• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cross-Lingual Non-Ferrous Metals Related News Recognition Method Based on CNN with A Limited Bi-Lingual Dictionary

    2019-02-28 07:08:44XudongHongXiaoZhengJinyuanXiaLinnaWeiandWeiXue
    Computers Materials&Continua 2019年2期
    關(guān)鍵詞:有色金屬金屬

    Xudong Hong, Xiao Zheng, , Jinyuan Xia, Linna Wei and Wei Xue

    Abstract: To acquire non-ferrous metals related news from different countries’ internet,we proposed a cross-lingual non-ferrous metals related news recognition method based on CNN with a limited bilingual dictionary. Firstly, considering the lack of related language resources of non-ferrous metals, we use a limited bilingual dictionary and CCA to learn cross-lingual word vector and to represent news in different languages uniformly.Then, to improve the effect of recognition, we use a variant of the CNN to learn recognition features and construct the recognition model. The experimental results show that our proposed method acquires better results.

    Keywords: Non-ferrous metal, CNN, cross-lingual, text classification, word vector.

    1 Introduction

    With the increasing internationalization of non-ferrous metals industry, more and more enterprises pay attention to other countries’ marketing environment, industrial development,policies, and regulations, etc. which, if could be timely acquired, can effectively support enterprises’ business decision. A great deal of such information could be easily found in online news on different countries’ websites, providing us with a convenient way to acquire them. However, considering the various topics of the news and different languages they are using, how to accurately recognize non-ferrous metals related news on different countries’ Internet is a key issue to be solved.

    The recognition of news related to non-ferrous metals is essentially a text classification problem, i.e. to determine whether a piece of news is non-ferrous metal related or not.Due to the news on different countries’ Internet are in different languages, if monolingual text classification method is adopted directly, the training corpus and classification model need to be constructed for different languages respectively, which will consume a large amount of manual effort and lingual resources. We would like to adopt a method that uses only one classifier and monolingual training corpus, to complete the classification of news in different languages. That is cross-lingual text classification method.

    There are many studies on cross-lingual text classification. Most of them focus on how to construct a cross-lingual feature space to uniformly represent news in different languages.Methods proposed include the use of machine translation, bilingual dictionaries, multilingual knowledge base, parallel corpus, comparable corpus and other language resources.

    And on this base, the monolingual text classification method will be used. However,based on the fact that machine translation are not available for many languages yet, nonferrous metals domain is short of language resources, and currently existing methods classify texts on cross-lingual feature space directly, which do not take into account the unique features of non-ferrous metals related news, there is no doubt that these methods will not work well for cross-lingual non-ferrous metals related news recognition.

    This paper, taking the news of Chinese and Vietnamese as the research object, proposed a cross-lingual non-ferrous metals related news recognition method. Firstly, a limited bilingual dictionary and CCA (canonical correlation analysis) were selected to conduct cross-lingual word vectors training for all different languages words. Then the acquired cross-lingual word vectors were adopted to uniformly represent news in different languages and a variant CNN was modified to learn the unique features of non-ferrous metals related news, to construct the recognition model and to recognize the emerging news of different languages.

    2 Related work

    The direct way to achieve cross-lingual text classification is to use machine translation tools to translate different language texts into the same language and then to classify.However, machine translation tools are not yet available to some languages and further research on machine translation in specific domains need to be carried out. Most current methods firstly use cross-lingual resources, including bilingual dictionaries, multilanguage knowledge bases, parallel corpora, comparable corpora, etc. to construct a cross-lingual feature space and uniformly represent different language texts. Secondly,they use traditional monolingual text classification methods to classify, e.g., K-nearest Neighbor [Shin, Abraham and Han (2006)], Naive Bayes [Kim, Han, Rim et al. (2006)],Support Vector Machines [Martens, Huysmans, Setiono et al. (2008)] and so on. The main difference between different methods is the construction of cross-lingual feature space.

    To construct a cross-lingual feature space, Rigutini et al. [Rigutini, Maggini and Liu(2005)] uses bilingual dictionaries to translate words from one language to another and the translated bilingual word pairs as the cross-lingual features. Gliozzo et al. [Gliozzo(2006); Balamurali (2012)] uses the multilingual concepts of WordNet as the crosslingual features. Due to the ambiguity of the words and the limited coverage of dictionaries or knowledge bases, the effect of these methods is poor. Littman et al.[Littman, Dumais and Landaue (1998)] represents the parallel corpus as a matrix of document-bilingual words, conduct LSI on the matrix to acquire the cross-lingual representations of the different language documents. Xiao et al. [Xiao and Guo (2014)]puts parallel corpus, labeled documents of source language, and documents to be classified of target language together into the matrix of document-bilingual words: NMF is first used to fill the matrix, then conduct LSI on the matrix in the same way as mentioned. Li et al. [Li and Shawe-Taylor (2006)] uses KCCA to analyze the correlation between words of different languages on parallel corpus and find a language-independent cross-lingual feature space to represent different language documents. These methods perform better. However, parallel corpus requires strict mutual translation between different languages documents. The construction of parallel corpus is effort costly.

