• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Collaborations of Industry, Academia, Research and Application Improve the Healthy Development of Medical Imaging Artificial Intelligence Industry in China

    2019-02-16 06:21:13YiXiaoShiyuanLiu
    Chinese Medical Sciences Journal 2019年2期

    Yi Xiao, Shiyuan Liu*

    Department of Radiology, Changzheng Hospital, Naval Medical University(Second Military Medical University), Shanghai 200003, China

    Key words: medical imaging; artificial intelligence; white paper; innovative alliance

    Abstract In recent years, artificial intelligence (AI) has developed rapidly in the field of medical imaging.However, the collaborations among hospitals, research institutes and enterprises are insufficient at the present,and there are various issues in technological transformation and value landing of products in this area. To solve the core problems in the developmental path of medical imaging AI, the Chinese Innovative Alliance of Industry,Education, Research and Application of Artificial Intelligence for Medical Imaging compiled the White Paper on Medical Image AI in China. This article introduces the current status of collaboration, the clinical demands for medical imaging AI technique, and the key points in AI technology transformation: robustness, usability and security. We are facing challenges of lacking industry standards, data desensitization standard, assessment system,as well as corresponding regulations and policies to realize the application values of AI products in medical imaging. Further development of AI in medical imaging requires breakthroughs of the core algorithm, deep involvement of doctors, input from capitals, patience from societies, and most importantly, the resolutions from government for multiple difficulties in links of landing the technology.

    I N recent years, with the rapid development of computer hardware and software, the computing power has been greatly improved, which makes artificial intelligence (AI) come to the stage once again after years of silence.1,2According to the “New Generation of Artificial Intelligence Development Plan”, released in July 2017 by the State Council of China, intelligent medical care has been put forward as one of the key tasks of the nation. In this governmental document, the guiding ideology, strategic objectives, key tasks and supporting measures for developing the new generation AI in 2030 are proposed officially. The technological innovation and the favorable policy of the nation have rendered rapid development of AI in the field of biomedicine. AI has also become one of the strategic directions of traditional medical giants as well as emerging internet technology companies.

    The application domain of AI in medical care can include hospital management, personal health management, clinical case analysis, virtual assistant for physician, intelligent machinery, new drug research and development, medical imaging, disease diagnosis,etc.3,4The AI enterprises in United State have covered variant fields of medical care system, while in China,AI enterprises have been mostly working on medical imaging due to the rapid growth of clinical demands,the imbalanced distribution of high-quality healthcare resources and the lack of medical imaging doctors around the country. Although AI products of medical imaging have covered the whole process of disease diagnosis and treatment, e.g. computer-aided diagnosis,decision-making for treatment, quantitative follow-up,precise treatment, some core problems have emerged on the way forward to its in-depth development and application. For example, “information island” exists regarding data storage and image interworking;multi-terminal communication is still underdeveloped.Large volume of data in medical image database need to be labeled in standardized formats. Issues in data application and sharing have gradually become the bottleneck for further development of medical AI. In addition, technology research is poorly docked with medical demand, application of AI in health care are limited to a few scenarios, and consequently there exist homogenization in medical AI products currently.5

    EFFICIENT COLLABORATION OF INDUSTRY,ACADEMIA, RESEARCH AND APPLICATION IS NEEDED FOR HEALTHY DEVELOPMENT OF AI IN MEDICAL IMAGING

    In view of the problems on the road of development, the Chinese Innovative Alliance of Industry,Education, Research and Application of Artificial Intelligence for Medical Imaging (CAIERA), the first Chinese organization sponsored by the demand-apply end, was set up on April 12, 2018. The original members of the Alliance include 120 well-known large-scale Tertiary hospitals in China, 55 enterprises of medical imaging artificial intelligence and 35 scientific research institutions. The CAIERA commits itself to effectively integrating various resources from the industry, education,research and application field to give full plays to their respective advantages. The mission of the alliance is to promote the technological innovation and rapid development of medical imaging AI in China. Cooperating with some Chinese associations of medical imaging,leading experts from the alliance advice on clinical demands, make top-level design, promote standardization and performance assessment for AI products from both the medical academia and AI technology perspectives. The alliance has issued a certain number of consensus on relevant topics in AI.6,7Meanwhile, to solve the present pain points and key points for the technological innovation and development in medical imaging AI, the alliance has compiled the White Paper of Medical Image AI in China(full text available in supplymentary material),8where the up-to-date AI algorithms,applications, policies, and so on, were analyzed, aiming at improving hospital-university-enterprise cooperation and jointly exploring the developmental path of medical imaging AI in China.

