• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Medical Knowledge Extraction and Analysis from Electronic Medical Records Using Deep Learning

    2019-07-12 10:02:42PeilinLiZhenmingYuanWenboTuKaiYuDongxinLu
    Chinese Medical Sciences Journal 2019年2期

    Peilin Li, Zhenming Yuan*, Wenbo Tu, Kai Yu, Dongxin Lu

    Engineering Research Center of Mobile Health Management,Ministry of Education, Hangzhou Normal University,Hangzhou 311121, China

    Key words: medical knowledge extraction; electronic medical record; named entity recognition; medical relation extraction; deep learning; bidirectional long short-term memory; conditional random field

    W ITH the application of Internet technology in the field of medicine, great amount of electronic medical records(EMR) with rich medical knowledge have emerged. The electronic medical records are generated by medical staff for the purpose of recording the process of developing medical treatment with patients, including presentation of the disease, laboratory and imaging findings, therapeutic regimens and diseases progress, and so on. It implies the potential relation between the disease characteristics, drug usage and outcome of treatment.1The analysis and mining of these implicit knowledge can provide constructive help for medical decision-making and also provide data foundation that subsequently support the establishment of medical knowledge graph and visual display.

    Electronic medical records are usually full of unstructured text, which can be post-structured by natural language processing to obtain the required medical knowledge.2Named entity recognition (NER) and medical relation extraction are two basic steps of the medical knowledge extraction. The logical relation between these two steps is series connection.

    The main purpose of NER is to identify entities with specific meaning from the text. The original NER task mainly adopted a rule-based approach, which complete entity recognition and extraction tasks by formulating entity dictionaries and setting grammar rules. However, rules and grammars require supports of domain experts. The labor costs are considerable,and the flexibility is poor. The set grammar rules do not necessarily adapt to the new types of named entities. Later, some researchers have defined a NER task as the tagging task of the word sequence3and applied the machine learning method to the NER task. Character sequence tagging specifies Chinese characters in a sentence as a label, such as the “BIESN” annotation method.4The typical machine learning methods to deal with sequence tagging tasks are hidden Markov model(HMM) and conditional random field (CRF). Ye F5used CRF and combined with multiple feature templates for NER tasks of electronic medical records. Li W6combined CRF with rule method, which first completed sequence annotation with CRF, and then optimized the results of CRF with rules based on decision tree and clinical knowledge so as to achieve entity recognition of electronic medical records. However, CRF method is strongly dependent on manually extracted grammatical features. As the result, the setting and selection of feature templates by researchers will directly affect the accuracy of NER.

    Since the concept of relational extraction was initially introduced at the MUC-7 conference in 1998, it has been widely studied and developed in a variety of fields,such as finance, education, medical care and so on.7-9In the field of medicine, medical relation extraction (MRE)is used to extract medical relations among items of entities from electronic medical record. The extraction of medical relations in the single sentence of electronic medical records was the preliminary step in a study.10Due to the lack of classification criteria for relation types, six entity relation types are defined in advance,and manually selected features are used to extract medical relations through support vector machine (SVM)classifier. In the task published in 2010, I2B2 dataset proposed eight different relation type schemes,11,12which established a scientific classification standard for the field of medical entity relation extraction. Considering the similarity of text types between contexts surrounding medical entities, Rink B13used SVM classifier for classification, and the best F1 classification results at that time were obtained in I2B2 2010 dataset. However,the context information related to entities is diverse,which leads to the sparsity of feature vector representation. In order to solve this problem, the entity semantic relation in UMLS is used as the classification feature to improve the performance of medical entity relation recognition task.14In addition, Lv X15proposed a deep learning method for feature engineering, which uses automatic encoder to solve the problem of data sparsity and uses CRF as the classification model to classify the relation between entity pairs.

    In recent years, deep neural network (DNN) has been widely used in various fields. The GloVe word embedding model16brings great convenience to the NLP task based on DNN. Meanwhile, the recurrent neural network (RNN) with timing characteristics has been increasingly used in the field of NLP, and its effect has been proved generally better than other methods.17Therefore, based on the recent deep learning algorithm,we built two application scenes of BiLSTM-CRF model in NER and MRE tasks, and validated it on the I2B2 2010 public dataset, where it showed good results.