    Recently many researchers use comparable corpus to construct cross-lingual feature space. Since comparable corpus just requires different languages documents describe the same entities or events, the construction of that is relatively easier. Ni et al. [Ni, Sun, Hu et al. (2011)] uses the different languages documents that explain the same concept in Wikipedia as the comparable corpus and uses the bi-lingual topic model to do the bilingual topic mining. The bi-lingual topics acquired will be used as cross-lingual features.To achieve the same effect, the methods based on comparable corpus require a larger corpus than the methods based on parallel corpus.

    As lacking language resources related to non-ferrous metals, these methods are difficult to be directly applied to cross-lingual non-ferrous metals related news recognition. In addition,these methods do not take into account the unique features of the non-ferrous metal related news, and it is difficult to achieve good results. In recent years, neural networks, due to its capacity of features learning, have achieved good results on vector representation of words’semantic [Yoshua (2003); Mikolov (2013)] and document classification [Collobert (2011);Kim (2014)]. In this paper, we will study how to use fewer languages resources to construct cross-lingual word vector to overcome languages barrier, and how to use CNN, neural networks, to recognize non-ferrous metals related news.

    3 Cross-lingual word vector training

    Cross-lingual word vector represents different languages words’ semantics in the same space, measures the semantic similarity between different language words, and is the foundation of our method. Considering non-ferrous metals domain lack of bilingual resources, firstly we train monolingual word vector for different languages words respectively; then use a limited bi-lingual dictionary and CCA to conduct cross-lingual word vector training.

    Table 1: Bi-lingual lexicon of non-ferrous metals domain

    We train the monolingual word vectors respectively, according to whether the words belong to the non-ferrous metals domain or not. For the words that do not belong to the non-ferrous metals domain, different languages news crawled from the different countries Internet are used as training corpus; NLPIR2NLPIR: http://ictclas.nlpir.org.and JvnTextPro3JvnTextPro: http://jvntextpro.sourceforge.net/.are used for Chinese and Vietnamese Word Segmentation respectively; CBOW of word2vec4word2vec: https://code.google.com/archive/p/word2vec/.is used for word vectors training. For the words that belong to the non-ferrous metals domain, considering they seldom appear in this news, a pre-collected bi-lingual lexicon of non-ferrous metals domain is used, as shown in Tab. 1. We search the different language words of the lexicon in Google. The recalled sentences containing those words are used as the training corpus. The words of non-ferrous metals domain in the sentences are recognized by means of Maximum Matching. In the word vectors training of these words, the word vectors of the words that are not non-ferrous metals related are fixed to the previous training results.

    Let CW ∈ Rn1×d1and VW ∈ Rn2×d2be the acquired n1and n2monolingual word vectors of Chinese and Vietnamese words. d1and d2are the vectors’ dimension. M ∈ Rd1×dand N ∈ Rd2×dare two mapping matrices, can map different languages words vectors to a new feature space of d dimension, d=min{rank(CW?),rank(VW?)}. Thus we can obtain CW′∈ Rn1×dand VW′∈ Rn2×d, by Eq. (1). CW′and VW′are the new representation of different languages words in the d-dimensional language-independent feature space.

    Let CW?? CW, VW?? VW. CW??VW?be a limited dictionary which contain n Chinese-Vietnamese words transliteration pairs, CW?∈ Rn×d1, VW?∈ Rn×d1. The Chinese and Vietnamese words in them are one-to-one correspondence. Let x and y be the monolingual word vectors of a translation pair in CW?and CW?, thus x′=xM, y′=yN will be the new representation of the words in the new space.

    The semantics of translated words should be similar. To make the acquired words vectors in the new space be computable, the correlation between word vectors of translated words in the new space should be higher. Based on that, we use CCA to maximize the correlation p(x′,y′) for all x′and y′to get M and N. p(x′,y′) is the Pearson correlation coefficient between x′and y′.

    E(x′y′) is expectations of the inner product of x′and y′. The principle of CCA can be expressed as Eq. (3). We used a Matlab toolkit to get the solution procedure of CCA5CCA: http://www.mathworks.com/help/stats/canoncorr.html..

    After obtaining M and N, CW′and VW′can be obtained by Eq. (1). The feature space acquired will be the cross lingual feature space. CW′and VW′will be the cross lingual word vectors of the Chinese and Vietnamese words.

    4 Recognition model construction

    We construct the recognition model based on a variant CNN6 model. The model architecture shown in Fig. 1, has 4 layers: word vectors layer, convolutional layer,pooling layer, fully connected layer.

    Figure 1: Recognition model based on CNN

    Word vectors layer represents different languages news by cross lingual word vectors of pre-training. Let xi∈Rdbe the d-dimensional cross-lingual word vector of the i-th word of the news. Thus the news of length s is represented as:

    where ⊕ is the concatenation operator. In general, let xi:jrefer to the concatenation of words xi, xi+1, . . . , xi+j.

