• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation, crystal structure and photocatalytic activity of a zinc-potassium substituted sandwiched antimonotungstate

    2017-07-06 00:32:56TIANXuemengSHIFangyingPANGJingjingLUOJie
    化學(xué)研究 2017年3期
    關(guān)鍵詞:晶胞參數(shù)缺位夾心

    TIAN Xuemeng, SHI Fangying, PANG Jingjing, LUO Jie

    (Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China)

    ?

    Preparation, crystal structure and photocatalytic activity of a zinc-potassium substituted sandwiched antimonotungstate

    TIAN Xuemeng, SHI Fangying, PANG Jingjing, LUO Jie*

    (HenanKeyLaboratoryofPolyoxometalateChemistry,CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)

    A zinc-potassium substituted sandwich-type antimonotungstate Na9[Zn3K3(H2O)9] [B-α-SbW9O33]2·44H2O (1) was synthesized and characterized by elemental analysis, IR spectra and single-crystal X-ray diffraction. The title compound crystallizes in the monoclinic space groupC2/cwitha= 1.399 93(12) nm,b= 2.317 6(2) nm,c= 3.208 8 (3) nm,β= 98.804 0(10)°,V= 10.288 0(15) nm3,Z= 4,Dc= 3.930 g/cm3,GOOF= 1.026,R1= 0.043 6 andwR2= 0.103 5. X-ray crystal structural analysis reveals that the molecular unit of 1 is constructed from two trivacant [B-α-SbW9O33]9-building blocks sandwiching a hexagon zinc-potassium [Zn3K3(H2O)9]9+core via twelve lacunary oxygen atoms. The photocatalytic measurements illustrate that 1 can partly inhibit the photodegradation of azophloxine.

    polyoxometalate; antimonotungstate; sandwich-type compound

    Polyoxometalates (POMs), as a family of anionic metal-oxygen clusters with vast structural diversities and noticeable properties, have attracted great attention and endowed them with great opportunities to distinguish themselves in many domains covering environment, materials, energy, health and molecular electronics[1-4]. Among them, transition-metal substituted POMs (TMSPs) are the vital and rapid-growing member of the family. In various structural types of TMSPs, one of important subclass is sandwich-type TMSPs[5], which can be obtained by two main synthetic strategies: i) using simple raw materials under hydrothermal conditions; ii) using the reaction of lacunary POM precursors with transition-metal cations in conventional aqueous solution. To our knowledge, the tetrahedral heteroatom [XW9O34]n-(X = SiIV, GeIV, PV, AsV) anions have four isomers of A-α, A-β, B-α, B-βwhile the pyramidal heteroatom [XW9O33]n-(X = AsIII, SbIII, BiIII, SeIV) anions have two isomers of B-α, B-β. Since WEAKLEY et al[6]found the first sandwich-type phosphotungstate [Co4(H2O)2(PW9O34)2]10-in 1973, a large number of Keggin-type TMSPs based on [XW9O34]n-fragments have been synthesized such as [Cs2K(H2O)7Pd2WO(H2O) (A-α-SiW9O34)2]9-[7], [Nb2K(H2O)4(A-α-SiW9O34)2]9-[8], [M4(H2O)2(PW9O34)2]10-(X = PV, SiIV, AsV, GeIV; M = MnII, CoII, NiII, CuII, ZnII)[9-18]etc. However, the reports on Keggin-type TMSPs based on [XW9O33]n-fragments were very limited. The structure of [(WO2)4(OH)2(XW9O33)2]12-(X = SbIII, BiIII) was first discovered by KREBS et al in 1997[19-20], then several similar derivatives were reported sequentially such as [Cu3(H2O)2(α-AsW9O33)2]12-, [M3(H2O)3(α-XW9O33)2]n-(n= 12, X = AsIII, SbIII, M = Mn2+, Co2+, Ni2+, Cu2+, Zn2+;n= 10, X= SeIV, TeIV, M = Cu2+)[21-23]. As far as we know, the majority of sandwich-type Keggin-type compounds based on [SbW9O33]9- fragments contain one type of transition-metal ions in the sandwich belt while the related reports on the sandwich belt consists of transition-metal and alkali metal ions are very rare. For example, ZHAO et al reported an organic-inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O, in which a hexagonal {Cu2Na4} cluster are located in the sandwich belt[24]. In this paper, a zinc-potassium substituted sandwich-type antimonotungstate Na9[Zn3K3(H2O)9][B-α-SbW9O33]2·44H2O (1) (CCDC 1537821) was obtained by using trivacant Keggin [ B-α- SbW9O33]9-precursor with Zn2+and K+cations via the conventional solution method and was characterized by IR spectra and X-ray crystal structural analysis.

    1 Experimental

    1.1 Reagents and physical measurements

    Na9[B-α-SbW9O33]·19.5H2O was prepared according to the literature[19]and was confirmed by IR spectra. All reagents were obtained from commercial resources and used without further purification. Inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses were performed on a Jobin Yvon ultima 2 spectrometer. The IR spectrum was recorded from a sample powder palletized with KBr on a Nicolet170 SXFT-IR spectrometer over the range of 4 000-400 cm-1. Photocatalysis of 1 was carried out on an XPA photoreactor (Xujiang Electromechanical Plant, Nanjing, China) and a 300 W mercury lamp was used as the light source, which was placed into the cylindrical reactor, surrounded by a circulating water system to cool the lamp.

