• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Artificial Intelligence-Enabled Medical Imaging: Today and Its Future

    2019-02-16 06:21:13YinghuanShiQianWang
    Chinese Medical Sciences Journal 2019年2期

    Yinghuan Shi, Qian Wang*

    1State Key Laboratory for Novel Software Technology,

    Nanjing University, Nanjing 210023, China

    2Institute for Medical Imaging Technology, School of Biomedical Engineering,Shanghai Jiao Tong University, Shanghai 200030, China

    Key words: medical imaging; artificial intelligence; deep learning; image segmentation; image registration; image detection; image recognition

    Abstract Medical imaging is now being reshaped by artificial intelligence (AI) and progressing rapidly toward future. In this article, we review the recent progress of AI-enabled medical imaging. Firstly, we briefly review the background about AI in its way of evolution. Then, we discuss the recent successes of AI in different medical imaging tasks, especially in image segmentation, registration, detection and recognition. Also, we illustrate several representative applications of AI-enabled medical imaging to show its advantage in real scenario, which includes lung nodule in chest CT, neuroimaging, mammography, and etc. Finally, we report the way of human-machine interaction. We believe that, in the future, AI will not only change the traditional way of medical imaging, but also improve the clinical routines of medical care and enable many aspects of the medical society.

    A RTIFICIAL intelligence (AI) is rapidly growing in recent years and has been pushing forward many applications into clinical practice. The technique of AI has demonstrated its powerful capability of assisting clinicians in enormous scenarios that cover the entire pipeline in current healthcare system. Whereas AI is still developing continuously, the combination of bigger data, stronger hardware, and more intelligent algorithm will eventually lead to maturation of commercial products, which may influence all aspects of healthcare substantially, including radiology, pathology, clinical decision making, etc.

    AI-enabled medical imaging has already become a focus under the spotlight. A major engine underlying this heated wave of AI is computer vision, while medical images are a natural influx of computer vision,image processing, pattern recognition and the great interest from the medical society. Many governments around the world have announced their blueprints, in collaboration with industry giants and prestigious research institutes, to promote the AI-enabled medical imaging and image analysis. It is widely believed that a huge market will emerge with fast developing and maturation of next-generation medical imaging firmware and software enabled by the powerful tool of AI.

    The AI-enabled products will eventually change the way daily diagnosis and treatment are conducted in hospitals and clinics. For example, radiologists will be able to examine and quantify the image data from an unprecedented perspective through the weapon of AI. In addition, the involvement and commitment from clinicians to AI-enabled healthcare cannot be restricted by the role of users only. Many clinical institutes,as well as medical practitioners, have devoted to the planning, development, validation and application of AI-enabled solutions, while intelligent medical imaging is currently a leading force to signify this ongoing revolution.

    SUCCESS OF ALGORITHMS IN ARTIFICIAL INTELLIGENCE

    The birth of AI could be dated back to the Dartmouth meeting in 1956. However, the latest wave of AI that has amazed the entire world can be mostly attributed to the introduction of deep learning. Nowadays, the deep learning algorithm and its numerous variants have been applied to many scenarios. For example, one may apply convolutional neural network(CNN) toward natural language processing (NLP), such that computers can understand and generate written or verbal texts. In hospitals, doctors can benefit from such NLP intelligence significantly - there is no need to input the medical record by physically writing down the words or typing over a keyboard; instead, one may read out while computers can record by converting to texts automatically.

    Other applications can also be easily noticed in clinical practice. With a huge number of clinical data that comes from highly diverse sources, it is typically challenging to human experts to fuse them effectively and efficiently. AI, however, provides a data-driven way to mine the data and to reveal intrinsic patterns that are associated with individual diseases and their subtypes. New ways are thus paved by AI for precise diagnosis and personalized treatment. Patients also benefit from better service that is presented to themone may feel easier and more comfortable to streamline the remedy plan, which could be initially proposed by an AI agent with high precision and much reduced cost.