    The convolutional layer contains several convolution kernels, A convolution kernel is applied to a window of ? words xi:i+?-1, to produce a new feature. A convolution operation can be represented as:

    In our work, f(?) is sigmoid function, W ∈ R?×d. We use 8 convolution kernels, for different convolution kernel, the values of W, b, ? and the calculation of W ?xi:i+?-1are different. No. 1 to 4 convolution kernels, as usual, calculate W ?xi:i+?-1as:

    b ∈ R, ci∈ R, and the values of ? are 2, 3, 4, 5 respectively. 5 to 8 convolution kernels are newly added by us, use a new way to calculate W ?xi:i+?-1. The calculation is shown as:

    b ∈ Rd, ci∈ Rd, the value of ? is 2, 3, 4, 5 respectively. These 8 convolution kernels are applied to each possible window of words in the news {xi:i+?-1|1< i< s-?+1} to produce 8 feature maps. Each feature map is C={ci}1×(s-h+1). The features map acquired from No. 1 to 4 is consist of coded ?-gram features of the news. The features maps acquired by No. 5-8 can be seen as the 4 different sematic representations of the news’d topics. The W, b of 8 convolution kernels are 32 × d+4 parameters to be solved.

    In pooling layer, we apply k-max pooling operation over the feature maps to choose features and pass the features acquired to the fully connected layer. For the feature map acquired by No. 1-4 convolution kernel, the k-max pooling operation can be represented as:

    The result can be seen as the k most meaningful n-gram features of the new. For the feature map acquired by No. 1-4 convolution kernel, the operation can be represented as:

    The result is a matrix of size d× k. The i-th row of the matrix can be seen as the most meaningful semantic representation of i-th topic.

    Fully connected layer, whose output is the probability of the news related to Non-ferrous Metals, whose input is the (8×k+1)×d features acquired from the pooling layer. Let φ be the concatenation of input features, θ be the weights of (8× k+1)×d connections.The probability calculation is shown as:

    If y > 0.5 the news is Non-ferrous Metals related. θ are the parameters to be solved.

    5 Model learning

    We use a supervised approach to learn the model. Let {y(1),y(2),…,y(n)} be the labels of n news for training. If the i-th news is Non-ferrous Metals related then y(i)=1 else y(i)=0. The loss function of the recognition model is shown as Eq. (11). {y1,y2,…,yn}are the outputs of the recognition model on the n news.

    We minimize the loss function to get the values of {W,b,θ}. Different values of{W,b,θ} represent different encoding methods of features.

    For the solution we use mini-batch gradient descent algorithm. For regularization, we employ dropout on the pooling layer with a constraint on l2-norms of the weight vectors[Hinton, Srivastava and Krizhevsky (2012)]. Dropout prevents co-adaptation of hidden units by randomly dropping out a proportion p of the chosen features during forward and back propagation. At training time, during forward propagation, dropout uses θT(φ °r)to replace the θTφ in Eq. (10), where ° is the element-wise multiplication operator and r is a vector of Bernoulli random variables with probability p of being 1. r has the same length with φ. During forward Gradients are back propagated only through the units of being 1. At test time, dropout uses p to scale the learned weights θT, i.e. use pθTφ to replace the θTφ. We additionally constrain l2-norms of the weights θTby rescaling θTto have ||θT||2 = ?whenever ||θT||2 >? after a gradient descent step.

    6 Experiments

    6.1 Data and evaluations

    Since there is no available corpus for cross-lingual non-ferrous metal related news recognition currently, to the best of our knowledge, we construct a corpus by ourselves.We crawled a number of non-ferrous metal related news from “smm”, “cnmn”, etc.Chinese websites and “Vinanet”, etc. Vietnamese websites, as positive data, And we crawled a number of news from the political, military, etc. non-ferrous metal unrelated channels on some comprehensive news website, as negative data, at the same times. The number of training and test data is shown in Tab. 2.

    Table 2: Data distribution of corpus

    We use Precision, Recall, and F-measure to evaluate the effect of our method, which are calculated as follow.

    TP is the number of true positive of recognition results. FP is the number of false positive of it P is the number of positive of test data.

    4.2 Results and analysis

    Experiment 1: Compare with different methods of cross-lingual news classification.

    In this paper, we implement another two cross-lingual text classification methods presented in Gliozzo et al. [Gliozzo and Strapparava (2006)] and [Ni, Sun, Hu et al.(2011)]. The former bases on the bi-lingual dictionary. The latter bases on the comparable corpus. These two methods have the best performance in the methods that use the same bilingual resources.

    For the methods presented in Ni et al. [Ni, Sun, Hu et al. (2011)], we collected 3000 Chinese-Vietnamese document-pairs from Wikipedia by a web crawler. Each pair is a different language description of the same event, person, etc. We use these documentpairs as comparable corpus and apply bi-lingual topic model on it. According to Ni et al.[Ni, Sun, Hu et al. (2011)], we use topics number of 400, hyper-parameters α of 0.5/400 and β of 0.1, use SVM as a classifier.