    1.2 Synthesis of 1

    Na9[B-α-SbW9O33]·19.5H2O (1.50 g, 0.52 mmol), Zn(OAc)2·2H2O (0.15 g, 0.26 mmol),L-tartrate (0.05 g, 0.33 mmol) andL-alanine (0.10 g, 1.12 mmol) were dissolved in NaOAc-HOAc (20 mL pH = 6.0) buffer solution, to which Er(NO3)3·6H2O(0.20 g, 0.43 mmol) and KCl (0.10 g, 1.34 mmol) was added under stirring. The resulting solution was stirred for 4 h and heated at 80 ℃ for 2 h. After cooling to room temperature, the solution was filtered and the filtrate was left to evaporate at room temperature. Colorless prismatic crystals were obtained after four weeks. Yield:ca. 40% (based on Zn(OAc)2·2H2O). Ana. calcd. for 1 (%): Zn, 3.23; Sb, 4.00; W, 54.39; K, 1.93. Found (%): Zn, 3.14; Sb, 4.17; W, 54.23; K, 1.85. Obviously, there are no organic molecules and Er3+ions in the structure of 1 althoughL-alanine,L-tartrate and Er(NO3)3·6H2O were used as the starting materials. Thus, the parallel experiments were made whenL-alanine,L-tartrate and Er(NO3)3·6H2O were removed away from the reactants, 1 was not obtained. These results indicate thatL-alanine,L-tartrate and Er(NO3)3·6H2O play a synergistic action with other components in the formation of 1, although their specific roles are not well understood in the reaction processes.

    1.3 X-ray crystallography

    A good single crystal for 1 was carefully selected under an optical microscope and glued at the tip of a thin glass fiber with cyanoacrylate adhesive. Intensity data were collected on Bruker APEX-II CCD detector at 296(2) K with Mo Kαradiation (λ= 0.071 073 nm). Intensity data were corrected for Lorentz and polarization effects as well as for empirical absorption. The structure was solved by direct methods and refined by the full-matrix least-squares method onF2using the SHELXTL-97 package[25]. The remaining atoms were found from successive full-matrix least-squares refinements onF2and Fourier syntheses. All the non-hydrogen atoms were refined anisotropically. Those hydrogen atoms attached to lattice water molecules were not located. The crystallographic data and structural refinements for 1 are shown in Table 1.

    Table 1 Crystallographic data and structural refinements of 1

    2 Results and discussion

    2.1 Description of crystal structure

    Single-crystal X-ray diffraction indicates that 1 crystallizes in the monoclinic space groupC2/cand its structural unit consists of one {[Zn3K3(H2O)9][B-α-SbW9O33]2}9-polyoxoanion, nine Na+ions and forty-four crystallization water molecules. The {[Zn3K3(H2O)9][B-α-SbW9O33]2}9-polyoxoanion is built by one [Zn3K3(H2O)9]9+(Fig.1a) cluster and two [B-α-SbW9O33]9-fragments (Fig.1b). The structure of {[Zn3K3(H2O)9][B-α-SbW9O33]2}9-is shown in Fig.1c. The [B-α-SbW9O33]9-fragment displays a conventional trivacant Keggin-type structure, in which the SbIIIatom is embedded in the center and three groups of trinuclear {W3O13} clusters mutually connect each other via sharing vertexes. The [B-α-SbW9O33]9-fragment is also deemed as a derivative from the hypotheticalα-Keggin structure {α-SbW12O40} unit by removing a trinuclear {W3O13} cluster. Notably, this structure is also identical with other polyoxotungstates showing the same type of [XW9O33]n-, such as [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O[24], which is discriminative from [XW9O34]n-(X = SiIV, GeIV, PV, AsV). Moreover, the Sb-O distances range from 0.198 3(9) to 0.198 6(9) nm and the distances between the terminal oxygen atoms and W atoms are in the range of 0.178 6(9)-0.181 5(10) nm, which are slightly shorter than those between the W atoms and the bridging oxygen atoms [0.191 0(9)-0.231 3(9) nm]. As shown in Fig.1a, three Zn2+and three K+ions in the central belt display the penta-coordinate tetragonal pyramid geometry and the hexa-coordinate trigonal prism geometry, respectively. To the best of our knowledge, the five-coordinate Zn2+complex is very rare. Four coordinate oxygen atoms connecting the Zn2+and K+ions derives from two [B-α-SbW9O33]9-fragments and one oxygen atom is from the water molecule in the tetragonal pyramid of Zn2+ions while two oxygen atoms are from water molecules in the trigonal prism of K+ions. The Zn-O bond distances are in the range of 0.200 9(10)-0.204 1(9) nm for Zn1 and 0.199 9(10)-0.203 5(9) nm for Zn2 and the O-Zn-O bond angles range from 85.8(4)° to 155.1(6)° and 86.5(4)° to 154.2(4)° respectively for Zn1 and Zn2; The K-O bond distances are 0.239 4(10)-0.241 0(11) nm for K1, 2.369(10)-2.445(11) nm for K2 and the O-Zn-O bond angles are from 71.1(3)° to 122.0(4)° for K1, and 70.9(3)° to 120.6(6)° for K2.

    Fig.1 (a) [Zn3K3(H2O)9]9+ cluster in 1. (b) Ball-and-stick and polyhedral representation of the [B-α-SbW9O33]9- fragments. (c) The molecular structural unit of 1. Lattice water molecules and Na+ ions are omitted for clarity. Symmetry code A: 2-x, y, 0.5-z

    2.2 IR spectra

    IR spectra of the precursor Na9[B-α-SbW9O33]·19.5H2O and 1 (Fig.2) have been recorded using a solid sample palletized with KBr in the range of 4 000-400 cm-1in favor of identifying characteristic vibration bands. The characteristic vibration patterns derived from the Keggin-type framework appear in the low wavenumber region from 1 100-700 cm-1. Four cha-racteristic vibration absorption bands attributable to terminalν(W-Ot),ν(Sb-Oa), corner-sharingν(W-Ob) and edge-sharingν(W-Oc) are at 925, 770, 892, and 704 cm-1for the precursor and 946, 777, 883, and 731 cm-1for 1[19,26-27]. In comparison with the IR spectrum of the precursor, vibration peaks of 1 have different shifts with blue shifts forν(W-Ot),ν(Sb-Oa) andν(W-Oc) and the red shift forν(W-Ob), which presumably attributed to the incorporation of Zn2+cations and K+cations into the vacancy of two [B-α-SbW9O33]9-fragments. Vibration absorption bands observed at 3 436 and 1 623 cm-1are attributed to the stretching vibration and bending vibration of water molecules, respectively. In short, the results of the IR spectrum are fully coincident with those of X-ray diffraction structural analysis.