    CURRENT STATUS OF MULTI-LATERAL COLLABORATION IN MEDICAL IMAGING AI IN CHINA

    With the popularity of digital medical equipment,high-resolution thin-section scanning and the rapid expansion of storage power of multi-model imaging modalities, the data volume of medical images increases by over 30% each a year, which also account for 90%of digital data volume for a hospital. In contrast, the number of radiologists increases by only about 4% a year. The overwork has affected the image interpreting quality and the diagnostic accuracy of radiologists in China. Under this circumstance, AI technology can help to improve the diagnostic accuracy while shortening the image reading time greatly for its theoretical features of semi-supervised, self-learning and self-evolution, which greatly solves the clinical pain point.

    The first national survey on medical AI in doctors and researchers, initiated by the CAIERA, found that young or middle-aged physicians, senior physicians and radiologists who also take administrative responsibility were generally more interested in AI technology; for AI technologic researchers and developers,young students took the great proportion. The majority of professionals in this emerging area are relatively young indicates a broad and promising future of the AI industry. Furthermore, the survey found that the demands of physicians and the researchers are consistent with each other. Physicians pertain active attitudes to sharing resources they have, e.g. the image data,the clinical data, image annotation data, and they apt to give suggestions on clinical demands, provide feedbacks information of the products as the initial users.This is invaluable to AI technological researchers who engage themselves in investigating novel technology and meanwhile concern about the transformation of the technology to product, which they believe is very challengeable to them.9

    The collaborations among hospitals, research institutes and enterprises are insufficient at the present. There are some barriers for this issue. Firstly,in the field of medical imaging AI, the fundamental researches are relatively weak in both hospitals and science & technology research institutions. Secondly, many healthcare facilities are not likely to open and share their medical data in concern about information security, while only a few researchers or enterprises possess the key technology to maintain data security and have practical experience in this process. Thirdly, most imaging physicians lack AI-related knowledge. They also concern about the reliability of AI products and the differentiation of legal liability between physicians and AI when applied clinically. They believe that no standard to follow is the most important problems.

    CLINICAL DEMANDS FOR MEDICAL IMAGING AI PRODUCTS IN CHINA

    Distinctive from other AI products, medical imaging AI products should meet the practical needs in health care practice and be seamlessly integrated to the clinical workflow of a healthcare facility. From this point of view, a close cooperation of supply end with the demand end is particularly important. The white paper summarizes the opinions and suggestions on clinical demands from experts in subspecialties of medical imaging. Regarding the pain point problems in a variety of medical imaging subspecialties where AI has been applied, the white paper analyzes the current situation of research, clinical application, the goals and challenges, and points out the direction of research and development for AI product in future. For example, it is suggested that improving the efficiency and accuracy of an AI product should be the major task of product design in its early stage, in another word, to focus on optimizing a “dot”, an AI application in a single scenario for a certain disease in a certain department firstly.Multi-task learning based on anatomic sites, as well as multi-disciplinary data intelligentization based on clinical medical record, radiographic information, pathological and genomic information, can effectively facilitate clinical decision-making and scientific research. It is only through integrating the respective advantages of hospitals, AI enterprises, research institutions, and medical equipment manufacturers in aspects of diagnosis, treatment, research and data management that we can realize the real breakthrough in AI algorithm,and thus help to fulfill the values of medical AI.

    RAPID DEVELOPMENT OF MEDICAL IMAGING AI TECHNIQUE AND TECHNICAL TRANSFORMATION

    Artificial intelligent technique has made substantial breakthrough in medical image segmentation, registration, recognition and mapping, which has promoted its application and development in various aspects of medical imaging.10-13At present, AI technology has been used in speeding data acquisition, optimizing image with lowered radiation dose, chest film intelligent reporting, intelligent imaging of coronary CTA, breast cancer screening, lung nodules screening, accurate delineation of radiation targeted area, bone age interpretation, diagnosis of brain white matter diseases, joint disease, prostate cancer, bladder cancer, colorectal cancer, etc. Besides, great progresses have been also achieved beyond radiological field, such as intelligent diagnosis of pathology, fundus diseases, skin diseases,as well as surgical robots.

    In these areas, the current status of researches,demand, dilemma and future direction has been systematically combed and presented in the white paper.In particular, three problems were emphasized as the keys solutions for AI in medical imaging to truly move from lab forward to technology transformation and clinical landing.