    MATERIALS AND METHODS

    Long short-term memory

    As a time-series recurrent neural network, long shortterm memory (LSTM) is suitable for processing and predicting important events with relatively long intervals and delays in the time series. Additionally, it can solve the gradient explosion problem when recurrent neural networks (RNNs) are used for long-term sequence predictions.

    There are three control gates in each neuron of LSTM, namely, the input gate, forgetting gate and output gate. The output of the previous unit enters the LSTM unit and it is judged whether it is useful according to the cell. Only useful information is left, and the nonconforming information is forgotten by the forgetting gate. Equations (1) through (5) represent the parameter update process, where σ represents the sigmoid function, ht-1represents the output of the previous unit of the LSTM, and htrepresents the current output. The structure of the LSTM unit is shown in Figure 1.

    BiLSTM uses two LSTM networks to propagate the sequence forward and backward, respectively, so that the context information of the sequence can be extracted more comprehensively.

    Figure 1. LSTM neuron structure. The tanh is a classical neural network nonlinear activation function. The input gate, the forgetting gate, and the output gate in the LSTM unit are defined as i, f, and o, respectively. Ct is the state of the storage unit at the current time, and equation (4)represents the process of the state transition of the memory unit. The current state is calculated by the previous time state Ct-1, the result of the forgotten gate ft, and the input gate it of the current time LSTM unit.

    Data preprocessing

    The data used in this study is the unstructured English EMR text in the I2B2 2010 evaluation task12with the officially labeled medical entity category and medical entity relation category. The dataset divides medical entities into three categories: medical problems, treatment, and tests. It classifies the relations contained between medical entities into eight categories, as shown in Table 1.

    This study took a sentence in the EMR as a sequence and tried to identify and classifies all entities and medical relations contained in the sentence. As shown in the example in Figure 2, the sentence contains three entities, tests, medical problems and treatment, in which “CNIS” and “Carotid stenosis” constitute the medical relation of “TeRP”.

    In the input section, we used Stanford’s GloVe word embedding model to convert EMR text data into 100-dimensional word vector data. We used the 822MB corpus from Wikipedia to combine the English electronic medical record corpus of I2B2 2010 as thetraining corpus of the GloVe word vector.

    Table 1. Categories of medical relations and descriptions

    Figure 2. Text and labeling example of electronic medical record (EMR). The example has three parts. The first part is the sentence containing the entity in the medical record, where“CNIS” is the abbreviation of calcineurin inhibitors (CnIs)and steroids treatment for vascular disease. The middle part shows the line:column number of the entities in the record and its category. The last part is the relation, TeRP, between the entities (CNIS and carotid stenosis) in the sentence.

    BiLSTM-CRF in NER

    In the NER task, we classified the entities by the strategy of sequence labeling. We used a sentence as a sequence of model input and used the joint labeling strategy of “BIESO” and entity categories for the entities in the sentence. The model first used GloVe to transform the word into word vector. Then it got the hidden layer state of the node through BiLSTM, and finally carried out the joint probability distribution through the CRF layer. The model structure is shown in Figure 3.

    BiLSTM-CRF in MRE

    The result of NER is one of the input parts of the MRE task. So, the MRE task is in tandem with the NER task.The smallest input unit of the MRE model is the entity.Each medical entity is a set of word vectors containing the entity itself and its context information. In order to understand the model more clearly, Figure 4 shows the neural network structure of a single entity(carotid stenosis) in the model. For each medical entity included in the sentence, we set a context window for it,which is demonstrated using a window size with a fixed context of 2 words.

    The word vector sequence is the input of the BiLSTM layer for learning. Considering that the length of the entity is not fixed, we input the start and stop position information of the entity after the BiLSTM layer, and only extract the hidden layer state of the corresponding entity position in the previous layer. The purpose of this step is to avoid the similarity of the feature information of adjacent entities and to affect the training effect of the model.

    Figure 5 shows the complete BiLSTM-CRF medical relation extraction model. After passing through the neural network process shown in Figure 4, each entity performs probability calculation through the CRF layer to obtain a corresponding medical relation classification. The purpose of this layer is to transform the classification problem of a single entity into a sequence classification problem, and to link the feature combinations between entities. In fact, the model can be seen as a CRF model optimized for feature engineering by word vector and BiLSTM.