    For the method presented in Gliozzo et al. [Gliozzo and Strapparava (2006)], since MultiWordNet does not contain Vietnamese and contains very few non-ferrous metal related words, we experiment with the bi-lingual lexicon that we pre-constructed as shown in Tab. 1. The classifier is SVM too.

    For our method, according to Hinton et al. [Hinton, Srivastava and Krizhevsky (2012)],we set dimension of cross-lingual word vectors d=400. The k of pooling layer is set to 10 after several trials. The performance is the best like that

    We train all these 3 methods on the same training data in Chinese and test them on the test data in Chinese and Vietnamese respectively and compare the results of 3 methods.The comparison results of these methods in monolingual environment are shown in Fig.2(a). The results in cross-lingual environment are shown in Fig. 2(b). In the figure “A” is the results of our method, “B” is the results of Ni et al. [Ni, Sun, Hu et al. (2011)], “C” is the results of Gliozzo et al. [Gliozzo and Strapparava (2006)].

    Figure 2 (a): Comparison results in monolingual environment

    Figure 2 (b): Comparison results in cross-lingual environment

    Experiment results show that our method has significantly improved the effect in both monolingual and cross-lingual environments compared with the other two methods. And in cross-language environments, our method improves the effect more obvious. It illustrates that using CNN to construct recognition model can improve the effect of recognition. Cross-lingual word vectors can better represent different language news and overcome languages barrier, so that improve the effect in cross-lingual environment.

    Experiment 2: Compare the experiment results of whether non-ferrous metals related words are recognized

    Before the training of cross-lingual word vector and the representation of news in different language, we both need to word segment. In our work, the words of non-ferrous metals related in the sentences are recognized in the segmentation by means of Maximum Matching. In order to explore the effect of that, we conduct this experiment on the whole test data include Chinese and Vietnamese test data. The results are shown in Fig. 3. “A”are the results of non-ferrous metals related words are recognized, “B” are the results of those are not recognized. Recognition or not will result in different representations of the news. For example, if the Chinese word “有色金屬” (Non-ferrous metal) in a news have not been recognized, it will be divided as “有/色/金屬” (have/colors/metal), then the meaning of the word and the representations of the news will be changed. That will affect the recognition result.

    Figure 3: Results of whether non-ferrous metals related words are identified or not

    Experiment results show that after non-ferrous metals related words are recognized the effect of recognition is improved obviously. It illustrates that recognizing the non-ferrous metals related words of the news is necessary for non-ferrous metals related news recognition. At the same time, it also illustrates that the non-ferrous metals related words of a piece of news are important to determine whether the news is non-ferrous metals related.

    Experiment 3: Explorer the effect of the newly added convolution kernels

    In the convolution layer of the CNN model, the No. 5-8 convolution kernels are newly added by us. They use a new calculation way. In order to explore the effect of the newly added kernels, we conduct this experiment on the whole test data. The results are shown in Fig. 4. “A” are the results of the model that uses the new kernels. “B” are the results of the model that doesn’t use.

    Experiment results show that the model that uses newly added kernels performs better. It illustrates that the convolution kernels newly added are useful for improving the recognition effect.

    7 Conclusion

    To timely and accurately acquire non-ferrous metals related news from different countries’ internet. In this paper, we proposed cross-lingual non-ferrous metals related news recognition method based on CNN with a limited dictionary. We use CCA and a limited dictionary to train cross-lingual word vectors; use the acquired cross-lingual word vectors represent news in different languages, overcome languages barrier; use CNN to learn the features of non-ferrous metals related news and construct recognition model,add new convolution kernels to the CNN based model. Experiments results show these can improve the cross-lingual recognition results obviously. Considering that sentences or words in different places of a piece of news have different ability to represent news semantics and in a cross-lingual situation, a word in one language can be translated into multiple words in another language. All these factors can affect the recognition result. In our future study, we will take these factors into consideration.

    Acknowledgement:The Major Technologies R & D Special Program of Anhui, China(Grant No. 16030901060). The National Natural Science Foundation of China (Grant No.61502010). The Natural Science Foundation of Anhui Province (Grant No. 1608085QF146).The Natural Science Foundation of China (Grant No. 61806004).