    Robustness

    Models with a small training database are not adaptable well enough for the highly complex clinical environment. The data quality and quantity used in developing AI products directly affect its performance in real clinical setting. To ensure the robustness of AI product,efforts are needed to improve quantity of structured data, quality of image marking, representation of data distribution, and feasible approaches of training.

    Usability

    The server of an AI product needs to be seamlessly connected with the existing hospital information system,and to make sure it does not affect the stability of the existing information system, does not interfere with the on-going diagnosis and treatment workflow, and does not complicate physicians’ operations. Ease of use is crucial for an AI product being accepted and recognized by its user, the clinicians. It is not only the premise of sustainable existence, but also a huge challenge.

    Security

    To protect patient privacy and ensure biomedical data safety should be the premier in developing medical imaging AI products.

    CHALLENGES TO FULFILL THE VALUE OF MEDICAL IMAGING AI PRODUCTS

    To land the medical artificial intelligence, which is driven by the technological development, inevitably there are problems in merging into the traditional medical infrastructure and supervision system. At present, policies and regulations regarding artificial intelligent products are in lack in term of registration approval, market licensing, etc. The industry standards for medical AI application are almost vacant.Neither the desensitization standard for medical data used in AI, nor the assessment index system and ethics principle for medical AI products have been established yet.

    The white paper calls on people from all stakeholders pay active attention to the development of medical imaging AI and participate in the integration with each other. It is suggested to set AI technological innovation as priority, reformulate corresponding policies based on research and investigation, through which to promote reformation of traditional healthcare model and drive the development of the industry.

    The clinical demands for medical imaging AI exist objectively; deep fusion of new technology, new business performance, and new business model is paramount for the promotion of the whole industry. Application of AI in medical imaging has initially shown its prospect, playing assistant role successfully for doctor in some scenarios. However, there is still a long way to go for a truly clinical application, which requires breakthroughs of the core algorithm, deep involvement of doctors, input from capitals, patience from societies, and most importantly, the resolutions from government for multiple difficulties in links of landing the technology.14

    Conflict of interest disclosure

    The authors declared no conflict of interests.

    Supplementary material

    The white Paper on Medical Imaging AI in China (English Version): available electronically on journal's website.

    REFERENCE

    1. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017; 542(7639):115-8. doi:10.1038/nature21056.

    2. Syed AB, Zoga AC. Artificial intelligence in radiology:current technology and future directions. Semin Musculoskelet Radiol 2018; 22(5):540-5. doi: 10.1055/s-0038-1673383.

    3. Tonutti M, Gras G, Yang GZ. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med 2017;80:39-47. doi: 10.1016/j.artmed.2017.07.004.

    4. Krittanawong C, Zhang H, Wang Z, et al. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 2017; 69(21):2657-64. doi: 10.1016/j.jacc.2017.03.571.

    5. Liu SY, Xiao Y. Challenges and opportunities of deep learning artificial intelligence in medical imaging.Chin J Radiol 2017; 51(12):899-901. Chinese. doi:10.3760/cma.j.issn.1005-1201.2017.12.002.

    6. National Institutes for Food and Drug Control; Chinese Society of Radiology Cardio-thoracic working group. Expert consensus on the rule and quality control of pulmonary nodule annotation based on thoracic CT. Chin J Radiol 2019; 53(1):9-15. Chinese. doi:10.3760/cma.j.issn.1005-1201.2019.01.004.

    7. Chinese Society of Radiology Cardio-thoracic working group. Expert consensus on the imaging management of pulmonary subsolid nodule. Chin J Radiol 2015; 49 (4):254-8. Chinese. doi: 10.3760/cma.j.issn.1005-1201.2015.04.005.

    8. Liu SY, Qian DH, Shen DG, et al. editor. Chinese Innovative Alliance of Industry, Education, Research and Application of Artificial Intelligence for Medical Imaging,CAIERA. The White Paper on Medical Imaging AI in China. https://vcbeat.top/Report/getReportFile/key/Nzgw.Released March 26, 2019; accessed June 3, 2019.

    9. Zhang HM, Xiao Y, Hong N, et al. The report of status and needs in medical imaging artificial intelligence industry. Chin J Radiol 2019; 53(6):507-11. Chinese.doi: 10.3760/cma.j.issn.1005-1201.2019.06.013.