    Fig.2 (a) IR spectrum of the precursor Na9[B-α-SbW9O33]·19.5H2O. (b) IR spectrum of 1

    2.3 Photocatalytic activity

    Recently, many POMs have attracted increasing attention because of their photocatalytic properties to the degradation of organic dyes under UV irradiation[28-30]. To investigate the photocatalytic activity of 1, the photocatalytic degradation of azophloxine has been examined using of 1 as the photocatalyst. In the first place, the dye aqueous solution containing 4 mL of the initial concentration of azophloxine of 4 × 10-5mol/L with 3.3 × 10-6mol (based on [B-α-SbW9O33]9-) catalyst of 1 was diluted to volume of 50 mL and irradiated under 300 W mercury lamp at ambient temperature and stirring continually. For comparison, the photocatalytic degradation of the azophloxine solution in the absence of 1 was also performed under the same conditions. Apparently, the photodegradation rate of azophloxine in the presence of 1 became much slower than that in the absence of 1 (Fig.3a and 3b). The photocatalytic result illustrates that 1 can portly inhibit the photodegradation of azophloxine. This finding is much unexpected and obviously different from those reports that POMs can facilitate the photodegradation experiment of azophloxine[28-29]. The dominating reasons that 1 can partly inhibit the photodegradation of azophloxine may be involved in the following aspects: the presence of 1 might act as an absorber of the Hg lamp irradiation resulting in the deceasing of absorbance of azophloxine and the hydrogen-bonding interactions between donors and acceptors in azophloxine (-SO-3, -OH, -CONH ) and 1 (en, surface oxygen atoms of POMs) enhanced the chemical stability of azophloxine substrate in the solution[31], which resulted in the slow photodegradation of azophloxine substrate. Furthermore, the curves of the conversion of azophloxine (y) versus the reaction time (t) are shown in Fig. 3c, in whichA0represents the absorbance of the characteristic absorption band of azophloxine at 530 nm at the initial time (t= 0) andAtis the absorbance of the characteristic absorption band of azophloxine at the given time (t). The conversion of azophloxine can be drawn as the formula ofy= (A0-At)/A0. Obviously, the conversion in the presence of 1 is lower than that in the absence of 1, which verifies that 1 can to some extent inhibit the photodegradation of azophloxine.

    Fig.3 UV-visible absorption spectral changes for the azophloxine solutions at various irradiation times: (a) in the absence of 1; (b) in the presence of 1; (c) The conversion of azophloxine versus the reaction time both in the ab-sence and presence of 1

    3 Conclusions

    In summary, a zinc-potassium substituted sandwich-type antimonotungstate 1 was successfully prepared, in which the [Zn3K3(H2O)9]9+cluster is implanted to the vacancy positions of two [B-α-SbW9O33]9-fragments. The photocatalytic measurements indicate that 1 can to some extent inhibit the photodegradation of azophloxine. The synthesis of this zinc-potassium sandwiched antimonotungstate provides a synthe-tic route for preparing the main-group-transition-metal substituted POMs in the following time.

    [1] ZHANG H J, CHEN G H, BAHNEMANN D W. Photoelectrocatalytic materials for environmental applications [J]. Journal of Materials Chemistry, 2009, 19(29): 5089-5121.

    [2] GENG J, LI M, REN J S, et al. Polyoxometalates as inhibitors of the aggregation of amyloidβpeptides associated with Alzheimer’s disease [J]. Angewandte Chemie International Edition, 2011, 50(18): 4184-4188.

    [3] LIU D, LU Y, TAN H Q, et al. Polyoxometalate-based purely inorganic porous frameworks with selective adsorption and oxidative catalysis functionalities [J]. Chemical Communications, 2013, 49(35): 3673-3675.

    [4] MIRAS H N, YAN J, LONG D L, et al. Engineering polyoxometalates with emergent properties [J]. Chemical Society Reviews, 2012, 41(22): 7403-7430.

    [5] ZHANG L, ZHANG Y, HAO Z M, et al. Synthesis, structure, and magnetic properties of three novel sandwich-type tungstobismuthates with triethanolamine [J]. Zeitschrift Für Anorganische und Allgemeine Chemie, 2010, 636(11): 1991-1997.

    [6] WEAKLEY T J R. Heteropolyanions containing two different heteroatoms. Part III. Cobalto(II) undecatungstophosphate and related anions [J]. Journal of the Chemical Society, Dalton Transactions, 1973(3): 341-346.

    [7] BI L H, KORTZ U, KEITA B, et al. Palladium (II)-substituted tungstosilicate [Cs2K(H2O)7Pd2WO(H2O) (A-α-SiW9O34)2]9-[J]. Inorganic Chemistry, 2004, 43(26): 8367-8372.

    [8] ZHANG D, LI S, WANG J, et al. A novel diniobium-inserted sandwich-type polyoxometalate K6H3[Nb2K(H2O)4(A-α-SiW9O34)2]·23H2O constructed from two trivacant Keggin [A-α-SiW9O34]10-moieties linked via a V-shaped {Nb2K} group [J]. Inorganic Chemistry Communications, 2012, 17(3): 75-78.

    [9] FINKE R G, DROEGE M. Trivacant heteropolytungstate derivatives: the rational synthesis, haracterization, and tungsten-183 NMR spectra of P2W18M4(H2O)2O6810-(M = cobalt, copper, zinc) [J]. Journal of the American Chemical Society, 1981, 103(6): 1587-1589.

    [10] EVANS H T, TOURNé C M, TOURNéG F, et al. X-ray crystallographic and tungsten-183 nuclear magnetic resonance structural studies of the [M4(H2O)2(XW9O34)2]10-heteropolyanions ( M = Co or Zn, X = P or As) [J]. Journal of the Chemical Society, Dalton Transactions, 1986(12): 2699-2705.