    RESULTS

    As mentioned earlier, this study uses the English electronic medical record data published in the I2B2 2010 evaluation meeting to conduct experiments. Of the 871 marked medical records, 397 were used for training and 477 were used for testing.18The purpose of the experiment was to identify the correct physical and medical relations from the unstructured electronic medical record text. This study uses precision (P),recall (R) and F1-measure as indicators of evaluation.F1-measure is a weighted harmonic averaging of the precision and the recall. It is a commonly used evaluation standard in the field of Information Retrieval and is often used to evaluate the quality of a classification model. Let the result set of the model output be y, and the result set of the manual label be y. The formula for the evaluation criteria is as follows:

    Figure 3. BiLSTM-CRF structure of named entity recognition(NER). “l(fā)1”, “r1”, “e1”, etc., represents the different network layers in the model. The CRF layer is a combination label, where “B”, “I”, “E”, “S”, “O” are word segmentation labels and “Te”,“P”, “Tr” are entity category labels. BiLSTM, bidirectional long short-term memory; CRF, conditional random field.

    Figure 4. Single entity neural network structure of medical relation extraction(MRE). “TeRP” in the CRF layer is a relation category label.

    Figure 5. BiLSTM-CRF structure of MRE. FC is the fully connected layer.

    The result of NER

    The experimental results of NER are shown in Table 2. We compared the model in this study with other well-performing models on the dataset. The SVM and CRF model were proposed by Jiang M,19which useed the Systematized Nomenclature of Medicine (SNOMED)as an auxiliary resource. The LSTM model was chosen for a more intuitive comparison. The results show that the BiLSTM-CRF model has better expressiveness in the dataset. Moreover, the model converged faster and avoided problems such as overfitting.

    The result of MRE

    The experimental results of MRE are shown in Table 3. We compared the BiLSTM-CRF model with other well-performing models. Among them, SVM13and maximum entropy (ME)20are both obtained by semi-supervised training. It is clear that the performance of our model is still better than others. From the implementation details, the classification of our model can effectively avoid the misclassification of non-entity texts. There will also be good performance in real scenes outside the dataset.

    Table 2. The F1-measure of models in NER

    DISCUSSION

    From the experimental results, the BiLSTM-CRF model constructed in this study has made a significant improvement over the previous research. The F1-measure of NER is close to 0.88, and of MRE is close to 0.78. However, there still remain some problems. The model has categories with a low recognition rate in both tasks. Especially in MRE, there are three categories where the F1-measures were less than 0.4. The general reason for this problem is that these categories are too small in the dataset and was difficult for the model to understand their semantics. For example,in the sentence “He was started on p.o. steroids and to CMED for management of COPD exacerbation but he appeared in more respiratory distress overnight”,the “management” and “COPD exacerbation” should constitute a “TrWP” relation, but the model identified it as a “TrAP”. The reason lied in that the patient’s deterioration appears in the next short sentence, and the model didn’t perfectly learn the feature.

    In addition, the effects of the model on several categories were higher than 0.9, of which “PIP” was all correctly classified. This is due to the large number of its examples and less interference.

    This study constructed different structure of BiLSTM-CRF model and verified the good performance of deep learning model in medical knowledge extraction.This shows that the same model can be applied to different scenarios by reasonable modeling of the characteristics of the task. In view of the fact that clinical electronic medical records contain more domain experience knowledge, how to make corresponding adjustments and changes from the general method, and how to construct a more specific model will be questions that NLP needs to think about in the research field of clinical EMRs in the future. Besides, as two subtasks of MKE, the clinical accuracy of MRE is seriously affected by the results of NER. Although NER has a F1-measure close to 0.9, the error will be magnified during transmission. Therefore, when it comes to deeper research,it is imperative to further improve the effect of basic tasks in MKE.

    Table 3. The F1-measure of models in MRE

    Conflict of interest statement

    The authors have no conflict of interests to disclose.