    10. Buda M, Saha A, Mazurowski MA. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput Biol Med 2019; 109:218-25. doi:10.1016/j.compbiomed.2019.05.002. Epub: 2019 May 3.

    11. Ehteshami Bejnordi B, Veta M, Johannes van Diest P, et al. Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 2017; 318(22):2199-210. doi: 10.1001/jama.2017.14585.

    12. Sitek A, Wolfe JM. Assessing cancer risk from mammograms: deep learning is superior to conventional risk models. Radiology 2019; 190791. doi: 10.1148/radiol.2019190791. Epub: 2019 May 7.

    13. Liu K, Li Q, Ma J, et al. Evaluating a fully automated pulmonary nodule detection approach and its impact on radiologist performance. Radiol Artif Intell 2019;1(3). doi: 10.1148/ryai.2019180084. Epub: 2019 May 29.

    14. Xiao Y, Liu SY. The state-of-the-art medical imaging artificial intelligence: challenges and strategies. Chin J Radiol 2019; 53(1):2-5. Chinese. doi: 10.3760/cma.j.issn.1005-1201.2019.01.002.

    美女扒开内裤让男人捅视频| 欧美午夜高清在线| 此物有八面人人有两片| 久久久久久人人人人人| 老汉色∧v一级毛片| 欧美激情久久久久久爽电影 | 欧美中文日本在线观看视频| 女生性感内裤真人,穿戴方法视频| 成人三级黄色视频| 日韩 欧美 亚洲 中文字幕| 亚洲 欧美 日韩 在线 免费| 亚洲色图av天堂| 欧美乱码精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产国语露脸激情在线看| 日韩欧美国产一区二区入口| 亚洲精品国产区一区二| 久久人人爽av亚洲精品天堂| 欧美日韩一级在线毛片| 日日干狠狠操夜夜爽| 久久精品国产亚洲av香蕉五月| 脱女人内裤的视频| 午夜精品久久久久久毛片777| 久久香蕉国产精品| 波多野结衣av一区二区av| 一级黄色大片毛片| 香蕉久久夜色| aaaaa片日本免费| 国产精品二区激情视频| 女性被躁到高潮视频| 国产单亲对白刺激| cao死你这个sao货| 波多野结衣高清无吗| 亚洲国产精品合色在线| 国产精品亚洲av一区麻豆| 一边摸一边抽搐一进一小说| 淫秽高清视频在线观看| 国产亚洲欧美在线一区二区| 老汉色av国产亚洲站长工具| 久久亚洲精品不卡| 91字幕亚洲| 成人特级黄色片久久久久久久| 精品久久久久久久久久免费视频| 人人妻人人澡人人看| 叶爱在线成人免费视频播放| 久久精品国产清高在天天线| 免费在线观看视频国产中文字幕亚洲| 女人爽到高潮嗷嗷叫在线视频| 亚洲avbb在线观看| 黄色片一级片一级黄色片| 十八禁人妻一区二区| 久久国产乱子伦精品免费另类| 不卡一级毛片| 一区二区三区激情视频| 曰老女人黄片| 欧美日韩瑟瑟在线播放| 少妇粗大呻吟视频| 天堂动漫精品| 久久天躁狠狠躁夜夜2o2o| 很黄的视频免费| 久久久久精品国产欧美久久久| 亚洲精品av麻豆狂野| 老司机深夜福利视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 