    [11] FINKE R G, DROEGE M W, DOMAILLE P J. Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional tungsten-183 NMR, and properties of ungstometallophosphates [P2W18M4(H2O)2O68]10-and [P4W30M4(H2O)2O112]16-(M = cobalt, copper, zinc) [J]. Inorganic Chemistry, 1987, 26(23): 3886-3896.

    [12] KORTZ U, ISBER S, DICKMAN M H, et al. Sandwich-type silicotungstates: structure and magnetic properties of the dimeric polyoxoanions [{SiM2W9O34(H2O)}2]12-(M = Mn2+, Cu2+, Zn2+) [J]. Inorganic Chemistry, 2000, 39(13): 2915-2922.

    [13] BI L H, HUANG R H, PENG J, et al. Rational syntheses, characterization, crystal structure, and replacement reactions of coordinated water molecules of [As2W18M4(H2O)2O68]10-(M =Cd, Co, Cu, Fe, Mn, Ni or Zn) [J]. Journal of the Chemical Society, Dalton Transactions, 2001(2): 121-129.

    [14] WEAKLEY T G R, FINKE R G. Single-crystal X-ray structures of the polyoxotungstate salts K8.3Na1.7[Cu4(H2O)2(PW9O34)2]·24H2O and Na14Cu[Cu4(H2O)2(P2W15O56)2]·53H2O [J]. Inorganic Chemistry, 1990, 29: 1235-1241.

    [15] KORTZ U, NELLUTLA S, STOWE A C, et al. Sandwich-type germanotungstates: structure and magnetic properties of the dimeric polyoxoanions [M4(H2O)2(GeW9O34)2]12-(M = Mn2+, Cu2+, Zn2+, Cd2+) [J]. Inorganic Chemistry, 2004, 43(7): 2308-2317.

    [16] ZHENG S T, WANG M H, YANG G Y. Extended architectures constructed from sandwich tetra-metal-substituted polyoxotungstates and transition-metal complexes [J]. Chemistry-an Asian Journal, 2007, 2(11): 1380-1387.

    [17] ZHAO J W, LI B, ZHENG S T, et al. Two-dimensional extended (4,4)-topological network constructed from tetra-NiIIsubstituted sandwich-type Keggin polyoxometalate building blocks and NiII-organic cation bridges [J]. Crystal Growth & Design, 2007, 7(12): 2658-2664.

    [18] ZHANG M Z, LIU J, WANG E B, et al. Two extended structures constructed from sandwich-type polyoxometalates functionalized by organic amines [J]. Dalton Transactions, 2008(4): 463-468.

    [19] B?SING M, LOOSE I, POHLMANN H, et al. New strategies for the generation of large heteropolymetalate clusters: Theβ-B-SbW9fragment as a multifunctional unit [J]. Chemistry-a European Journal, 1997, 3(8): 1232-1237.

    [20] LOOSE I, DROSTE E, B?SING M, et al. Heteropolymetalate clusters of the subvalent main group elements BiIIIand SbIII[J]. Inorganic Chemistry, 1999, 38(11): 2688-2694.

    [21] MIALANE P, MARROT J, RIVIRE E, et al. Structural characterization and magnetic properties of sandwich-type tungstoarsenate complexes. Study of a mixed-valent/VVheteropolyanion [J]. Inorganic Chemistry, 2001, 40(1): 44-48.

    [22] KORTZ U, AL-KASSEM N K, SAVELIEFF M G, et al. Synthesis and characterization of copper-, zinc-, manganese-, and cobalt-substituted dimeric heteropolyanions, [(α-XW9O33)2M3(H2O)3]n-(n= 12, X =AsIII, SbIII, M = Cu2+, Zn2+; n = 10, X = SeIV, TeIV, M = Cu2+) and [(α-AsW9O33)2WO(H2O)M2(H2O)2]10-(M= Zn2+, Mn2+, Co2+) [J]. Inorganic Chemistry, 2001, 40(18): 4742-4749.

    [23] B?SING M, NOLH A, LOOSE I, et al. Highly efficient catalysts in directed oxygen-transfer processes: synthesis, structures of novel manganese-containing heteropolyanions, and applications in regioselective epoxidation of dienes with hydrogen peroxide [J]. Journal of the American Chemical Society, 1998, 120(11): 7252-7259.

    [24] LIU Y J, CAO J, WANG Y J, et al. Hydrothermal synthesis and structural characterization of an organic-inorganic hybrid sandwich-type tungstoantimonate [Cu(en)2(H2O)]4[Cu(en)2(H2O)2][Cu2Na4(α-SbW9O33)2]·6H2O [J]. Journal of Solid State Chemistry, 2014, 209(1): 113-119.

    [25] SHELDRICK G M. SHELXTL-97: Program for crystal structure solution [CP]. G?ttingen: University of G?ttingen, 1997.

    [26] CAO J, ZHANG J, JI F, et al. A 2-D tetra-FeIIIsubstituted sandwich-type antimonotungstate NdNa3[Fe4(H2O)10][β-B-SbW9O33]2·36H2O [J]. Chemical Research, 2014, 25(1): 1-7.

    [27] GAUNT A J, MAY I, COPPING R, et al. A new structural family of heteropolytungstate lacunary complexes with the uranyl, UO22+, cation [J]. Dalton Transactions, 2003(15): 3009-3014.

    [28] WU Q, CHEN W L, LIU D, et al. New class of organic-inorganic hybrid aggregates based on polyoxometalates and metal-Schiff-base [J]. Dalton Transactions, 2011, 40(1): 56-61.

    [29] CHEN C C, ZHAO W, LEI P, et al. Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2dispersions under visible-light irradiation: mechanistic implications [J]. Chemistry-A European Journal, 2004, 10(8): 1956-1965.