    亚洲自偷自拍图片 自拍| 国产又色又爽无遮挡免费看| 不卡av一区二区三区| 特大巨黑吊av在线直播| 国产欧美日韩精品亚洲av| 欧美日韩综合久久久久久 | 成熟少妇高潮喷水视频| 亚洲精品中文字幕一二三四区| 五月伊人婷婷丁香| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲七黄色美女视频| 午夜福利欧美成人| 日日干狠狠操夜夜爽| 久久久久免费精品人妻一区二区| 国产成人av教育| 亚洲熟妇中文字幕五十中出| 国产爱豆传媒在线观看| 亚洲 欧美一区二区三区| 禁无遮挡网站| 日韩三级视频一区二区三区| 日韩欧美 国产精品| 人人妻人人看人人澡| 色综合欧美亚洲国产小说| 国产精品 国内视频| 色噜噜av男人的天堂激情| 亚洲精品一卡2卡三卡4卡5卡| 久久人妻av系列| 欧美色欧美亚洲另类二区| 黄频高清免费视频| 色吧在线观看| 日韩欧美 国产精品| 免费看光身美女| 黑人欧美特级aaaaaa片| 欧美日韩一级在线毛片| 亚洲中文av在线| 一区福利在线观看| 身体一侧抽搐| 色综合婷婷激情| 久久草成人影院| 成人鲁丝片一二三区免费| 美女扒开内裤让男人捅视频| 中文字幕最新亚洲高清| 亚洲在线观看片| 国产aⅴ精品一区二区三区波| 中文字幕最新亚洲高清| 一本久久中文字幕| 国产精品 国内视频| 天天添夜夜摸| 人人妻,人人澡人人爽秒播| 成人高潮视频无遮挡免费网站| 最近最新中文字幕大全电影3| 首页视频小说图片口味搜索| 国产成人影院久久av| 精品免费久久久久久久清纯| 男女床上黄色一级片免费看| 国产一区在线观看成人免费| 一区二区三区高清视频在线| 特级一级黄色大片| 国产精品一区二区免费欧美| 男女视频在线观看网站免费| 伊人久久大香线蕉亚洲五| 国产 一区 欧美 日韩| 日本 欧美在线| 精品久久久久久,| 久久热在线av| 黄频高清免费视频| 三级国产精品欧美在线观看 | 精品久久久久久,| 日韩欧美国产在线观看| 亚洲狠狠婷婷综合久久图片| 日韩中文字幕欧美一区二区| 99热这里只有精品一区 | 久久久精品欧美日韩精品| 欧美一区二区精品小视频在线| 日韩精品中文字幕看吧| 99热这里只有是精品50| 欧美成人免费av一区二区三区| 一级作爱视频免费观看| 夜夜爽天天搞| 国产一区二区三区在线臀色熟女| avwww免费| 国产av在哪里看| 日韩免费av在线播放| 黄色成人免费大全| 搞女人的毛片| 国产精品电影一区二区三区| 级片在线观看| 欧美一级毛片孕妇| 亚洲欧美激情综合另类| 黄色视频,在线免费观看| 日韩av在线大香蕉| 90打野战视频偷拍视频| 国产成人啪精品午夜网站| 美女cb高潮喷水在线观看 | a级毛片a级免费在线| 在线观看美女被高潮喷水网站 | 老汉色av国产亚洲站长工具| 嫩草影院精品99| 国产精品,欧美在线| 五月伊人婷婷丁香| 国产高潮美女av| 日本成人三级电影网站| 一本综合久久免费| 人妻久久中文字幕网| 性色av乱码一区二区三区2| 18禁观看日本| 校园春色视频在线观看| 亚洲精品国产精品久久久不卡| 亚洲中文字幕日韩| 亚洲欧美激情综合另类| 欧美日韩中文字幕国产精品一区二区三区| 丁香六月欧美| a在线观看视频网站| 男人舔女人的私密视频| 精品一区二区三区四区五区乱码| 深夜精品福利| 久久国产精品影院| svipshipincom国产片| 日本a在线网址| 成人国产一区最新在线观看| 级片在线观看| 色尼玛亚洲综合影院| 国产v大片淫在线免费观看| 亚洲精华国产精华精| 嫩草影院精品99| 久久精品国产亚洲av香蕉五月| 