• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Medical Knowledge Extraction and Analysis from Electronic Medical Records Using Deep Learning

    2019-07-12 10:02:42PeilinLiZhenmingYuanWenboTuKaiYuDongxinLu
    Chinese Medical Sciences Journal 2019年2期

    Peilin Li, Zhenming Yuan*, Wenbo Tu, Kai Yu, Dongxin Lu

    Engineering Research Center of Mobile Health Management,Ministry of Education, Hangzhou Normal University,Hangzhou 311121, China

    Key words: medical knowledge extraction; electronic medical record; named entity recognition; medical relation extraction; deep learning; bidirectional long short-term memory; conditional random field

    W ITH the application of Internet technology in the field of medicine, great amount of electronic medical records(EMR) with rich medical knowledge have emerged. The electronic medical records are generated by medical staff for the purpose of recording the process of developing medical treatment with patients, including presentation of the disease, laboratory and imaging findings, therapeutic regimens and diseases progress, and so on. It implies the potential relation between the disease characteristics, drug usage and outcome of treatment.1The analysis and mining of these implicit knowledge can provide constructive help for medical decision-making and also provide data foundation that subsequently support the establishment of medical knowledge graph and visual display.

    Electronic medical records are usually full of unstructured text, which can be post-structured by natural language processing to obtain the required medical knowledge.2Named entity recognition (NER) and medical relation extraction are two basic steps of the medical knowledge extraction. The logical relation between these two steps is series connection.

    The main purpose of NER is to identify entities with specific meaning from the text. The original NER task mainly adopted a rule-based approach, which complete entity recognition and extraction tasks by formulating entity dictionaries and setting grammar rules. However, rules and grammars require supports of domain experts. The labor costs are considerable,and the flexibility is poor. The set grammar rules do not necessarily adapt to the new types of named entities. Later, some researchers have defined a NER task as the tagging task of the word sequence3and applied the machine learning method to the NER task. Character sequence tagging specifies Chinese characters in a sentence as a label, such as the “BIESN” annotation method.4The typical machine learning methods to deal with sequence tagging tasks are hidden Markov model(HMM) and conditional random field (CRF). Ye F5used CRF and combined with multiple feature templates for NER tasks of electronic medical records. Li W6combined CRF with rule method, which first completed sequence annotation with CRF, and then optimized the results of CRF with rules based on decision tree and clinical knowledge so as to achieve entity recognition of electronic medical records. However, CRF method is strongly dependent on manually extracted grammatical features. As the result, the setting and selection of feature templates by researchers will directly affect the accuracy of NER.

    Since the concept of relational extraction was initially introduced at the MUC-7 conference in 1998, it has been widely studied and developed in a variety of fields,such as finance, education, medical care and so on.7-9In the field of medicine, medical relation extraction (MRE)is used to extract medical relations among items of entities from electronic medical record. The extraction of medical relations in the single sentence of electronic medical records was the preliminary step in a study.10Due to the lack of classification criteria for relation types, six entity relation types are defined in advance,and manually selected features are used to extract medical relations through support vector machine (SVM)classifier. In the task published in 2010, I2B2 dataset proposed eight different relation type schemes,11,12which established a scientific classification standard for the field of medical entity relation extraction. Considering the similarity of text types between contexts surrounding medical entities, Rink B13used SVM classifier for classification, and the best F1 classification results at that time were obtained in I2B2 2010 dataset. However,the context information related to entities is diverse,which leads to the sparsity of feature vector representation. In order to solve this problem, the entity semantic relation in UMLS is used as the classification feature to improve the performance of medical entity relation recognition task.14In addition, Lv X15proposed a deep learning method for feature engineering, which uses automatic encoder to solve the problem of data sparsity and uses CRF as the classification model to classify the relation between entity pairs.

    In recent years, deep neural network (DNN) has been widely used in various fields. The GloVe word embedding model16brings great convenience to the NLP task based on DNN. Meanwhile, the recurrent neural network (RNN) with timing characteristics has been increasingly used in the field of NLP, and its effect has been proved generally better than other methods.17Therefore, based on the recent deep learning algorithm,we built two application scenes of BiLSTM-CRF model in NER and MRE tasks, and validated it on the I2B2 2010 public dataset, where it showed good results.