    猜你喜歡
    有色金屬金屬
    金屬之美
    睿士(2023年10期)2023-11-06 14:12:16
    致命金屬
    “金屬的化學(xué)性質(zhì)”同步演練
    有色金屬“回暖” 中長期謹(jǐn)慎樂觀
    中國外匯(2019年7期)2019-07-13 05:45:02
    《有色金屬設(shè)計(jì)》2019年總目次
    筑底企穩(wěn)有色金屬行業(yè)已過最難階段
    資源再生(2017年4期)2017-06-15 20:28:30
    金屬美甲
    Coco薇(2015年5期)2016-03-29 23:14:09
    2015年我國十種有色金屬總產(chǎn)量達(dá)5090萬噸
    有色金屬設(shè)計(jì) 歡迎刊登廣告
    《有色金屬設(shè)計(jì)》2014年總目次
    看黄色毛片网站| 精品人妻视频免费看| 国产成人精品婷婷| 婷婷色综合www| 中文字幕亚洲精品专区| 特级一级黄色大片| 久久久亚洲精品成人影院| av免费在线看不卡| a级毛片免费高清观看在线播放| av在线亚洲专区| 国产欧美日韩精品一区二区| 国产探花在线观看一区二区| 精品国内亚洲2022精品成人| 色5月婷婷丁香| 国产白丝娇喘喷水9色精品| 寂寞人妻少妇视频99o| 亚洲国产精品sss在线观看| 久久久久久伊人网av| 丰满乱子伦码专区| www.色视频.com| 亚洲av.av天堂| www.色视频.com| 99久久中文字幕三级久久日本| 少妇的逼好多水| 久久久精品欧美日韩精品| 卡戴珊不雅视频在线播放| 一级毛片我不卡| 国产久久久一区二区三区| 精品少妇黑人巨大在线播放| 精品久久久久久久久亚洲| 观看美女的网站| 免费在线观看成人毛片| 搞女人的毛片| 久久精品久久久久久噜噜老黄| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 国产女主播在线喷水免费视频网站 | 久久久久久久久久人人人人人人| 欧美区成人在线视频| 欧美xxⅹ黑人| ponron亚洲| 久久国产乱子免费精品| 国产成人91sexporn| 国产av国产精品国产| 欧美丝袜亚洲另类| 欧美+日韩+精品| av在线观看视频网站免费| 色哟哟·www| 国产精品嫩草影院av在线观看| 老女人水多毛片| 大香蕉久久网| 九九久久精品国产亚洲av麻豆| 日韩成人av中文字幕在线观看| 国产精品国产三级国产专区5o| 赤兔流量卡办理| 1000部很黄的大片| or卡值多少钱| 建设人人有责人人尽责人人享有的 | 国产视频首页在线观看| 国产精品国产三级国产专区5o| 人人妻人人看人人澡| av在线蜜桃| 久久久久久久久久黄片| 亚洲国产色片| 天堂av国产一区二区熟女人妻| 天堂中文最新版在线下载 | a级毛片免费高清观看在线播放| 久久久久精品性色| 中文资源天堂在线| 午夜福利在线在线| 69人妻影院| 国产精品久久久久久久久免| 99久久九九国产精品国产免费| av国产免费在线观看| 免费观看性生交大片5| 亚洲精品456在线播放app| 亚洲性久久影院| 久久99精品国语久久久| 国产高清有码在线观看视频| 日本三级黄在线观看| 国产精品.久久久| 哪个播放器可以免费观看大片| 久久久精品欧美日韩精品| 一级黄片播放器| 国产伦精品一区二区三区四那| 午夜福利网站1000一区二区三区| 国产一区二区亚洲精品在线观看| 亚洲一区高清亚洲精品| 免费无遮挡裸体视频| 精品久久久久久久久亚洲| 丝袜美腿在线中文| 亚洲av在线观看美女高潮| .国产精品久久| 亚洲av成人精品一二三区| 大片免费播放器 马上看| 亚洲不卡免费看| 久久久久久久久久久免费av| 日韩三级伦理在线观看| 黄色日韩在线| 免费av毛片视频| 97热精品久久久久久| 亚洲av在线观看美女高潮| 欧美区成人在线视频| 免费电影在线观看免费观看| 熟女人妻精品中文字幕| 伦精品一区二区三区| 2021天堂中文幕一二区在线观| 日韩强制内射视频| 免费看日本二区| 搞女人的毛片| 久久久久久久久大av| 国语对白做爰xxxⅹ性视频网站| 尤物成人国产欧美一区二区三区| 伦精品一区二区三区| 在线观看av片永久免费下载| 观看美女的网站| 免费黄网站久久成人精品| 亚洲成色77777| 久久久久久伊人网av| 亚洲欧美清纯卡通| 精品久久久噜噜| 精品人妻偷拍中文字幕| 日本爱情动作片www.