婷婷精品国产亚洲av在线| 国产亚洲av高清不卡| 熟妇人妻久久中文字幕3abv| 久久久精品大字幕| 日本三级黄在线观看| 毛片女人毛片| 国产精品久久久久久人妻精品电影| 午夜福利免费观看在线| 在线免费观看的www视频| 国内揄拍国产精品人妻在线| 午夜福利18| 大型黄色视频在线免费观看| 又粗又爽又猛毛片免费看| 成人特级黄色片久久久久久久| 国产精品久久久久久久电影 | 亚洲精品国产精品久久久不卡| 久久亚洲精品不卡| 免费看a级黄色片| 日韩欧美国产一区二区入口| 999久久久国产精品视频| 色哟哟哟哟哟哟| 免费无遮挡裸体视频| 精品国产乱子伦一区二区三区| 日韩欧美在线二视频| 成年女人毛片免费观看观看9| 国产精品美女特级片免费视频播放器 | 亚洲aⅴ乱码一区二区在线播放| av国产免费在线观看| 三级国产精品欧美在线观看 | 999久久久国产精品视频| 一级黄色大片毛片| 亚洲人成网站在线播放欧美日韩| 国产免费男女视频| 久久久久免费精品人妻一区二区| 波多野结衣巨乳人妻| 美女被艹到高潮喷水动态| 国产v大片淫在线免费观看| 少妇的丰满在线观看| 免费在线观看成人毛片| x7x7x7水蜜桃| 欧美成狂野欧美在线观看| 搡老妇女老女人老熟妇| 男女之事视频高清在线观看| 久久精品国产亚洲av香蕉五月| 国产精品国产高清国产av| 久久久色成人| 99在线人妻在线中文字幕| 波多野结衣高清无吗| 国产激情欧美一区二区| 欧美日韩福利视频一区二区| 亚洲性夜色夜夜综合| 啦啦啦免费观看视频1| 精品国产乱子伦一区二区三区| 最近在线观看免费完整版| 天堂动漫精品| 我的老师免费观看完整版| 中文在线观看免费www的网站| 欧美中文综合在线视频| 蜜桃久久精品国产亚洲av| 久久久久精品国产欧美久久久| 女人被狂操c到高潮| 国内精品久久久久久久电影| bbb黄色大片| 热99re8久久精品国产| 好男人在线观看高清免费视频| www.www免费av| 嫁个100分男人电影在线观看| 亚洲av熟女| 精品国产美女av久久久久小说| 国产一区二区在线观看日韩 | 51午夜福利影视在线观看| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 久久中文字幕一级| 搡老妇女老女人老熟妇| 狠狠狠狠99中文字幕| 亚洲七黄色美女视频| 在线观看美女被高潮喷水网站 | 久久99热这里只有精品18| 国产精品香港三级国产av潘金莲| 国产免费av片在线观看野外av| 欧美一区二区国产精品久久精品| 一个人免费在线观看的高清视频| www.999成人在线观看| 色吧在线观看| 亚洲专区中文字幕在线| 国产成人aa在线观看| 亚洲人成伊人成综合网2020| 午夜精品久久久久久毛片777| 欧美xxxx黑人xx丫x性爽| 十八禁网站免费在线| 床上黄色一级片| АⅤ资源中文在线天堂| 亚洲精品色激情综合| 亚洲国产看品久久| 精品国产美女av久久久久小说| 日韩欧美三级三区| 午夜福利免费观看在线| 欧美一区二区国产精品久久精品| 琪琪午夜伦伦电影理论片6080| a级毛片a级免费在线| 19禁男女啪啪无遮挡网站| 床上黄色一级片| 久久亚洲精品不卡| 久久精品国产清高在天天线| 他把我摸到了高潮在线观看| 免费无遮挡裸体视频| 动漫黄色视频在线观看| 人妻夜夜爽99麻豆av| 搡老岳熟女国产| 美女午夜性视频免费| 亚洲av美国av| 欧美性猛交╳xxx乱大交人| 少妇裸体淫交视频免费看高清| 老鸭窝网址在线观看| 99精品久久久久人妻精品| 国产v大片淫在线免费观看| 欧美丝袜亚洲另类 | 日本 欧美在线| 午夜免费激情av| 亚洲av电影不卡..