    MATERIALS AND METHODS

    Long short-term memory

    As a time-series recurrent neural network, long shortterm memory (LSTM) is suitable for processing and predicting important events with relatively long intervals and delays in the time series. Additionally, it can solve the gradient explosion problem when recurrent neural networks (RNNs) are used for long-term sequence predictions.

    There are three control gates in each neuron of LSTM, namely, the input gate, forgetting gate and output gate. The output of the previous unit enters the LSTM unit and it is judged whether it is useful according to the cell. Only useful information is left, and the nonconforming information is forgotten by the forgetting gate. Equations (1) through (5) represent the parameter update process, where σ represents the sigmoid function, ht-1represents the output of the previous unit of the LSTM, and htrepresents the current output. The structure of the LSTM unit is shown in Figure 1.

    BiLSTM uses two LSTM networks to propagate the sequence forward and backward, respectively, so that the context information of the sequence can be extracted more comprehensively.

    Figure 1. LSTM neuron structure. The tanh is a classical neural network nonlinear activation function. The input gate, the forgetting gate, and the output gate in the LSTM unit are defined as i, f, and o, respectively. Ct is the state of the storage unit at the current time, and equation (4)represents the process of the state transition of the memory unit. The current state is calculated by the previous time state Ct-1, the result of the forgotten gate ft, and the input gate it of the current time LSTM unit.

    Data preprocessing

    The data used in this study is the unstructured English EMR text in the I2B2 2010 evaluation task12with the officially labeled medical entity category and medical entity relation category. The dataset divides medical entities into three categories: medical problems, treatment, and tests. It classifies the relations contained between medical entities into eight categories, as shown in Table 1.

    This study took a sentence in the EMR as a sequence and tried to identify and classifies all entities and medical relations contained in the sentence. As shown in the example in Figure 2, the sentence contains three entities, tests, medical problems and treatment, in which “CNIS” and “Carotid stenosis” constitute the medical relation of “TeRP”.

    In the input section, we used Stanford’s GloVe word embedding model to convert EMR text data into 100-dimensional word vector data. We used the 822MB corpus from Wikipedia to combine the English electronic medical record corpus of I2B2 2010 as thetraining corpus of the GloVe word vector.

    Table 1. Categories of medical relations and descriptions

    Figure 2. Text and labeling example of electronic medical record (EMR). The example has three parts. The first part is the sentence containing the entity in the medical record, where“CNIS” is the abbreviation of calcineurin inhibitors (CnIs)and steroids treatment for vascular disease. The middle part shows the line:column number of the entities in the record and its category. The last part is the relation, TeRP, between the entities (CNIS and carotid stenosis) in the sentence.

    BiLSTM-CRF in NER

    In the NER task, we classified the entities by the strategy of sequence labeling. We used a sentence as a sequence of model input and used the joint labeling strategy of “BIESO” and entity categories for the entities in the sentence. The model first used GloVe to transform the word into word vector. Then it got the hidden layer state of the node through BiLSTM, and finally carried out the joint probability distribution through the CRF layer. The model structure is shown in Figure 3.

    BiLSTM-CRF in MRE

    The result of NER is one of the input parts of the MRE task. So, the MRE task is in tandem with the NER task.The smallest input unit of the MRE model is the entity.Each medical entity is a set of word vectors containing the entity itself and its context information. In order to understand the model more clearly, Figure 4 shows the neural network structure of a single entity(carotid stenosis) in the model. For each medical entity included in the sentence, we set a context window for it,which is demonstrated using a window size with a fixed context of 2 words.

    The word vector sequence is the input of the BiLSTM layer for learning. Considering that the length of the entity is not fixed, we input the start and stop position information of the entity after the BiLSTM layer, and only extract the hidden layer state of the corresponding entity position in the previous layer. The purpose of this step is to avoid the similarity of the feature information of adjacent entities and to affect the training effect of the model.