在线观看| 女人被狂操c到高潮| 精品少妇黑人巨大在线播放| 亚洲综合色惰| 性插视频无遮挡在线免费观看| 亚洲天堂国产精品一区在线| 最近中文字幕2019免费版| 国产成人精品一,二区| 少妇裸体淫交视频免费看高清| 午夜福利视频精品| 91久久精品国产一区二区成人| 久久国内精品自在自线图片| 久久精品夜色国产| 中文字幕免费在线视频6| 深夜a级毛片| 久久精品人妻少妇| 久久精品久久久久久噜噜老黄| 国产成人免费观看mmmm| 国产视频首页在线观看| 国精品久久久久久国模美| av女优亚洲男人天堂| 亚洲久久久久久中文字幕| 久热久热在线精品观看| 九色成人免费人妻av| 超碰av人人做人人爽久久| 国产成人a∨麻豆精品| 狂野欧美白嫩少妇大欣赏| 亚洲精品国产av蜜桃| 中文字幕av在线有码专区| 亚洲在久久综合| 日本黄大片高清| 国内揄拍国产精品人妻在线| a级毛片免费高清观看在线播放| 久久韩国三级中文字幕| 国产成人aa在线观看| 日日啪夜夜爽| 天天一区二区日本电影三级| 亚洲成人av在线免费| 汤姆久久久久久久影院中文字幕 | 国产亚洲最大av| 午夜福利视频1000在线观看| 中文字幕制服av| 男女那种视频在线观看| 国产伦在线观看视频一区| 精品一区二区三区人妻视频| 精品久久久久久久久av| 久久草成人影院| 免费无遮挡裸体视频| 久久久久久伊人网av| 老司机影院成人| 18+在线观看网站| 哪个播放器可以免费观看大片| 97热精品久久久久久| 国产综合懂色| 2021天堂中文幕一二区在线观| 少妇裸体淫交视频免费看高清| 欧美成人午夜免费资源| 纵有疾风起免费观看全集完整版 | 亚洲在线自拍视频| 夫妻性生交免费视频一级片| 亚洲av成人精品一二三区| 日韩亚洲欧美综合| 99re6热这里在线精品视频| 亚洲熟女精品中文字幕| 亚洲精品影视一区二区三区av| 色视频www国产| 成年版毛片免费区| 夫妻午夜视频| 丝瓜视频免费看黄片| 免费观看av网站的网址| 观看美女的网站| 亚洲精品第二区| 日韩国内少妇激情av| 久久久久久伊人网av| 乱系列少妇在线播放| 国产伦在线观看视频一区| av免费观看日本| 中文精品一卡2卡3卡4更新| 久久久久性生活片| 熟女电影av网| 国产精品一区二区三区四区久久| 免费看av在线观看网站| 免费观看av网站的网址| 日韩成人av中文字幕在线观看| 乱码一卡2卡4卡精品| 亚洲精品亚洲一区二区| 亚洲综合精品二区| 看免费成人av毛片| 97在线视频观看| 久久精品夜色国产| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 久久精品国产亚洲av天美| 国产免费一级a男人的天堂| 搡老乐熟女国产| 亚洲精品国产av蜜桃| 亚洲无线观看免费| 亚洲欧美精品专区久久| 在线观看美女被高潮喷水网站| 午夜福利在线观看吧| 亚洲精品国产成人久久av| 一个人免费在线观看电影| 亚洲av免费高清在线观看| 日本一本二区三区精品| 久久久久久久久久久免费av| 在线观看一区二区三区| 日本一二三区视频观看| 国产久久久一区二区三区| 成人亚洲精品一区在线观看 | 久久久久性生活片| 91狼人影院| 亚州av有码| 欧美激情国产日韩精品一区| 久久国产乱子免费精品| 午夜福利在线观看吧| 国产激情偷乱视频一区二区| 神马国产精品三级电影在线观看| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 精品久久国产蜜桃| 亚洲四区av| 午夜免费男女啪啪视频观看| 少妇人妻一区二区三区视频| 亚洲欧美日韩卡通动漫| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 国产亚洲5aaaaa淫片| 久久人人爽人人爽人人片va| 男人爽女人下面视频在线观看| 又黄又爽又刺激的免费视频.| 夫妻性生交免费视频一级片| 又大又黄又爽视频免费| 最近视频中文字幕2019在线8| 狂野欧美白嫩少妇大欣赏| 欧美97在线视频| 精品国产露脸久久av麻豆 | 91精品伊人久久大香线蕉| 久久人人爽人人片av| 日韩欧美一区视频在线观看 | 国产欧美另类精品又又久久亚洲欧美| 国产午夜福利久久久久久| av国产免费在线观看| 成人毛片a级毛片在线播放| 亚洲18禁久久av| 国产1区2区3区精品| 美女视频免费永久观看网站| 亚洲精华国产精华液的使用体验| 国产免费福利视频在线观看| av又黄又爽大尺度在线免费看| 日韩免费高清中文字幕av| 十八禁高潮呻吟视频| 最近中文字幕2019免费版| 亚洲综合色惰| 99九九在线精品视频| 新久久久久国产一级毛片| 国产精品一区二区在线观看99| 久久这里只有精品19| 嫩草影院入口| 伦精品一区二区三区| xxx大片免费视频| 香蕉精品网在线| 纵有疾风起免费观看全集完整版| 亚洲综合精品二区| 国产免费现黄频在线看| 成人漫画全彩无遮挡| 日本91视频免费播放| 91午夜精品亚洲一区二区三区| 亚洲国产欧美网| 热99久久久久精品小说推荐| 欧美精品国产亚洲| 亚洲国产精品国产精品| 国产精品一国产av| 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 