在线观看| 久久久国产成人精品二区| 精品久久蜜臀av无| 国产v大片淫在线免费观看| 日韩有码中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 亚洲成av人片在线播放无| 欧美激情久久久久久爽电影| av中文乱码字幕在线| 久久国产精品影院| 91九色精品人成在线观看| 欧美精品啪啪一区二区三区| 婷婷亚洲欧美| 91九色精品人成在线观看| 三级男女做爰猛烈吃奶摸视频| 精品电影一区二区在线| 国产成人系列免费观看| 亚洲专区中文字幕在线| 色在线成人网| 宅男免费午夜| 日本免费a在线| 免费搜索国产男女视频| 啪啪无遮挡十八禁网站| 啪啪无遮挡十八禁网站| 日本 欧美在线| 国产亚洲av嫩草精品影院| 欧美成狂野欧美在线观看| 美女高潮的动态| 国内久久婷婷六月综合欲色啪| 一级毛片精品| 一本综合久久免费| 国产精品98久久久久久宅男小说| 日本成人三级电影网站| 国产高潮美女av| 久久这里只有精品中国| 99re在线观看精品视频| 亚洲18禁久久av| 91久久精品国产一区二区成人 | 国产伦精品一区二区三区四那| 午夜激情欧美在线| www.精华液| 国产探花在线观看一区二区| 男女那种视频在线观看| 欧美日韩国产亚洲二区| 午夜两性在线视频| 成人av一区二区三区在线看| 在线视频色国产色| 国产91精品成人一区二区三区| 亚洲精品粉嫩美女一区| 亚洲av第一区精品v没综合| 国产淫片久久久久久久久 | 十八禁网站免费在线| or卡值多少钱| 免费人成视频x8x8入口观看| 国产麻豆成人av免费视频| 国产又黄又爽又无遮挡在线| 一区二区三区国产精品乱码| 曰老女人黄片| 欧美+亚洲+日韩+国产| 久久这里只有精品中国| 亚洲狠狠婷婷综合久久图片| 这个男人来自地球电影免费观看| 国产日本99.免费观看| 一本精品99久久精品77| 国产精品亚洲美女久久久| 我的老师免费观看完整版| www日本黄色视频网| 久久久久久国产a免费观看| 18美女黄网站色大片免费观看| 最新在线观看一区二区三区| 日韩大尺度精品在线看网址| 99国产精品一区二区三区| 日韩免费av在线播放| 日韩欧美三级三区| 日韩av在线大香蕉| 性色av乱码一区二区三区2| 欧美成狂野欧美在线观看| 成人三级做爰电影| 国产精品电影一区二区三区| 天天一区二区日本电影三级| 国内少妇人妻偷人精品xxx网站 | 嫩草影院精品99| 精品国产乱码久久久久久男人| 久久精品91无色码中文字幕| 一个人免费在线观看电影 | 欧美乱妇无乱码| 91麻豆av在线| 亚洲成av人片在线播放无| 久久精品亚洲精品国产色婷小说| 老汉色∧v一级毛片| 久久这里只有精品中国| 观看美女的网站| 亚洲人成伊人成综合网2020| 国内精品久久久久精免费| 国产精品一区二区精品视频观看| 国产三级中文精品| www日本黄色视频网| 亚洲av免费在线观看| 18禁裸乳无遮挡免费网站照片| 久久久久国产一级毛片高清牌| 窝窝影院91人妻| 麻豆成人av在线观看| 97人妻精品一区二区三区麻豆| 天堂动漫精品| 成人无遮挡网站| 国产69精品久久久久777片 | 亚洲av电影在线进入| 久久性视频一级片| 午夜成年电影在线免费观看| 岛国在线观看网站| 亚洲国产精品sss在线观看| 日韩成人在线观看一区二区三区| 长腿黑丝高跟| 18禁美女被吸乳视频| 美女高潮的动态| 欧美高清成人免费视频www| 国产午夜福利久久久久久| 国产精品av视频在线免费观看| 亚洲狠狠婷婷综合久久图片| 美女cb高潮喷水在线观看 | 日韩精品中文字幕看吧| 亚洲欧美精品综合一区二区三区| 国产成人系列免费观看| 嫩草影院精品99| 国产美女午夜福利| 黄色片一级片一级黄色片| 婷婷丁香在线五月| 午夜精品一区二区三区免费看| 淫妇啪啪啪对白视频| 观看免费一级毛片| 日韩国内少妇激情av| 色老头精品视频在线观看| 国产三级中文精品| 亚洲精品美女久久av网站| 岛国在线免费视频观看| 亚洲成a人片在线一区二区| 日日摸夜夜添夜夜添小说| 老熟妇乱子伦视频在线观看| 亚洲专区中文字幕在线| 精品乱码久久久久久99久播| 色播亚洲综合网| www.精华液| 999久久久国产精品视频| 欧美成人性av电影在线观看| 91老司机精品| 午夜影院日韩av| 日本一二三区视频观看| 亚洲无线观看免费| 国产蜜桃级精品一区二区三区| 在线看三级毛片| 国产精品1区2区在线观看.| 床上黄色一级片| 精品久久久久久成人av| 欧美日韩黄片免| 在线免费观看的www视频| 免费观看人在逋| 国产美女午夜福利| 亚洲色图 男人天堂 中文字幕| 人妻丰满熟妇av一区二区三区| 日本黄色视频三级网站网址| 99久久精品热视频| 两个人视频免费观看高清| 热99re8久久精品国产| 9191精品国产免费久久| 老汉色∧v一级毛片| 天堂动漫精品| 午夜福利视频1000在线观看| 国产aⅴ精品一区二区三区波| 亚洲色图av天堂| 国产精品久久久久久亚洲av鲁大| 亚洲成人精品中文字幕电影| 在线观看美女被高潮喷水网站 | www日本在线高清视频| 久久香蕉精品热| 成人国产一区最新在线观看| 久久精品影院6| 九色成人免费人妻av| 精品乱码久久久久久99久播| 男女下面进入的视频免费午夜| 女人高潮潮喷娇喘18禁视频| 欧美一区二区精品小视频在线| 激情在线观看视频在线高清| 精品久久久久久久久久免费视频| 99久久成人亚洲精品观看| 免费看日本二区| 久久久久久久久中文| 日韩免费av在线播放| 欧美性猛交黑人性爽| 日本一二三区视频观看| 国产高清videossex| 精品不卡国产一区二区三区| 十八禁网站免费在线| 一进一出抽搐动态| 中文字幕久久专区| 国产乱人视频| 天堂√8在线中文| 国产麻豆成人av免费视频| 久久久久久久久中文| 亚洲真实伦在线观看| 香蕉丝袜av| 日韩欧美国产一区二区入口| 日本精品一区二区三区蜜桃| 午夜福利在线观看吧| 夜夜躁狠狠躁天天躁| 亚洲国产高清在线一区二区三| 一区福利在线观看| 国产精品久久视频播放| 日本一本二区三区精品| 人妻夜夜爽99麻豆av| 成人特级av手机在线观看| 国产麻豆成人av免费视频| 亚洲一区二区三区不卡视频| 欧美在线黄色| 男人的好看免费观看在线视频| 高潮久久久久久久久久久不卡| 久久久久久九九精品二区国产| 亚洲精品国产精品久久久不卡| 热99re8久久精品国产| 国产精品亚洲美女久久久| 国产一区二区在线观看日韩 | 91久久精品国产一区二区成人 | 日本在线视频免费播放| 一级黄色大片毛片| 久久精品aⅴ一区二区三区四区| 国产精品久久视频播放| 欧美午夜高清在线| 午夜福利免费观看在线| 操出白浆在线播放| 天堂影院成人在线观看| 久久久久国产精品人妻aⅴ院| 午夜福利高清视频| 观看美女的网站| 99久国产av精品| 一本综合久久免费| 美女大奶头视频| 亚洲精华国产精华精| 国产在线精品亚洲第一网站| 免费无遮挡裸体视频| 亚洲激情在线av| 一本久久中文字幕| 国产激情偷乱视频一区二区| 日本与韩国留学比较| 99国产综合亚洲精品| 欧美3d第一页| 日韩精品中文字幕看吧| 99久久精品热视频| 中亚洲国语对白在线视频| 