    [30] WANG X H, HAN Q, CHEN L J, et al. Hydrothermal syntheses, crystal structures and characterization of two new 1-D and 2-D inorganic-organic hybrid polyoxomolybdates [H2dap]2[x-Mo8O26]·2H2O and [Cu(dap)2]2[β-Mo8O26] [J]. Inorganic Chemistry Communications, 2016, 63(1): 24-29.

    [31] SHI D Y, SHANG S S, CHEN L J, et al. Three novel 2D organic-inorganic hybrid CuII-LnIIIheterometallic arsenotungstates [J]. Synthetic Metals, 2012, 162(11/12): 1030-1036.

    [責(zé)任編輯:吳文鵬]

    一種Zn-K取代夾心型銻鎢酸鹽的制備、晶體結(jié)構(gòu)和光催化活性

    田雪蒙,史芳瑛,龐晶晶,羅 婕*

    (河南省多酸化學(xué)重點(diǎn)實(shí)驗(yàn)室,河南大學(xué) 化學(xué)化工學(xué)院,河南 開封 475004)

    合成了一種Zn-K取代的夾心型銻鎢酸鹽Na9[Zn3K3(H2O)9][B-α-SbW9O33]2·44 H2O (1),并借助元素分析、紅外光譜和X射線單晶衍射等方法對其進(jìn)行了表征. 標(biāo)題化合物屬于單斜晶系,C2/c空間群,晶胞參數(shù):a= 1.399 93(12) nm,b= 2.317 6(2) nm,c= 3.208 8(3) nm,β= 98.804 0(10)°,V= 10.288 0(15) nm3,Z= 4,Dc= 3.930 g/cm3,GOOF= 1.026,R1= 0.043 6,wR2= 0.103 5. X 射線單晶衍射結(jié)構(gòu)分析表明,化合物1分子結(jié)構(gòu)由2個三缺位銻鎢構(gòu)筑塊[B-α-SbW9O33]9-通過12個缺位氧原子與1個六邊形鋅鉀簇[Zn3K3(H2O)9]9+相連而成. 光催化結(jié)果表明,化合物1在一定程度上可以抑制偶氮熒光桃紅的光降解.

    多金屬氧酸鹽; 銻鎢酸鹽; 夾心型化合物

    Supported by the Foundation of Education Department of Henan Province (16A150027) and the Students Innovative Pilot Plan of Henan University (16NA005).

    , E-mail:Luojie@henu.edu.cn.

    O614.3 Document code: A Article ID: 1008-1011(2017)03-0314-07

    Received date: 2017-03-21.

    Biography: TIAN Xuemeng (1996-), female, majoring in molecule-based functional materials.*