    Figure 5 shows the complete BiLSTM-CRF medical relation extraction model. After passing through the neural network process shown in Figure 4, each entity performs probability calculation through the CRF layer to obtain a corresponding medical relation classification. The purpose of this layer is to transform the classification problem of a single entity into a sequence classification problem, and to link the feature combinations between entities. In fact, the model can be seen as a CRF model optimized for feature engineering by word vector and BiLSTM.

    RESULTS

    As mentioned earlier, this study uses the English electronic medical record data published in the I2B2 2010 evaluation meeting to conduct experiments. Of the 871 marked medical records, 397 were used for training and 477 were used for testing.18The purpose of the experiment was to identify the correct physical and medical relations from the unstructured electronic medical record text. This study uses precision (P),recall (R) and F1-measure as indicators of evaluation.F1-measure is a weighted harmonic averaging of the precision and the recall. It is a commonly used evaluation standard in the field of Information Retrieval and is often used to evaluate the quality of a classification model. Let the result set of the model output be y, and the result set of the manual label be y. The formula for the evaluation criteria is as follows:

    Figure 3. BiLSTM-CRF structure of named entity recognition(NER). “l(fā)1”, “r1”, “e1”, etc., represents the different network layers in the model. The CRF layer is a combination label, where “B”, “I”, “E”, “S”, “O” are word segmentation labels and “Te”,“P”, “Tr” are entity category labels. BiLSTM, bidirectional long short-term memory; CRF, conditional random field.

    Figure 4. Single entity neural network structure of medical relation extraction(MRE). “TeRP” in the CRF layer is a relation category label.

    Figure 5. BiLSTM-CRF structure of MRE. FC is the fully connected layer.

    The result of NER

    The experimental results of NER are shown in Table 2. We compared the model in this study with other well-performing models on the dataset. The SVM and CRF model were proposed by Jiang M,19which useed the Systematized Nomenclature of Medicine (SNOMED)as an auxiliary resource. The LSTM model was chosen for a more intuitive comparison. The results show that the BiLSTM-CRF model has better expressiveness in the dataset. Moreover, the model converged faster and avoided problems such as overfitting.

    The result of MRE

    The experimental results of MRE are shown in Table 3. We compared the BiLSTM-CRF model with other well-performing models. Among them, SVM13and maximum entropy (ME)20are both obtained by semi-supervised training. It is clear that the performance of our model is still better than others. From the implementation details, the classification of our model can effectively avoid the misclassification of non-entity texts. There will also be good performance in real scenes outside the dataset.

    Table 2. The F1-measure of models in NER

    DISCUSSION

    From the experimental results, the BiLSTM-CRF model constructed in this study has made a significant improvement over the previous research. The F1-measure of NER is close to 0.88, and of MRE is close to 0.78. However, there still remain some problems. The model has categories with a low recognition rate in both tasks. Especially in MRE, there are three categories where the F1-measures were less than 0.4. The general reason for this problem is that these categories are too small in the dataset and was difficult for the model to understand their semantics. For example,in the sentence “He was started on p.o. steroids and to CMED for management of COPD exacerbation but he appeared in more respiratory distress overnight”,the “management” and “COPD exacerbation” should constitute a “TrWP” relation, but the model identified it as a “TrAP”. The reason lied in that the patient’s deterioration appears in the next short sentence, and the model didn’t perfectly learn the feature.

    In addition, the effects of the model on several categories were higher than 0.9, of which “PIP” was all correctly classified. This is due to the large number of its examples and less interference.

    This study constructed different structure of BiLSTM-CRF model and verified the good performance of deep learning model in medical knowledge extraction.This shows that the same model can be applied to different scenarios by reasonable modeling of the characteristics of the task. In view of the fact that clinical electronic medical records contain more domain experience knowledge, how to make corresponding adjustments and changes from the general method, and how to construct a more specific model will be questions that NLP needs to think about in the research field of clinical EMRs in the future. Besides, as two subtasks of MKE, the clinical accuracy of MRE is seriously affected by the results of NER. Although NER has a F1-measure close to 0.9, the error will be magnified during transmission. Therefore, when it comes to deeper research,it is imperative to further improve the effect of basic tasks in MKE.

    Table 3. The F1-measure of models in MRE

    Conflict of interest statement

    The authors have no conflict of interests to disclose.