欧美日韩视频高清一区二区三区二| 午夜影院在线不卡| 精品国产一区二区久久| 欧美 日韩 精品 国产| 天天躁夜夜躁狠狠久久av| 亚洲欧美一区二区三区久久| 亚洲精品美女久久av网站| 日本猛色少妇xxxxx猛交久久| 黑人巨大精品欧美一区二区蜜桃| 制服诱惑二区| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| 国产成人免费无遮挡视频| 熟女av电影| 爱豆传媒免费全集在线观看| 国产爽快片一区二区三区| 国产黄色免费在线视频| 超碰成人久久| videosex国产| 卡戴珊不雅视频在线播放| 人人妻人人爽人人添夜夜欢视频| 国产片内射在线| 亚洲第一av免费看| 亚洲国产av新网站| 如何舔出高潮| 中文欧美无线码| 亚洲国产色片| 日本免费在线观看一区| 亚洲婷婷狠狠爱综合网| 伦理电影大哥的女人| 欧美国产精品一级二级三级| 涩涩av久久男人的天堂| 国产熟女午夜一区二区三区| 三级国产精品片| 纵有疾风起免费观看全集完整版| 欧美国产精品va在线观看不卡| 人人妻人人澡人人爽人人夜夜| 两个人看的免费小视频| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 黑人巨大精品欧美一区二区蜜桃| 欧美日韩精品成人综合77777| 三级国产精品片| 母亲3免费完整高清在线观看 | 在线观看一区二区三区激情| 一本色道久久久久久精品综合| 在线亚洲精品国产二区图片欧美| 两性夫妻黄色片| 欧美日韩精品网址| 男的添女的下面高潮视频| 久久国内精品自在自线图片| 精品国产乱码久久久久久男人| 日日摸夜夜添夜夜爱| 欧美激情 高清一区二区三区| 国产男女内射视频| 日韩电影二区| 午夜久久久在线观看| 高清在线视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 亚洲国产成人一精品久久久| 国产精品一国产av| 激情视频va一区二区三区| 国产精品 国内视频| 2021少妇久久久久久久久久久| videosex国产| 国产免费视频播放在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 在线观看www视频免费| 中文天堂在线官网| 曰老女人黄片| 成人毛片a级毛片在线播放| 亚洲精品国产av成人精品| videosex国产| 好男人视频免费观看在线| 性高湖久久久久久久久免费观看| 美女福利国产在线| 久久久久久久久久久免费av| 亚洲婷婷狠狠爱综合网| 色网站视频免费| 卡戴珊不雅视频在线播放| 99re6热这里在线精品视频| 国产精品三级大全| 亚洲国产看品久久| 有码 亚洲区| 免费少妇av软件| 美女国产视频在线观看| 极品少妇高潮喷水抽搐| 菩萨蛮人人尽说江南好唐韦庄| 熟妇人妻不卡中文字幕| 搡女人真爽免费视频火全软件| 久久久久久久大尺度免费视频| 91国产中文字幕| 国产亚洲一区二区精品| 亚洲色图 男人天堂 中文字幕| 成人二区视频| 亚洲天堂av无毛| 婷婷成人精品国产| 一区二区三区精品91| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片| 成人二区视频| 久久久久久伊人网av| 免费黄色在线免费观看| 午夜日本视频在线| 人妻系列 视频| 免费高清在线观看视频在线观看| 精品国产超薄肉色丝袜足j| freevideosex欧美| a 毛片基地| 成人亚洲欧美一区二区av| 国产精品欧美亚洲77777| 国产欧美日韩一区二区三区在线| 成人毛片a级毛片在线播放| 丰满迷人的少妇在线观看| 如何舔出高潮| 亚洲第一区二区三区不卡| 久久久久久久精品精品| 国产一区二区三区综合在线观看| 一区二区三区四区激情视频| 国产白丝娇喘喷水9色精品| 国产精品久久久久久av不卡| 女性生殖器流出的白浆| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 99久久综合免费| 久久久久久久久久人人人人人人| 夜夜骑夜夜射夜夜干| 永久网站在线| 水蜜桃什么品种好| 大香蕉久久成人网| 欧美日韩亚洲高清精品| 国产麻豆69| 十八禁高潮呻吟视频| 成人国产av品久久久| 国产伦理片在线播放av一区| 国产av国产精品国产| 成人免费观看视频高清| 人妻人人澡人人爽人人| 男女下面插进去视频免费观看| a级毛片黄视频| av网站免费在线观看视频| 国产乱来视频区| 亚洲熟女精品中文字幕| 久久精品国产亚洲av天美| 国产一区二区在线观看av| 精品亚洲乱码少妇综合久久| 777米奇影视久久| 国产精品国产av在线观看| 黄片播放在线免费| 伦理电影大哥的女人| 日韩免费高清中文字幕av| 男女下面插进去视频免费观看| 