    猜你喜歡
    晶胞參數(shù)缺位夾心
    防疫不缺位秋收不誤時
    布達(dá)拉(2022年8期)2022-05-30 10:48:04
    Computational Studies on 2,4,7,9,11,12-Hexanitro-2,4,7,9,11,12- Hexaaza-Tetracyclo[8.4.0.03,8.05,6]Dodecane as Potential High Energy Density Compound
    監(jiān)督“裸官”,監(jiān)察法何時不再缺位?
    晶胞參數(shù)及空間利用率的相關(guān)計(jì)算突破
    打造新媒體產(chǎn)品,這些基本功不能缺位
    傳媒評論(2018年8期)2018-11-10 05:22:12
    “夾心”的生日蛋糕
    中藥夾心面條
    新型夾心雙核配和物[Zn2(ABTC)(phen)2(H2O)6·2H2O]的合成及其熒光性能
    利用X射線衍射和巖礦鑒定等技術(shù)研究河南湯家坪鉬礦區(qū)主要礦物標(biāo)型特征
    巖礦測試(2015年1期)2016-01-11 08:23:21
    半夾心結(jié)構(gòu)含1,2-二硒碳硼烷的多核Co配合物的合成及結(jié)構(gòu)表征
    国产在线一区二区三区精| 丝袜人妻中文字幕| 在线av久久热| 中文字幕精品免费在线观看视频| 自线自在国产av| 国产不卡av网站在线观看| 亚洲一码二码三码区别大吗| 夜夜夜夜夜久久久久| av一本久久久久| 免费日韩欧美在线观看| 欧美+亚洲+日韩+国产| 亚洲久久久国产精品| 视频在线观看一区二区三区| 夫妻午夜视频| 麻豆成人av在线观看| 国产精品久久久av美女十八| 天堂中文最新版在线下载| 国产国语露脸激情在线看| 精品一区二区三区av网在线观看 | 日本黄色日本黄色录像| 午夜福利在线观看吧| 老司机福利观看| 国产成+人综合+亚洲专区| 日韩制服丝袜自拍偷拍| 大陆偷拍与自拍| 久久香蕉激情| 高潮久久久久久久久久久不卡| 黑人巨大精品欧美一区二区mp4| 久久精品熟女亚洲av麻豆精品| 免费观看av网站的网址| 人妻久久中文字幕网| 一本综合久久免费| 国产日韩欧美亚洲二区| 日韩熟女老妇一区二区性免费视频| 欧美乱妇无乱码| 黑人猛操日本美女一级片| 成年人午夜在线观看视频| 男女午夜视频在线观看| 18禁美女被吸乳视频| 亚洲国产av影院在线观看| 精品国内亚洲2022精品成人 | 国产精品影院久久| www.999成人在线观看| 亚洲一区二区三区欧美精品| 最新美女视频免费是黄的| 亚洲午夜理论影院| 国产一区有黄有色的免费视频| 90打野战视频偷拍视频| 桃花免费在线播放| 岛国在线观看网站| 欧美黑人精品巨大| 黄片大片在线免费观看| 两个人看的免费小视频| 超碰97精品在线观看| 他把我摸到了高潮在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 丝袜喷水一区| 亚洲一码二码三码区别大吗| 欧美日韩亚洲国产一区二区在线观看 | 99精品久久久久人妻精品| 黄片播放在线免费| 日韩免费av在线播放| 99国产精品免费福利视频| 国产精品成人在线| 美女福利国产在线| 一个人免费看片子| 国产精品久久久久久人妻精品电影 | 欧美 日韩 精品 国产| 高清视频免费观看一区二区| 麻豆国产av国片精品| 丰满迷人的少妇在线观看| 国产精品免费视频内射| kizo精华| 亚洲一卡2卡3卡4卡5卡精品中文| 99香蕉大伊视频| 久久人人爽av亚洲精品天堂| 国产一区二区三区视频了| 老汉色av国产亚洲站长工具| aaaaa片日本免费| 精品少妇久久久久久888优播| 丝袜在线中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成国产人片在线观看| 夜夜骑夜夜射夜夜干| 免费黄频网站在线观看国产| 色精品久久人妻99蜜桃| 人人妻人人添人人爽欧美一区卜| 亚洲伊人色综图| 99精国产麻豆久久婷婷| 夫妻午夜视频| 美女视频免费永久观看网站| videosex国产| 大码成人一级视频| 一边摸一边抽搐一进一出视频| 午夜福利欧美成人| 久久精品91无色码中文字幕| 91老司机精品| 在线观看www视频免费| 亚洲av美国av| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频 | 两个人看的免费小视频| 久久精品国产a三级三级三级| 精品国产一区二区三区久久久樱花| 色婷婷av一区二区三区视频| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 性少妇av在线| 手机成人av网站| 久久精品国产亚洲av香蕉五月 | 国产人伦9x9x在线观看| 纯流量卡能插随身wifi吗| 性高湖久久久久久久久免费观看| av网站在线播放免费| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 18禁黄网站禁片午夜丰满| 亚洲av片天天在线观看| 丝袜喷水一区| 1024视频免费在线观看| 日日摸夜夜添夜夜添小说| 国产男靠女视频免费网站| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 久久久精品区二区三区| 亚洲九九香蕉| 多毛熟女@视频| 日韩一区二区三区影片| 大香蕉久久网| 老司机福利观看| 亚洲精品成人av观看孕妇| 91精品三级在线观看| 日韩有码中文字幕| www日本在线高清视频| 国产主播在线观看一区二区| 操出白浆在线播放| 老司机深夜福利视频在线观看| 在线观看免费视频网站a站| 中国美女看黄片| 人人澡人人妻人| 午夜精品国产一区二区电影| 高清黄色对白视频在线免费看| 成人影院久久| 精品亚洲乱码少妇综合久久| 亚洲精品自拍成人| 丝袜美足系列| 国产免费av片在线观看野外av| 在线观看免费日韩欧美大片| 丰满少妇做爰视频| 国产精品免费一区二区三区在线 | 亚洲国产欧美在线一区| 超碰97精品在线观看| 国产成人精品在线电影| 久久久久精品国产欧美久久久| 国产精品久久久久久精品古装| 色94色欧美一区二区| 狂野欧美激情性xxxx| 久热爱精品视频在线9| 精品人妻熟女毛片av久久网站| 极品人妻少妇av视频| 91九色精品人成在线观看| 国产淫语在线视频| 美女主播在线视频| 曰老女人黄片| 成人免费观看视频高清| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产欧美日韩在线播放| 