    久久中文字幕人妻熟女| 99在线人妻在线中文字幕 | 亚洲黑人精品在线| 九色亚洲精品在线播放| 岛国在线观看网站| 啪啪无遮挡十八禁网站| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频| 亚洲中文日韩欧美视频| 老司机影院毛片| 99精品在免费线老司机午夜| 99精品欧美一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品秋霞免费鲁丝片| 免费看a级黄色片| 亚洲成国产人片在线观看| 亚洲第一av免费看| 老司机福利观看| 亚洲三区欧美一区| 亚洲熟女精品中文字幕| 黑人巨大精品欧美一区二区蜜桃| 亚洲人成伊人成综合网2020| 国产不卡一卡二| 欧美大码av| 国产精品久久久人人做人人爽| 丰满迷人的少妇在线观看| 人妻一区二区av| 我的亚洲天堂| 高清视频免费观看一区二区| 久久人妻av系列| 十八禁网站免费在线| 国产1区2区3区精品| 久久99一区二区三区| 在线观看www视频免费| 男人操女人黄网站| 久久久久久人人人人人| 国产成人免费观看mmmm| 村上凉子中文字幕在线| 久久热在线av| 巨乳人妻的诱惑在线观看| 午夜精品国产一区二区电影| 成人手机av| 多毛熟女@视频| 精品一区二区三区视频在线观看免费 | 午夜福利,免费看| 亚洲第一av免费看| 国产在线观看jvid| 中文字幕制服av| 一区二区三区激情视频| 欧美乱码精品一区二区三区| 欧美久久黑人一区二区| 成人18禁在线播放| 国产片内射在线| 国产精品永久免费网站| 精品久久蜜臀av无| 热99re8久久精品国产| 桃红色精品国产亚洲av| 久久亚洲真实| 亚洲av欧美aⅴ国产| 黄频高清免费视频| 黄色视频,在线免费观看| 亚洲久久久国产精品| 一二三四社区在线视频社区8| 少妇被粗大的猛进出69影院| 日本欧美视频一区| 欧美av亚洲av综合av国产av| 久久精品国产a三级三级三级| 亚洲 国产 在线| 不卡一级毛片| 黄色 视频免费看| 老熟女久久久| 伊人久久大香线蕉亚洲五| 国产无遮挡羞羞视频在线观看| 老司机在亚洲福利影院| 热99国产精品久久久久久7| 丝袜美足系列| 一级毛片精品| 国产精品电影一区二区三区 | 99国产极品粉嫩在线观看| 新久久久久国产一级毛片| 欧美 日韩 精品 国产| 丰满饥渴人妻一区二区三| 欧美成人午夜精品| av免费在线观看网站| 国产精品99久久99久久久不卡| 在线十欧美十亚洲十日本专区| 又黄又爽又免费观看的视频| 热99国产精品久久久久久7| 欧美乱码精品一区二区三区| 国产在视频线精品| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人手机| 91九色精品人成在线观看| 王馨瑶露胸无遮挡在线观看| netflix在线观看网站| 亚洲专区字幕在线| 美女国产高潮福利片在线看| 中出人妻视频一区二区| 成熟少妇高潮喷水视频| 高清在线国产一区| 男女高潮啪啪啪动态图| 国产精品欧美亚洲77777| 欧洲精品卡2卡3卡4卡5卡区| 日韩一卡2卡3卡4卡2021年| 三级毛片av免费| 日本撒尿小便嘘嘘汇集6| e午夜精品久久久久久久| 精品久久久久久电影网| 99久久国产精品久久久| 日本一区二区免费在线视频| 国产成人一区二区三区免费视频网站| 亚洲人成电影免费在线| 免费在线观看亚洲国产| 性少妇av在线| av福利片在线| 日韩一卡2卡3卡4卡2021年| 久久婷婷成人综合色麻豆| www.