97精品久久久久久久久久精品| 久久精品亚洲av国产电影网| 国产爽快片一区二区三区| 久久久久精品性色| 国产熟女欧美一区二区| 亚洲国产色片| 青草久久国产| 亚洲美女搞黄在线观看| av网站在线播放免费| 赤兔流量卡办理| 我的亚洲天堂| 色94色欧美一区二区| 天天躁日日躁夜夜躁夜夜| 午夜福利网站1000一区二区三区| 麻豆乱淫一区二区| 看非洲黑人一级黄片| 十八禁高潮呻吟视频| 中文精品一卡2卡3卡4更新| 久久精品aⅴ一区二区三区四区 | 在线观看免费视频网站a站| 国产视频首页在线观看| 国产欧美亚洲国产| 人妻人人澡人人爽人人| 亚洲av中文av极速乱| 黄色 视频免费看| 亚洲国产av影院在线观看| 少妇精品久久久久久久| 亚洲精品国产色婷婷电影| 久久久久精品人妻al黑| 国产精品久久久久成人av| 国产福利在线免费观看视频| 亚洲国产精品成人久久小说| 欧美精品一区二区免费开放| 中文字幕制服av| av片东京热男人的天堂| 久久精品熟女亚洲av麻豆精品| 欧美少妇被猛烈插入视频| 国产毛片在线视频| 久久午夜福利片| 国产成人精品久久二区二区91 | 亚洲美女搞黄在线观看| 大码成人一级视频| 宅男免费午夜| 午夜福利视频精品| 午夜福利在线观看免费完整高清在| 久久久久精品性色| 欧美日韩视频精品一区| 男女午夜视频在线观看| 国产精品三级大全| 老汉色av国产亚洲站长工具| 一区二区三区乱码不卡18| 交换朋友夫妻互换小说| 亚洲av综合色区一区| 精品久久久久久电影网| 国产xxxxx性猛交| 成人漫画全彩无遮挡| 国产精品.久久久| 2021少妇久久久久久久久久久| 91午夜精品亚洲一区二区三区| 飞空精品影院首页| 国产成人免费观看mmmm| 秋霞伦理黄片| 综合色丁香网| 叶爱在线成人免费视频播放| 亚洲欧美中文字幕日韩二区| 国产 一区精品| 久久精品国产鲁丝片午夜精品| 啦啦啦在线观看免费高清www| 国产毛片在线视频| 亚洲欧美一区二区三区久久| 亚洲激情五月婷婷啪啪| 亚洲精品国产av蜜桃| 亚洲av福利一区| 亚洲,欧美,日韩| 欧美日韩国产mv在线观看视频| av网站免费在线观看视频| 欧美 日韩 精品 国产| 亚洲一级一片aⅴ在线观看| 午夜免费男女啪啪视频观看| 一二三四中文在线观看免费高清| 亚洲av日韩在线播放| 韩国高清视频一区二区三区| 搡女人真爽免费视频火全软件| 美女中出高潮动态图| 久久久久久久久免费视频了| 大陆偷拍与自拍| 男人爽女人下面视频在线观看| 久久精品亚洲av国产电影网| 亚洲少妇的诱惑av| 精品一区在线观看国产| 大香蕉久久网| 男人爽女人下面视频在线观看| 亚洲天堂av无毛| 免费少妇av软件| 欧美日韩视频高清一区二区三区二| 久久久久久久久久人人人人人人| 久久久久国产精品人妻一区二区| 日韩中字成人| 亚洲国产毛片av蜜桃av| 国产精品女同一区二区软件| 欧美日韩一区二区视频在线观看视频在线| 天堂俺去俺来也www色官网| av片东京热男人的天堂| 18禁国产床啪视频网站| 精品卡一卡二卡四卡免费| 男女下面插进去视频免费观看| 成人二区视频| 777米奇影视久久| 亚洲精品美女久久久久99蜜臀 | 看免费av毛片| 最近最新中文字幕大全免费视频 | 麻豆乱淫一区二区| 国产精品亚洲av一区麻豆 | 精品国产乱码久久久久久小说| 午夜福利乱码中文字幕| 午夜福利视频精品| 18在线观看网站| 国产亚洲精品第一综合不卡| 观看美女的网站| 纵有疾风起免费观看全集完整版| 日韩制服丝袜自拍偷拍| 中国国产av一级| 午夜福利在线观看免费完整高清在| 飞空精品影院首页| 多毛熟女@视频| 亚洲成人av在线免费| 久久久精品区二区三区| 在线观看三级黄色| 成人免费观看视频高清| 秋霞在线观看毛片| 中文字幕色久视频| 国产一区二区激情短视频 | 亚洲美女视频黄频| 国产成人午夜福利电影在线观看| 美国免费a级毛片| 日本色播在线视频| 日韩一区二区视频免费看| 99九九在线精品视频| 国产精品无大码| 国产成人a∨麻豆精品| 亚洲av中文av极速乱| 少妇精品久久久久久久| 高清不卡的av网站| 汤姆久久久久久久影院中文字幕| 一级爰片在线观看| 男男h啪啪无遮挡| 汤姆久久久久久久影院中文字幕| 在线观看一区二区三区激情| 国产成人免费无遮挡视频| 亚洲精品久久久久久婷婷小说| 午夜影院在线不卡| 91精品伊人久久大香线蕉| 在线观看免费日韩欧美大片| 久久狼人影院| 毛片一级片免费看久久久久| 高清黄色对白视频在线免费看| 另类精品久久| 精品一区二区免费观看| av在线app专区| av又黄又爽大尺度在线免费看| 亚洲精华国产精华液的使用体验| 男男h啪啪无遮挡| 国产av精品麻豆| 午夜激情av网站| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av|