日韩成人在线观看一区二区三区| 美女高潮到喷水免费观看| 高清黄色对白视频在线免费看| 如日韩欧美国产精品一区二区三区| 可以免费在线观看a视频的电影网站| 国产激情欧美一区二区| 色老头精品视频在线观看| 18禁观看日本| 黄片小视频在线播放| 男女之事视频高清在线观看| 午夜福利成人在线免费观看| 亚洲av熟女| 51午夜福利影视在线观看| 如日韩欧美国产精品一区二区三区| 91麻豆av在线| 一区二区三区国产精品乱码| 国产精品乱码一区二三区的特点 | 激情视频va一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 99热只有精品国产| 国产蜜桃级精品一区二区三区| 久久香蕉精品热| 日本a在线网址| 日日爽夜夜爽网站| 日韩视频一区二区在线观看| 九色亚洲精品在线播放| av电影中文网址| 可以在线观看的亚洲视频| 欧美人与性动交α欧美精品济南到| 久久久久国内视频| 天堂√8在线中文| 亚洲欧美激情在线| 在线观看舔阴道视频| 亚洲avbb在线观看| 99久久国产精品久久久| 一级作爱视频免费观看| 男人操女人黄网站| 女生性感内裤真人,穿戴方法视频| 91麻豆精品激情在线观看国产| 欧美日本亚洲视频在线播放| 国产亚洲精品一区二区www| 国产欧美日韩一区二区精品| 伊人久久大香线蕉亚洲五| 热re99久久国产66热| 操出白浆在线播放| 69av精品久久久久久| 免费观看人在逋| 琪琪午夜伦伦电影理论片6080| 欧美午夜高清在线| 国产精品,欧美在线| 女生性感内裤真人,穿戴方法视频| 最近最新免费中文字幕在线| 成熟少妇高潮喷水视频| 91在线观看av| 免费无遮挡裸体视频| 婷婷精品国产亚洲av在线| 欧美午夜高清在线| 51午夜福利影视在线观看| 国产精品美女特级片免费视频播放器 | 男人的好看免费观看在线视频 | 久久久久亚洲av毛片大全| 欧美黄色片欧美黄色片| 免费在线观看日本一区| 日韩国内少妇激情av| 久久精品国产综合久久久| 免费看a级黄色片| 日日夜夜操网爽| 1024视频免费在线观看| 日本免费一区二区三区高清不卡 | 久久久久久久午夜电影| 精品一区二区三区四区五区乱码| 日韩大尺度精品在线看网址 | 91成年电影在线观看| 亚洲人成伊人成综合网2020| 亚洲一区中文字幕在线| 美女大奶头视频| 亚洲人成77777在线视频| 日本一区二区免费在线视频| 亚洲自偷自拍图片 自拍| 国产xxxxx性猛交| 99国产精品免费福利视频| 18禁裸乳无遮挡免费网站照片 | 日本一区二区免费在线视频| 高潮久久久久久久久久久不卡| 欧美性长视频在线观看| 午夜福利欧美成人| 亚洲第一av免费看| 色精品久久人妻99蜜桃| 日韩大尺度精品在线看网址 | 黄色片一级片一级黄色片| 91老司机精品| 亚洲国产欧美日韩在线播放| 制服丝袜大香蕉在线| 老司机午夜福利在线观看视频| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 亚洲精品中文字幕一二三四区| 亚洲色图 男人天堂 中文字幕| 久久久久久久久免费视频了| 韩国精品一区二区三区| 欧美成人性av电影在线观看| 亚洲精品国产色婷婷电影| 精品国产亚洲在线| 国产91精品成人一区二区三区| 一个人观看的视频www高清免费观看 | 岛国视频午夜一区免费看| 视频在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 夜夜看夜夜爽夜夜摸| 在线永久观看黄色视频| 欧美在线一区亚洲| 国产成人啪精品午夜网站| 亚洲av片天天在线观看| 日本欧美视频一区| 日本三级黄在线观看| 9热在线视频观看99| 国产精品久久久久久精品电影 | 国产亚洲精品久久久久5区| 桃色一区二区三区在线观看| 久久久久精品国产欧美久久久| 精品少妇一区二区三区视频日本电影| 久久久水蜜桃国产精品网| tocl精华| 啦啦啦韩国在线观看视频| 此物有八面人人有两片| a级毛片在线看网站| 久久精品国产99精品国产亚洲性色 | 中出人妻视频一区二区| 激情视频va一区二区三区| 亚洲av成人av| 午夜福利在线观看吧| 亚洲欧美日韩无卡精品| 一级片免费观看大全| 国产真人三级小视频在线观看| 欧洲精品卡2卡3卡4卡5卡区| 首页视频小说图片口味搜索| 国产伦人伦偷精品视频| avwww免费| 国产精品1区2区在线观看.