熟女人妻精品国产| 亚洲精品国产色婷婷电影| av天堂久久9| 高潮久久久久久久久久久不卡| 亚洲精品久久午夜乱码| netflix在线观看网站| 女性被躁到高潮视频| 亚洲欧美日韩另类电影网站| 超碰97精品在线观看| 黄色 视频免费看| 日韩制服丝袜自拍偷拍| videos熟女内射| 成年动漫av网址| 亚洲成av片中文字幕在线观看| 99精品欧美一区二区三区四区| 欧美日韩中文字幕国产精品一区二区三区 | av欧美777| 国产不卡av网站在线观看| 欧美日本中文国产一区发布| 捣出白浆h1v1| 久久久久久久午夜电影 | 亚洲九九香蕉| 午夜福利在线观看吧| 制服诱惑二区| 操美女的视频在线观看| 国产激情久久老熟女| 成人18禁在线播放| 在线观看免费高清a一片| 欧美精品亚洲一区二区| 妹子高潮喷水视频| 国产亚洲精品第一综合不卡| av欧美777| 99热只有精品国产| 亚洲人成77777在线视频| 久热这里只有精品99| 日韩欧美国产一区二区入口| 国产区一区二久久| 久久精品国产清高在天天线| 亚洲精品粉嫩美女一区| 亚洲男人天堂网一区| 99久久精品国产亚洲精品| 日本撒尿小便嘘嘘汇集6| 日韩一卡2卡3卡4卡2021年| 久久人妻av系列| 91精品国产国语对白视频| av免费在线观看网站| 纯流量卡能插随身wifi吗| 国产一区在线观看成人免费| 国产精品二区激情视频| 少妇裸体淫交视频免费看高清 | 免费黄频网站在线观看国产| 久久精品国产清高在天天线| 久久精品人人爽人人爽视色| 亚洲精华国产精华精| 99热国产这里只有精品6| 一级片'在线观看视频| 黄色a级毛片大全视频| 亚洲自偷自拍图片 自拍| 欧美日韩精品网址| 妹子高潮喷水视频| 精品一区二区三卡| 欧美激情极品国产一区二区三区| 亚洲av第一区精品v没综合| 一进一出抽搐动态| 国产人伦9x9x在线观看| 无限看片的www在线观看| 日本黄色视频三级网站网址 | 精品久久久久久电影网| 丰满人妻熟妇乱又伦精品不卡| 精品卡一卡二卡四卡免费| 中文亚洲av片在线观看爽 | 99热国产这里只有精品6| 免费av中文字幕在线| 日日摸夜夜添夜夜添小说| 9191精品国产免费久久| 色综合欧美亚洲国产小说| 无人区码免费观看不卡| 中文欧美无线码| 国产精品成人在线| av超薄肉色丝袜交足视频| 精品免费久久久久久久清纯 | 制服人妻中文乱码| 久久久久久亚洲精品国产蜜桃av| 99热国产这里只有精品6| tocl精华| 一级,二级,三级黄色视频| 免费看十八禁软件| 99国产综合亚洲精品| 99热只有精品国产| 黄片小视频在线播放| 人妻 亚洲 视频| 亚洲精品久久成人aⅴ小说| 在线观看免费视频网站a站| 一个人免费在线观看的高清视频| 十八禁人妻一区二区| 精品久久蜜臀av无| 看片在线看免费视频| 美女视频免费永久观看网站| 日韩精品免费视频一区二区三区| 在线看a的网站| 免费不卡黄色视频| 高潮久久久久久久久久久不卡| 又紧又爽又黄一区二区| 精品国产亚洲在线| 少妇被粗大的猛进出69影院| 国产欧美日韩精品亚洲av| 免费看十八禁软件| www.精华液| 欧美性长视频在线观看| 久久久久久久国产电影| 欧美在线黄色| 国产三级黄色录像| 最新的欧美精品一区二区| av片东京热男人的天堂| xxxhd国产人妻xxx| 久久香蕉精品热| 久热这里只有精品99| 国产一区二区三区在线臀色熟女 | 丝袜人妻中文字幕| 久久草成人影院| 在线av久久热| 国产精品电影一区二区三区 | 这个男人来自地球电影免费观看| svipshipincom国产片| 亚洲欧美一区二区三区久久| 黄色 视频免费看| 日韩免费av在线播放| 91麻豆精品激情在线观看国产 | 男人的好看免费观看在线视频 | 一本综合久久免费| 搡老熟女国产l中国老女人| 欧美国产精品一级二级三级| 91国产中文字幕| 亚洲精品自拍成人| 