51午夜福利影视在线观看| 国产片内射在线| 欧美日韩亚洲高清精品| 黄频高清免费视频| xxxhd国产人妻xxx| 日韩欧美一区视频在线观看| 久久香蕉激情| 亚洲欧美精品综合一区二区三区| 国产一区二区激情短视频| 一本—道久久a久久精品蜜桃钙片| 国产精品99久久99久久久不卡| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 一本综合久久免费| 99在线人妻在线中文字幕 | 搡老熟女国产l中国老女人| avwww免费| 如日韩欧美国产精品一区二区三区| 欧美日韩国产mv在线观看视频| 久久亚洲精品不卡| 免费不卡黄色视频| 悠悠久久av| 日本a在线网址| 正在播放国产对白刺激| 国产野战对白在线观看| 99riav亚洲国产免费| 成人精品一区二区免费| 国产不卡av网站在线观看| 一区二区av电影网| 不卡av一区二区三区| 宅男免费午夜| 久久久久国产一级毛片高清牌| 麻豆乱淫一区二区| 国产伦人伦偷精品视频| 国产99久久九九免费精品| tube8黄色片| 一区二区三区精品91| 色播在线永久视频| 亚洲男人天堂网一区| e午夜精品久久久久久久| 亚洲专区国产一区二区| 精品免费久久久久久久清纯 | 999精品在线视频| 久久人妻熟女aⅴ| 最近最新中文字幕大全电影3 | kizo精华| 一级片'在线观看视频| 亚洲精品国产区一区二| 亚洲七黄色美女视频| 午夜福利免费观看在线| 多毛熟女@视频| 丝瓜视频免费看黄片| 国产成人精品久久二区二区91| 亚洲国产欧美在线一区| 在线 av 中文字幕| 91字幕亚洲| 中文字幕精品免费在线观看视频| 亚洲欧美日韩另类电影网站| 亚洲国产毛片av蜜桃av| videosex国产| 极品人妻少妇av视频| 精品久久久精品久久久| 精品人妻1区二区| 久久中文字幕一级| 久久精品国产99精品国产亚洲性色 | 亚洲av欧美aⅴ国产| 亚洲avbb在线观看| av免费在线观看网站| 久久毛片免费看一区二区三区| 久久精品成人免费网站| 精品第一国产精品| 黄网站色视频无遮挡免费观看| 老司机影院毛片| 久久ye,这里只有精品| 精品人妻1区二区| 国产精品成人在线| 侵犯人妻中文字幕一二三四区| 日韩熟女老妇一区二区性免费视频| 久久久精品94久久精品| 国产又色又爽无遮挡免费看| 两人在一起打扑克的视频| 亚洲熟女毛片儿| 丝袜美腿诱惑在线| 黄色毛片三级朝国网站| 亚洲第一青青草原| 高清在线国产一区| 精品国产一区二区三区四区第35| 免费不卡黄色视频| 免费在线观看影片大全网站| 久久亚洲真实| av不卡在线播放| 国产精品.久久久| 正在播放国产对白刺激| 久久久国产欧美日韩av| 日本撒尿小便嘘嘘汇集6| 亚洲三区欧美一区| 亚洲av国产av综合av卡| 国产精品99久久99久久久不卡| 成在线人永久免费视频| 在线观看免费高清a一片| 国产免费av片在线观看野外av| 最新在线观看一区二区三区| 99久久人妻综合| 青草久久国产| 在线观看免费视频日本深夜| 精品福利永久在线观看| 女性被躁到高潮视频| 露出奶头的视频| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 国产精品 欧美亚洲| 亚洲少妇的诱惑av| 女警被强在线播放| 老司机靠b影院| 亚洲精华国产精华精| 黑人操中国人逼视频| 日韩欧美三级三区| 免费av中文字幕在线| 黑人巨大精品欧美一区二区蜜桃| 日韩有码中文字幕| 欧美日韩亚洲高清精品| 免费观看a级毛片全部| 久久国产精品影院| 久久久久久久久久久久大奶| a级毛片黄视频| 丝袜美腿诱惑在线| 国产1区2区3区精品| 国产高清激情床上av| 亚洲人成伊人成综合网2020| 欧美日韩亚洲高清精品| 麻豆国产av国片精品| 精品少妇一区二区三区视频日本电影| 纵有疾风起免费观看全集完整版| 老司机深夜福利视频在线观看| 女人久久www免费人成看片| 国产aⅴ精品一区二区三区波| 美女午夜性视频免费| 极品人妻少妇av视频| 成人av一区二区三区在线看| 制服诱惑二区| 成人特级黄色片久久久久久久 | 一本久久精品| 99精国产麻豆久久婷婷| 丰满少妇做爰视频| 99国产综合亚洲精品| 精品国内亚洲2022精品成人 | 精品久久久久久久毛片微露脸| 久久99热这里只频精品6学生| 国产av一区二区精品久久| 91麻豆av在线| 丁香欧美五月| 免费不卡黄色视频| 涩涩av久久男人的天堂| 国产97色在线日韩免费| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 动漫黄色视频在线观看| 欧美乱妇无乱码| 一边摸一边做爽爽视频免费| a在线观看视频网站| 九色亚洲精品在线播放| 日韩人妻精品一区2区三区| 在线 av 中文字幕| 啪啪无遮挡十八禁网站| 在线十欧美十亚洲十日本专区| 久久中文字幕一级| 久久精品国产综合久久久| 国产亚洲欧美在线一区二区| 亚洲中文日韩欧美视频| 国产三级黄色录像| 热re99久久国产66热| 在线天堂中文资源库| 丰满迷人的少妇在线观看| 另类亚洲欧美激情| 成人18禁高潮啪啪吃奶动态图| h视频一区二区三区| 亚洲免费av在线视频| 好男人电影高清在线观看| 99精品久久久久人妻精品| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 欧美日韩黄片免| 丝袜人妻中文字幕| 妹子高潮喷水视频| 国产熟女午夜一区二区三区| 日韩免费av在线播放| 别揉我奶头~嗯~啊~动态视频| 动漫黄色视频在线观看| 久久久国产成人免费| 黄网站色视频无遮挡免费观看| 免费看十八禁软件| 国产日韩欧美视频二区| 日本av免费视频播放| 麻豆乱淫一区二区| 欧美日韩视频精品一区| 久久久久久久国产电影| aaaaa片日本免费| 日韩欧美国产一区二区入口| 两人在一起打扑克的视频| 十八禁高潮呻吟视频| 亚洲国产av影院在线观看| 成人国产一区最新在线观看| 99久久精品国产亚洲精品| 亚洲伊人色综图| 亚洲伊人久久精品综合| 精品亚洲成国产av| av片东京热男人的天堂| 日韩成人在线观看一区二区三区| av又黄又爽大尺度在线免费看| 国产成人系列免费观看| 老司机福利观看| avwww免费| 亚洲欧洲日产国产| 他把我摸到了高潮在线观看 | 91成年电影在线观看| 亚洲中文日韩欧美视频| 欧美日韩亚洲综合一区二区三区_| 一本久久精品| 久久久久久久精品吃奶| 亚洲五月色婷婷综合| 日韩大码丰满熟妇| 侵犯人妻中文字幕一二三四区| 丰满饥渴人妻一区二区三| 一本一本久久a久久精品综合妖精| 亚洲国产av影院在线观看| 曰老女人黄片| 国产精品九九99| 