| e午夜精品久久久久久久| 亚洲中文av在线| 1024香蕉在线观看| 精品久久久久久久毛片微露脸| 免费搜索国产男女视频| 久久九九热精品免费| 村上凉子中文字幕在线| 手机成人av网站| 免费在线观看亚洲国产| 在线观看日韩欧美| 丝袜美腿诱惑在线| 亚洲国产精品sss在线观看| 国产精品亚洲一级av第二区| 精品高清国产在线一区| aaaaa片日本免费| 国产区一区二久久| 亚洲欧美精品综合久久99| 国产区一区二久久| 最新美女视频免费是黄的| 50天的宝宝边吃奶边哭怎么回事| 可以在线观看毛片的网站| 亚洲av成人一区二区三| 午夜激情av网站| 乱人伦中国视频| 日韩欧美一区二区三区在线观看| 久久精品人人爽人人爽视色| a在线观看视频网站| 免费在线观看亚洲国产| 黄片播放在线免费| 9色porny在线观看| 久久人人爽av亚洲精品天堂| 国产精品久久电影中文字幕| 亚洲人成电影免费在线| 99riav亚洲国产免费| 久久九九热精品免费| 人人妻人人澡人人看| 精品一区二区三区四区五区乱码| 午夜久久久久精精品| 国产精品一区二区在线不卡| 亚洲欧美精品综合久久99| 久久 成人 亚洲| 一级毛片精品| 欧美日本视频| ponron亚洲| 亚洲第一av免费看| 日日干狠狠操夜夜爽| 日本在线视频免费播放| 亚洲国产欧美日韩在线播放| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 欧美不卡视频在线免费观看 | 美女扒开内裤让男人捅视频| 亚洲精品中文字幕在线视频| 久久香蕉国产精品| 精品欧美一区二区三区在线| 成人三级做爰电影| 国产av一区在线观看免费| 国产av一区在线观看免费| 国产亚洲欧美精品永久| 多毛熟女@视频| 又黄又粗又硬又大视频| 黄色成人免费大全| 久久婷婷成人综合色麻豆| 可以在线观看毛片的网站| 9191精品国产免费久久| 亚洲av五月六月丁香网| 午夜视频精品福利| 国产又爽黄色视频| 男人舔女人下体高潮全视频| 91精品三级在线观看| 国产一区二区三区在线臀色熟女| 老鸭窝网址在线观看| 麻豆av在线久日| 在线观看日韩欧美| 免费久久久久久久精品成人欧美视频| 亚洲午夜精品一区,二区,三区| 国产一卡二卡三卡精品| 国产精品久久电影中文字幕| 97碰自拍视频| 香蕉国产在线看| 久久久久精品国产欧美久久久| 真人做人爱边吃奶动态| 亚洲第一欧美日韩一区二区三区| а√天堂www在线а√下载| 免费女性裸体啪啪无遮挡网站| 狠狠狠狠99中文字幕| 亚洲av日韩精品久久久久久密| 久久人人精品亚洲av| 国产精品一区二区精品视频观看| 午夜福利影视在线免费观看| 看黄色毛片网站| 大码成人一级视频| 免费人成视频x8x8入口观看| 欧美激情极品国产一区二区三区| 国产欧美日韩一区二区三| 老熟妇仑乱视频hdxx| 国产精品一区二区精品视频观看| 女人被躁到高潮嗷嗷叫费观| 在线观看66精品国产| 老汉色∧v一级毛片| 午夜免费成人在线视频| 久久中文字幕人妻熟女| 色综合欧美亚洲国产小说| 国产精品1区2区在线观看.| 天堂动漫精品| 久久久国产成人免费| 精品第一国产精品| 91字幕亚洲| 大陆偷拍与自拍| av片东京热男人的天堂| 好看av亚洲va欧美ⅴa在| 亚洲国产看品久久| 在线观看午夜福利视频| 我的亚洲天堂| 国产精品久久久久久亚洲av鲁大| 亚洲精品中文字幕一二三四区| av片东京热男人的天堂| 色哟哟哟哟哟哟| 丝袜人妻中文字幕| 久久久久国产精品人妻aⅴ院| 露出奶头的视频| 91麻豆av在线| 在线视频色国产色| 99久久精品国产亚洲精品| 丝袜在线中文字幕| 国产精华一区二区三区| 一边摸一边抽搐一进一出视频| 国产精品久久久久久精品电影 | 精品第一国产精品| 一级作爱视频免费观看| 法律面前人人平等表现在哪些方面| 不卡av一区二区三区| 国产精品影院久久| 女性生殖器流出的白浆| 国产麻豆成人av免费视频| 国产区一区二久久| 亚洲情色 