免费女性裸体啪啪无遮挡网站| 日韩熟女老妇一区二区性免费视频| 成人18禁高潮啪啪吃奶动态图| 91九色精品人成在线观看| 亚洲精品在线美女| 久久精品国产亚洲av香蕉五月 | 人妻久久中文字幕网| 免费在线观看日本一区| 亚洲欧美精品综合一区二区三区| 一区二区日韩欧美中文字幕| 久久久久久久久久久久大奶| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲成人手机| 国产欧美日韩一区二区三区在线| 国产精品国产av在线观看| 中文字幕人妻丝袜制服| 在线观看免费午夜福利视频| 人妻丰满熟妇av一区二区三区 | 美女午夜性视频免费| 成人亚洲精品一区在线观看| 成人手机av| 两个人看的免费小视频| av不卡在线播放| 欧美日韩亚洲高清精品| 亚洲成av片中文字幕在线观看| 麻豆av在线久日| 中文字幕最新亚洲高清| 美女国产高潮福利片在线看| 久久国产精品男人的天堂亚洲| 男女免费视频国产| 女人精品久久久久毛片| 免费一级毛片在线播放高清视频 | 青草久久国产| 国产高清videossex| 亚洲午夜精品一区,二区,三区| 亚洲美女黄片视频| 亚洲av第一区精品v没综合| 少妇的丰满在线观看| 欧美日韩国产mv在线观看视频| 久久久久久免费高清国产稀缺| 午夜免费观看网址| 麻豆av在线久日| 国产激情久久老熟女| 美女国产高潮福利片在线看| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 最新在线观看一区二区三区| 无限看片的www在线观看| 搡老岳熟女国产| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 热99国产精品久久久久久7| 搡老岳熟女国产| 交换朋友夫妻互换小说| svipshipincom国产片| 午夜激情av网站| 日韩欧美一区视频在线观看| 18禁裸乳无遮挡免费网站照片 | 69精品国产乱码久久久| 国产精品电影一区二区三区 | 国产成人一区二区三区免费视频网站| 在线观看舔阴道视频| 精品久久久久久,| 午夜福利在线免费观看网站| 成人国语在线视频| a级毛片黄视频| 在线观看免费视频网站a站| 久久精品成人免费网站| 午夜久久久在线观看| 国产在视频线精品| 亚洲精品久久成人aⅴ小说| 在线观看午夜福利视频| 看片在线看免费视频| 大型黄色视频在线免费观看| 中文字幕人妻丝袜一区二区| 亚洲人成电影免费在线| 王馨瑶露胸无遮挡在线观看| 午夜福利视频在线观看免费| 极品教师在线免费播放| av网站在线播放免费| 激情在线观看视频在线高清 | 欧美中文综合在线视频| 精品视频人人做人人爽| 国产三级黄色录像| 精品一区二区三区四区五区乱码| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 女人久久www免费人成看片| 久热爱精品视频在线9| 国产又爽黄色视频| 男女下面插进去视频免费观看| 少妇被粗大的猛进出69影院| 亚洲一码二码三码区别大吗| 久久草成人影院| 97人妻天天添夜夜摸| 欧美黑人精品巨大| 91国产中文字幕| 欧美久久黑人一区二区| 亚洲精品中文字幕在线视频| 国产三级黄色录像| 国产精品亚洲av一区麻豆| 激情在线观看视频在线高清 | 亚洲熟女精品中文字幕| 免费在线观看日本一区| 无遮挡黄片免费观看| 久久九九热精品免费| 久久精品国产综合久久久| 一区福利在线观看| 最近最新免费中文字幕在线| 欧美精品av麻豆av| www.