欧美成人免费av一区二区三区 | 99国产精品一区二区三区| 成年人免费黄色播放视频| 免费av中文字幕在线| 国产野战对白在线观看| 如日韩欧美国产精品一区二区三区| 久久久久网色| 亚洲av日韩精品久久久久久密| 中文字幕最新亚洲高清| 国产精品麻豆人妻色哟哟久久| 欧美日韩福利视频一区二区| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| 日本av手机在线免费观看| 精品视频人人做人人爽| 国产一区二区在线观看av| 亚洲成人免费电影在线观看| 国产成人精品久久二区二区91| 久久精品国产综合久久久| 国产精品二区激情视频| 国产区一区二久久| 巨乳人妻的诱惑在线观看| 国产精品久久电影中文字幕 | 国产精品九九99| 色综合婷婷激情| 国产av精品麻豆| 久久精品亚洲熟妇少妇任你| 老鸭窝网址在线观看| 在线观看免费视频日本深夜| 午夜精品久久久久久毛片777| 亚洲 国产 在线| 亚洲人成伊人成综合网2020| 国产xxxxx性猛交| 午夜成年电影在线免费观看| 99精品欧美一区二区三区四区| 怎么达到女性高潮| 黑丝袜美女国产一区| 亚洲va日本ⅴa欧美va伊人久久| 在线看a的网站| 国产精品98久久久久久宅男小说| 制服诱惑二区| av天堂在线播放| 亚洲第一欧美日韩一区二区三区 | av片东京热男人的天堂| 日韩精品免费视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 国产在线视频一区二区| 精品久久久精品久久久| 久久久久久久久久久久大奶| 国产一区二区三区视频了| videos熟女内射| 两人在一起打扑克的视频| 国产xxxxx性猛交| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 9191精品国产免费久久| 狠狠婷婷综合久久久久久88av| 国产老妇伦熟女老妇高清| 久久精品成人免费网站| 午夜精品国产一区二区电影| 狂野欧美激情性xxxx| 人妻 亚洲 视频| 国产成人av激情在线播放| 美女高潮到喷水免费观看| 99九九在线精品视频| 69av精品久久久久久 | 国产极品粉嫩免费观看在线| 欧美精品高潮呻吟av久久| 欧美中文综合在线视频| 高清视频免费观看一区二区| 午夜91福利影院| 日本a在线网址| 亚洲五月色婷婷综合| 99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| 法律面前人人平等表现在哪些方面| 亚洲男人天堂网一区| 大片免费播放器 马上看| 满18在线观看网站| 精品国产亚洲在线| 99久久精品国产亚洲精品| 国产精品香港三级国产av潘金莲| 黄片播放在线免费| 俄罗斯特黄特色一大片| 午夜激情av网站| 成人手机av| 国产精品影院久久| 国产精品 欧美亚洲| 久久久久精品人妻al黑| 我要看黄色一级片免费的| 日韩人妻精品一区2区三区| 国产成人欧美| 欧美黄色淫秽网站| 宅男免费午夜| 欧美日韩国产mv在线观看视频| 精品福利永久在线观看| 女人被躁到高潮嗷嗷叫费观| 日韩大片免费观看网站| 欧美老熟妇乱子伦牲交| 亚洲成人手机| 天天操日日干夜夜撸| 中文亚洲av片在线观看爽 | 咕卡用的链子| 男女边摸边吃奶| 黄色 视频免费看| 国产精品亚洲av一区麻豆| 人妻 亚洲 视频| 国精品久久久久久国模美| 亚洲av第一区精品v没综合| 日韩中文字幕欧美一区二区| 精品一区二区三区四区五区乱码| 久久精品国产亚洲av香蕉五月 | 自线自在国产av| 高清av免费在线| 美女高潮喷水抽搐中文字幕| 国产在视频线精品| 十八禁人妻一区二区| 伊人久久大香线蕉亚洲五| 91麻豆av在线| 捣出白浆h1v1| 五月天丁香电影| 中文欧美无线码| 丝瓜视频免费看黄片| 国产成人啪精品午夜网站| 19禁男女啪啪无遮挡网站| 热99国产精品久久久久久7| 日本av免费视频播放| 无遮挡黄片免费观看| 最新美女视频免费是黄的| 亚洲人成77777在线视频| 变态另类成人亚洲欧美熟女 | 亚洲精品久久成人aⅴ小说| 我的亚洲天堂| 狠狠狠狠99中文字幕| 蜜桃国产av成人99| 亚洲第一欧美日韩一区二区三区 | 黑人猛操日本美女一级片| 国产亚洲欧美在线一区二区| 欧美精品亚洲一区二区| 久久久精品国产亚洲av高清涩受| 国产精品久久久人人做人人爽| av国产精品久久久久影院| 高清黄色对白视频在线免费看| 久久婷婷成人综合色麻豆| 18禁裸乳无遮挡动漫免费视频| 午夜福利,免费看| 一本久久精品| 成年人黄色毛片网站| 欧美精品高潮呻吟av久久| 午夜免费鲁丝| 精品免费久久久久久久清纯 | 国产精品九九99| 老司机在亚洲福利影院| 亚洲人成电影免费在线| 久久久精品免费免费高清| 中文字幕高清在线视频| 中国美女看黄片| 亚洲少妇的诱惑av| 黄片播放在线免费| 狠狠狠狠99中文字幕| 少妇粗大呻吟视频| 午夜成年电影在线免费观看| 一个人免费在线观看的高清视频| 欧美成人午夜精品| 两人在一起打扑克的视频| 久久av网站| 国产精品熟女久久久久浪| 99香蕉大伊视频| 久久精品aⅴ一区二区三区四区| 精品少妇内射三级| a在线观看视频网站| 波多野结衣av一区二区av| xxxhd国产人妻xxx| 夜夜爽天天搞| 亚洲精品在线观看二区| 两个人看的免费小视频| 男女免费视频国产| 大型黄色视频在线免费观看| 欧美精品av麻豆av| 少妇裸体淫交视频免费看高清 | 在线观看免费高清a一片| 麻豆av在线久日| 涩涩av久久男人的天堂| 人人妻人人添人人爽欧美一区卜| 大型av网站在线播放| 日韩免费av在线播放| 黄色丝袜av网址大全| 国内毛片毛片毛片毛片毛片| 在线观看www视频免费| 欧美成人免费av一区二区三区 | 纵有疾风起免费观看全集完整版| 久久人人97超碰香蕉20202| 国产精品欧美亚洲77777| 国产精品一区二区在线观看99| 成年版毛片免费区| 99热网站在线观看| xxxhd国产人妻xxx| a级毛片在线看网站| 国产亚洲精品第一综合不卡| 怎么达到女性高潮| 久久免费观看电影| 午夜福利视频在线观看免费| 国产99久久九九免费精品| 亚洲精华国产精华精| 91成人精品电影| 天堂8中文在线网| 亚洲一码二码三码区别大吗| 黄色 视频免费看| 高清在线国产一区| 男女之事视频高清在线观看| 国产欧美日韩一区二区三区在线| 久久ye,这里只有精品| 51午夜福利影视在线观看| 好男人电影高清在线观看| 国产一区二区 视频在线| 人成视频在线观看免费观看| 新久久久久国产一级毛片| 精品国内亚洲2022精品成人 | 国产欧美日韩一区二区精品| 久热这里只有精品99| 欧美日韩国产mv在线观看视频|