制服丝袜| 波多野结衣高清无吗| 国产成人精品久久二区二区91| 国产人伦9x9x在线观看| 亚洲成人免费电影在线观看| 黄片小视频在线播放| aaaaa片日本免费| 麻豆成人av在线观看| 久久香蕉国产精品| 亚洲欧洲精品一区二区精品久久久| 美女大奶头视频| 精品国产一区二区久久| 亚洲专区国产一区二区| 亚洲成av片中文字幕在线观看| 欧美丝袜亚洲另类 | 亚洲精品国产一区二区精华液| 中文字幕精品免费在线观看视频| 老汉色av国产亚洲站长工具| 亚洲精品国产一区二区精华液| ponron亚洲| 亚洲aⅴ乱码一区二区在线播放 | 成人手机av| 国产免费男女视频| 露出奶头的视频| 级片在线观看| 自线自在国产av| 电影成人av| 搡老熟女国产l中国老女人| 日本精品一区二区三区蜜桃| 精品国产乱子伦一区二区三区| 久久亚洲精品不卡| aaaaa片日本免费| 黑人巨大精品欧美一区二区蜜桃| 桃红色精品国产亚洲av| 亚洲精品国产区一区二| 亚洲精品久久国产高清桃花| 亚洲国产欧美网| 99精品欧美一区二区三区四区| 国产亚洲欧美精品永久| 老熟妇仑乱视频hdxx| 欧美人与性动交α欧美精品济南到| 九色亚洲精品在线播放| 亚洲欧美一区二区三区黑人| 超碰成人久久| av在线天堂中文字幕| 免费在线观看日本一区| www.999成人在线观看| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| 在线观看午夜福利视频| 午夜两性在线视频| 一卡2卡三卡四卡精品乱码亚洲| 亚洲五月天丁香| 国产成人一区二区三区免费视频网站| 少妇熟女aⅴ在线视频| 亚洲片人在线观看| 亚洲色图 男人天堂 中文字幕| 国产熟女xx| 中文字幕人成人乱码亚洲影| 午夜福利免费观看在线| 欧美色欧美亚洲另类二区 | 午夜a级毛片| 国产区一区二久久| 99久久久亚洲精品蜜臀av| 日本a在线网址| 日韩欧美国产在线观看| 国产一级毛片七仙女欲春2 | 欧美精品啪啪一区二区三区| 黑丝袜美女国产一区| 精品日产1卡2卡| 日韩欧美国产一区二区入口| 电影成人av| 免费在线观看黄色视频的| 欧美一级a爱片免费观看看 | 女性被躁到高潮视频| 男女下面进入的视频免费午夜 | 日本欧美视频一区| 久久久久久久久久久久大奶| 国产在线精品亚洲第一网站| 国产精品影院久久| 国产成人精品无人区| 精品第一国产精品| 97碰自拍视频| 免费人成视频x8x8入口观看| 精品一区二区三区av网在线观看| 韩国精品一区二区三区| 一进一出抽搐动态| 国产野战对白在线观看| 欧美日韩福利视频一区二区| 激情视频va一区二区三区| 麻豆av在线久日| 国产精品一区二区精品视频观看| 精品国产乱码久久久久久男人| 欧美绝顶高潮抽搐喷水| 制服丝袜大香蕉在线| 国产99久久九九免费精品| 国产xxxxx性猛交| www.精华液| 99re在线观看精品视频| 久久草成人影院| 涩涩av久久男人的天堂| 亚洲一区高清亚洲精品| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 日韩欧美国产一区二区入口| 国产国语露脸激情在线看| 亚洲精品国产区一区二| 亚洲人成伊人成综合网2020| 97碰自拍视频| 国产成人一区二区三区免费视频网站| 亚洲国产精品sss在线观看| aaaaa片日本免费| 欧美+亚洲+日韩+国产| 国产精品一区二区三区四区久久 | 美国免费a级毛片| 成人免费观看视频高清| 夜夜躁狠狠躁天天躁| 精品国产美女av久久久久小说| 久久伊人香网站| 午夜a级毛片| 国产亚洲欧美精品永久| 99国产极品粉嫩在线观看| 一区在线观看完整版| 午夜两性在线视频| 亚洲五月婷婷丁香| 欧美绝顶高潮抽搐喷水| 91av网站免费观看| av免费在线观看网站| 免费观看人在逋| 国产成+人综合+亚洲专区| 天堂动漫精品| 夜夜躁狠狠躁天天躁| 国产精品免费一区二区三区在线| 成人18禁在线播放| 国产免费av片在线观看野外av| 精品日产1卡2卡| 中文字幕人成人乱码亚洲影| 99久久综合精品五月天人人| 亚洲精品久久成人aⅴ小说| 色综合欧美亚洲国产小说| 久久国产精品男人的天堂亚洲| 成人国语在线视频| 