自偷自拍.com| 男女下面插进去视频免费观看| 夜夜躁狠狠躁天天躁| 人人妻,人人澡人人爽秒播| 老鸭窝网址在线观看| xxxhd国产人妻xxx| 国产野战对白在线观看| 亚洲一区二区三区欧美精品| 久久国产精品人妻蜜桃| 日韩欧美国产一区二区入口| 狠狠狠狠99中文字幕| 成人18禁高潮啪啪吃奶动态图| 18禁观看日本| 精品免费久久久久久久清纯 | 一区福利在线观看| 波多野结衣一区麻豆| 天天躁日日躁夜夜躁夜夜| 免费少妇av软件| 一区二区三区精品91| 精品国内亚洲2022精品成人 | 叶爱在线成人免费视频播放| 99久久综合精品五月天人人| 国产精品国产高清国产av | 成人18禁高潮啪啪吃奶动态图| av中文乱码字幕在线| 老鸭窝网址在线观看| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 国产精品偷伦视频观看了| 欧美中文综合在线视频| 成人国产一区最新在线观看| av超薄肉色丝袜交足视频| 热re99久久国产66热| 欧美av亚洲av综合av国产av| 国产午夜精品久久久久久| 成熟少妇高潮喷水视频| 飞空精品影院首页| 国产精品自产拍在线观看55亚洲 | 他把我摸到了高潮在线观看| 女警被强在线播放| 亚洲精品久久午夜乱码| 村上凉子中文字幕在线| 母亲3免费完整高清在线观看| 精品久久久久久久久久免费视频 | 天天躁日日躁夜夜躁夜夜| 国产欧美日韩一区二区三| 午夜精品久久久久久毛片777| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲久久久国产精品| 久久天躁狠狠躁夜夜2o2o| 热re99久久国产66热| av天堂在线播放| 国产精品 国内视频| 国精品久久久久久国模美| 精品一品国产午夜福利视频| bbb黄色大片| 国产精品99久久99久久久不卡| 国产不卡av网站在线观看| 日本wwww免费看| 黑人巨大精品欧美一区二区mp4| 日韩三级视频一区二区三区| 国产成人欧美在线观看 | 成人亚洲精品一区在线观看| 亚洲精品国产色婷婷电影| 精品亚洲成a人片在线观看| 夜夜爽天天搞| 高潮久久久久久久久久久不卡| 国产男靠女视频免费网站| 久久亚洲真实| 午夜免费鲁丝| 啦啦啦免费观看视频1| 在线观看日韩欧美| 超碰成人久久| 99在线人妻在线中文字幕 | 亚洲精品在线观看二区| 亚洲欧美一区二区三区黑人| 丁香六月欧美| 国产高清激情床上av| 亚洲精品美女久久av网站| 老司机午夜福利在线观看视频| 老司机在亚洲福利影院| 女人久久www免费人成看片| 国内久久婷婷六月综合欲色啪| 国产亚洲精品第一综合不卡| 国产成人影院久久av| 精品高清国产在线一区| 丰满的人妻完整版| 国产成人av教育| 一边摸一边做爽爽视频免费| 亚洲性夜色夜夜综合| 日日爽夜夜爽网站| 精品国产美女av久久久久小说| 久久香蕉激情| 九色亚洲精品在线播放| 久久久国产精品麻豆| 夜夜躁狠狠躁天天躁| 久久久精品免费免费高清| 在线av久久热| www.自偷自拍.com| 在线观看午夜福利视频| 精品高清国产在线一区| 亚洲av美国av| 少妇的丰满在线观看| 婷婷精品国产亚洲av在线 | 日日夜夜操网爽| 精品国产美女av久久久久小说| 大片电影免费在线观看免费| 三上悠亚av全集在线观看| a级毛片在线看网站| 香蕉久久夜色| 天堂√8在线中文| 国产人伦9x9x在线观看| 波多野结衣av一区二区av| 久久人妻福利社区极品人妻图片| 我的亚洲天堂| 另类亚洲欧美激情| 99久久国产精品久久久| 亚洲三区欧美一区| 欧美精品人与动牲交sv欧美| www.