色又爽无遮挡免| 18禁在线播放成人免费| 99re6热这里在线精品视频| 一区二区三区四区激情视频| 女人久久www免费人成看片| 嫩草影院入口| 精品国产一区二区三区久久久樱花 | 久久午夜福利片| 亚洲电影在线观看av| 在线免费十八禁| 亚洲精品视频女| 天堂俺去俺来也www色官网 | 欧美高清性xxxxhd video| 色哟哟·www| 成人亚洲精品一区在线观看 | 国产精品人妻久久久影院| 国产精品99久久久久久久久| 精品欧美国产一区二区三| 日韩欧美精品v在线| 尤物成人国产欧美一区二区三区| 亚洲av电影在线观看一区二区三区 | av在线蜜桃| 女的被弄到高潮叫床怎么办| 日本猛色少妇xxxxx猛交久久| 白带黄色成豆腐渣| 亚洲成人久久爱视频| 99久久精品热视频| 日日摸夜夜添夜夜添av毛片| 男插女下体视频免费在线播放| 黄片无遮挡物在线观看| av在线老鸭窝| 一夜夜www| 中文天堂在线官网| 久久精品国产亚洲av天美| 国产高清国产精品国产三级 | 黄色日韩在线| 国产视频内射| 欧美精品国产亚洲| 久久久久久久久久久免费av| 99热全是精品| 国产一区亚洲一区在线观看| 欧美激情久久久久久爽电影| 97精品久久久久久久久久精品| 国产成人91sexporn| 国产伦一二天堂av在线观看| 在线 av 中文字幕| 亚洲欧洲国产日韩| 欧美日本视频| 久久久色成人| 亚洲美女视频黄频| 国产精品不卡视频一区二区| 99久国产av精品国产电影| 看非洲黑人一级黄片| a级一级毛片免费在线观看| 97热精品久久久久久| 亚洲自拍偷在线| 免费人成在线观看视频色| 精品久久久久久久末码| 91aial.com中文字幕在线观看| 精品国内亚洲2022精品成人| 久久99蜜桃精品久久| 久久久久久久亚洲中文字幕| 国精品久久久久久国模美| 亚洲精品自拍成人| 免费黄频网站在线观看国产| 成人午夜高清在线视频| 日韩av在线免费看完整版不卡| 免费黄频网站在线观看国产| 18禁在线播放成人免费| 国产精品.久久久| 国产亚洲av嫩草精品影院| 亚洲av中文字字幕乱码综合| 亚洲成人精品中文字幕电影| 中文字幕制服av| 美女国产视频在线观看| 精品久久久噜噜| 欧美另类一区| 国产伦一二天堂av在线观看| 男女视频在线观看网站免费| 国产一级毛片七仙女欲春2| 99热全是精品| 成人国产麻豆网| 免费观看精品视频网站| 一级毛片久久久久久久久女| av福利片在线观看| 久99久视频精品免费| 亚洲熟女精品中文字幕|