欧美一级a爱片免费观看看| 久久精品人妻少妇| 狠狠狠狠99中文字幕| svipshipincom国产片| 国产高潮美女av| 十八禁网站免费在线| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲| 中文亚洲av片在线观看爽| 久久精品综合一区二区三区| 亚洲第一欧美日韩一区二区三区| 欧美激情久久久久久爽电影| 色吧在线观看| bbb黄色大片| 国产熟女xx| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| 狂野欧美白嫩少妇大欣赏| 久久精品亚洲精品国产色婷小说| 18禁观看日本| 精华霜和精华液先用哪个| 久久久久久国产a免费观看| 精品一区二区三区四区五区乱码| 色综合婷婷激情| 久久人人精品亚洲av| 国产精品爽爽va在线观看网站| 国产97色在线日韩免费| 婷婷精品国产亚洲av| 哪里可以看免费的av片| 国产精品一区二区免费欧美| 黄片小视频在线播放| 国产又色又爽无遮挡免费看| 国产精品一区二区精品视频观看| 国产成人精品久久二区二区91| 老司机深夜福利视频在线观看| 舔av片在线| 中文字幕久久专区| 天堂√8在线中文| 淫妇啪啪啪对白视频| 十八禁网站免费在线| 精品国内亚洲2022精品成人| 美女黄网站色视频| 国产精品一区二区免费欧美| 一区福利在线观看| 特大巨黑吊av在线直播| 巨乳人妻的诱惑在线观看| 婷婷丁香在线五月| 美女午夜性视频免费| 欧美中文综合在线视频| 草草在线视频免费看| 亚洲精品乱码久久久v下载方式 | 香蕉久久夜色| 久久久久久久午夜电影| 看免费av毛片| 九色成人免费人妻av| 99国产精品99久久久久| 床上黄色一级片| 看片在线看免费视频| 久久久精品欧美日韩精品| 国产成+人综合+亚洲专区| 两个人视频免费观看高清| 久久久久国产精品人妻aⅴ院| 观看美女的网站| 搞女人的毛片| 国产精品自产拍在线观看55亚洲| 91在线观看av| 欧美一区二区国产精品久久精品| 亚洲国产欧美网| 午夜亚洲福利在线播放| 亚洲午夜精品一区,二区,三区| 麻豆av在线久日| 日本黄色视频三级网站网址| 久久久色成人| 亚洲中文字幕一区二区三区有码在线看 | 麻豆国产97在线/欧美| 午夜久久久久精精品| 一进一出好大好爽视频| 国产av一区在线观看免费| 久久天堂一区二区三区四区| 精品久久久久久久久久久久久| 久久中文看片网| 欧美一级a爱片免费观看看| 国产精品日韩av在线免费观看| 日韩欧美在线乱码| 精品免费久久久久久久清纯| 免费无遮挡裸体视频| 嫁个100分男人电影在线观看| 熟女电影av网| 久久午夜亚洲精品久久| 国产高清视频在线播放一区| 午夜激情欧美在线| 人人妻人人澡欧美一区二区| 美女 人体艺术 gogo| 国产三级在线视频| 欧美中文综合在线视频| 久久久久久久久久黄片| 日本一本二区三区精品| 麻豆国产97在线/欧美| 91九色精品人成在线观看| 久久久久久久精品吃奶| 午夜两性在线视频| 国产真实乱freesex| 嫩草影视91久久| aaaaa片日本免费| www日本黄色视频网| 伦理电影免费视频| 久久久久久久久久黄片| 日日摸夜夜添夜夜添小说| 91av网站免费观看| 国产精品98久久久久久宅男小说| 毛片女人毛片| 国产午夜福利久久久久久| 午夜激情福利司机影院| 一级a爱片免费观看的视频| 精品久久久久久久久久久久久| 天堂动漫精品| 国产亚洲精品综合一区在线观看| 18禁美女被吸乳视频| 欧美日韩综合久久久久久 | 淫秽高清视频在线观看| 亚洲最大成人中文|