精华液| 99久久人妻综合| 欧美色视频一区免费| 一区二区三区国产精品乱码| 国产蜜桃级精品一区二区三区 | 成年版毛片免费区| 国产av精品麻豆| 一区二区三区国产精品乱码| 巨乳人妻的诱惑在线观看| 久久久精品国产亚洲av高清涩受| 亚洲中文字幕日韩| 中国美女看黄片| 水蜜桃什么品种好| 国产亚洲精品久久久久5区| 看黄色毛片网站| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 亚洲成人手机| 国产蜜桃级精品一区二区三区 | 精品电影一区二区在线| 国产黄色免费在线视频| 97人妻天天添夜夜摸| 男女下面插进去视频免费观看| 黑人操中国人逼视频| 久久久久精品人妻al黑| x7x7x7水蜜桃| 国产精品久久久久久精品古装| 久久性视频一级片| 亚洲五月色婷婷综合| 69av精品久久久久久| 免费在线观看视频国产中文字幕亚洲| 黄色视频不卡| 50天的宝宝边吃奶边哭怎么回事| 久久天堂一区二区三区四区| 欧美黄色淫秽网站| 久久久久久免费高清国产稀缺| 免费女性裸体啪啪无遮挡网站| 在线国产一区二区在线| 日韩三级视频一区二区三区| 伦理电影免费视频| 精品久久久久久,| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 最近最新免费中文字幕在线| www日本在线高清视频| 国产精品一区二区在线观看99| 中文字幕最新亚洲高清| 午夜福利一区二区在线看| 国产亚洲欧美98| 一区二区三区激情视频| 久久亚洲真实| 又黄又爽又免费观看的视频| а√天堂www在线а√下载 | 午夜视频精品福利| 99国产综合亚洲精品| 日韩欧美在线二视频 | 露出奶头的视频| 一级片'在线观看视频| 一边摸一边做爽爽视频免费| 99国产综合亚洲精品| 久久ye,这里只有精品| 久久人人97超碰香蕉20202| 一夜夜www| 人人妻人人添人人爽欧美一区卜| av天堂在线播放| 国产精品 国内视频| 亚洲专区字幕在线| 欧美老熟妇乱子伦牲交| 在线观看免费午夜福利视频| 国产精品免费视频内射| 在线天堂中文资源库| 国产亚洲欧美精品永久| 动漫黄色视频在线观看| 日本a在线网址| 啦啦啦在线免费观看视频4| 日韩 欧美 亚洲 中文字幕| 最近最新中文字幕大全免费视频| 操美女的视频在线观看| 变态另类成人亚洲欧美熟女 | 下体分泌物呈黄色| 母亲3免费完整高清在线观看| 777久久人妻少妇嫩草av网站| 一夜夜www| 亚洲午夜理论影院| 欧美黄色片欧美黄色片| 久久青草综合色| 欧美激情极品国产一区二区三区| 国精品久久久久久国模美| 久久久久久久午夜电影 | 一本综合久久免费| 亚洲七黄色美女视频| 国产乱人伦免费视频| 麻豆av在线久日| 999久久久精品免费观看国产| 欧美色视频一区免费| 久久久久久人人人人人| 一区在线观看完整版| 每晚都被弄得嗷嗷叫到高潮| 后天国语完整版免费观看| 国产欧美日韩一区二区三区在线| 日本一区二区免费在线视频| 国产精品影院久久| 国产97色在线日韩免费| 美女午夜性视频免费| 成熟少妇高潮喷水视频| avwww免费| 精品第一国产精品| 十八禁网站免费在线| 看片在线看免费视频| 99国产综合亚洲精品| 又黄又爽又免费观看的视频| 一边摸一边抽搐一进一小说 | 这个男人来自地球电影免费观看| 日本黄色视频三级网站网址 | 黄网站色视频无遮挡免费观看| 国产欧美日韩一区二区精品| 纯流量卡能插随身wifi吗| 日韩有码中文字幕| 日韩制服丝袜自拍偷拍| 免费在线观看黄色视频的| 亚洲专区中文字幕在线| 国产麻豆69| 欧美+亚洲+日韩+国产| 久久精品国产99精品国产亚洲性色 | 国产精品1区2区在线观看. | 我的亚洲天堂| 国产精品一区二区在线观看99| 岛国在线观看网站| 最近最新中文字幕大全免费视频| 亚洲色图av天堂| 黄片大片在线免费观看| 中文字幕制服av| 99精品久久久久人妻精品| 久久久久久久国产电影|