精品人妻1区二区| 热99re8久久精品国产| 欧美一区二区精品小视频在线| 亚洲一卡2卡3卡4卡5卡精品中文| 一边摸一边做爽爽视频免费| 亚洲五月天丁香| 一级黄色大片毛片| 在线观看午夜福利视频| 侵犯人妻中文字幕一二三四区| 久久久久久久久久久久大奶| 免费无遮挡裸体视频| 国产成人精品无人区| 美女国产高潮福利片在线看| 亚洲五月天丁香| 一级毛片精品| 黄色视频,在线免费观看| 美国免费a级毛片| 亚洲九九香蕉| 又黄又爽又免费观看的视频| 大型av网站在线播放| 精品卡一卡二卡四卡免费| 久久久久久久精品吃奶| 手机成人av网站| 久久久久久久久久久久大奶| 精品少妇一区二区三区视频日本电影| 在线观看午夜福利视频| 一级黄色大片毛片| 18禁裸乳无遮挡免费网站照片 | 亚洲国产欧美网| 国产一区二区三区综合在线观看| 91精品国产国语对白视频| 国产精品日韩av在线免费观看 | 18禁国产床啪视频网站| 在线国产一区二区在线| 国产午夜精品久久久久久| 超碰成人久久| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 亚洲成a人片在线一区二区| 久久国产乱子伦精品免费另类| 级片在线观看| 99国产综合亚洲精品| 在线观看66精品国产| 精品国产一区二区久久| 少妇被粗大的猛进出69影院| 一级毛片高清免费大全| 国产精品久久视频播放| 成人国产一区最新在线观看| 久久伊人香网站| 亚洲无线在线观看| 国产精品98久久久久久宅男小说| 三级毛片av免费| 久久狼人影院| 免费一级毛片在线播放高清视频 | 黄网站色视频无遮挡免费观看| 久久这里只有精品19| 久久精品aⅴ一区二区三区四区| 国产成人免费无遮挡视频| 男女下面插进去视频免费观看| 成人av一区二区三区在线看| 少妇的丰满在线观看| 男女午夜视频在线观看| 日本vs欧美在线观看视频| 国产精品电影一区二区三区| 成人永久免费在线观看视频| 国产欧美日韩精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 亚洲精品久久成人aⅴ小说| 国产成人欧美在线观看| 日韩精品青青久久久久久| 国产色视频综合| 色老头精品视频在线观看| 久久久精品欧美日韩精品| 久久伊人香网站| 纯流量卡能插随身wifi吗| 国产亚洲av嫩草精品影院| 97人妻天天添夜夜摸| 免费看美女性在线毛片视频| 国产精品电影一区二区三区| 精品一品国产午夜福利视频| 波多野结衣一区麻豆| 老司机在亚洲福利影院| av在线天堂中文字幕| 啦啦啦观看免费观看视频高清 | 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 最新美女视频免费是黄的| 欧美日本亚洲视频在线播放| 久久久精品国产亚洲av高清涩受| 激情在线观看视频在线高清| 欧美日韩中文字幕国产精品一区二区三区 | 国产又爽黄色视频| 久久久国产成人免费| 曰老女人黄片| 天天添夜夜摸| 午夜免费鲁丝| 丰满的人妻完整版| 国产精品亚洲av一区麻豆| 在线观看www视频免费| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| 国产一区二区在线av高清观看| 国产高清videossex| 亚洲少妇的诱惑av| 欧美日韩福利视频一区二区| av免费在线观看网站| 男女下面插进去视频免费观看| 在线观看舔阴道视频| 天堂√8在线中文| 中出人妻视频一区二区| 日韩精品青青久久久久久| 真人一进一出gif抽搐免费| 无限看片的www在线观看| 香蕉丝袜av| 色婷婷久久久亚洲欧美| 两个人视频免费观看高清| 欧美激情久久久久久爽电影 | 色av中文字幕| 久久精品人人爽人人爽视色| 免费在线观看视频国产中文字幕亚洲| 久久久久久久久久久久大奶| 一区二区三区激情视频| 十八禁人妻一区二区| 成人av一区二区三区在线看| √禁漫天堂资源中文www| 长腿黑丝高跟| 亚洲国产日韩欧美精品在线观看 | 宅男免费午夜| 中文字幕av电影在线播放| 国产欧美日韩精品亚洲av| 一级毛片高清免费大全| 亚洲人成电影观看| 亚洲专区中文字幕在线| 亚洲第一欧美日韩一区二区三区|