    In the field of medical imaging particularly, AI has reshaped many aspects in algorithm designs and application implementations. An ultimate goal in the field of computer vision aims to understand visual data(e.g., images, videos) automatically. In the past several decades, image understanding can only be conducted within a relatively small and less intelligent scope.Although tremendous efforts could be found for the extraction and manipulation of object contour or silhouette in 2D/3D image, the revolution did not happen until machine learning became ready. Nowadays, researchers are very familiar with machine learning, and in particular deep learning, to solve individual computer vision and medical image problems.

    Image segmentation

    Image segmentation is a major battlefield where deep learning has achieved great successes.1,2The task of segmentation is often perceived as pixel-level (or voxel-level in 3D case) classification, by assigning individual pixels in an image to different categories. With precise segmentation, one may quantify the appearance information rendered in specific region of interest(ROI), and it also facilitates many subsequent treatments, e.g., radiotherapy planning and image-based guiding in interventional therapy. The initial version of CNN is well known for its classification capability.However, the architecture of CNN might not be a proper choice to image segmentation. To this end, fully convolutional network (FCN) has become a state-ofthe-art solution, where the input image can generate its corresponding label map in the style of end-to-end segmentation. Nowadays, many researchers tend to adopt U-Net or V-Net toward medical image segmentation, which prove their merits especially in relatively small datasets of medical images.

    Image registration

    While segmentation and registration both belong to low-to-middle level processing of visual data, the latter faces more challenges.3,4A typical registration algorithm has two (or more) input images, while the output is the optimized spatial transformation. One of the two input images, or the moving one, can be warped to the space defined by the second input image (fixed).Thus the two images establish anatomical correspondences and then become quantitatively comparable in a unified space. The major difficulty, which originate from the image registration process, points to the fact that no ground-truth supervision could be acquired for learning based registration. The registration task,meanwhile, suffers from the curse of very high dimensionality when optimizing the spatial transformation. To this end, unsupervised learning framework is becoming more and more popular. By embedding the registration quality metric as the loss function, the deep network has demonstrated its power in encoding large yet complex spatial transformation. That is, the network learns to minimize the loss function, while the transformation can be generated through the network.

    Detection and recognition

    Besides the low and middle level processing, high level vision tasks, such as detection and recognition, are always attractive to researches and applications.5,6A detection model often requires identifying the location of the lesion, with moderate suffering from false positive rate. If a lesion has been successfully identified,then a preliminary diagnosis could be attained per patient. The detection might not be always necessary concerning the diagnosis - the AI system is capable of end-to-end learning, by encoding and decoding disease-related visual cues from the images directly. It is worth noting that, although the design for detection and recognition are similar to traditional computer-assisted diagnosis system, AI has reshaped the inside of the architecture. In particular, an AI system can work without relying on arbitrarily designed image features,since the network is able to optimize the kernel parameters spontaneously. Meanwhile, many researches have also highlighted the importance of clinical domain knowledge. One may translate the priors into feature representations. While deep networks provide flexible ways to fuse the inputs of external features,it is often found that the AI system can improve the detection and recognition after incorporating expert knowledge.

    APPLICATION AND PROSPECT OF ARTIFICIAL INTELLIGENCE-ENABLED MEDICAL IMAGING

    Lung nodule and chest CT

    Lung nodule detection, segmentation and classification are among the frontline of AI when entering the field of medical imaging.7,8The anatomical structures pose great challenges to image reading. Usually the low thickness requirement incurs a huge amount of image data, making it hard for radiologists to screen lung cancer and make diagnosis easily. AI provides a low-cost yet efficient way, as an alternative to human expert, for lung cancer diagnosis as well as several diseases that can be captured by chest CT. There are many reports in the literature, proposing several models that demonstrate superior performance in identifying nodules of different sizes and severity in CT images. However, most of the methods are still pending for approvals from regulators. From a technical perspective, the robustness of the methods including sensitivity and specificity might be challenged especially concerning the high variation of clinical data in acquisition and preparation. Meanwhile, the method and the product have to be seamlessly combined with the clinical pipeline, posing high demands to their adaptive capability.

    Neuroimaging

    Neuroimaging is a major sub-field in medical imaging.9Current AI tools targeting neuroimages are mostly focusing on image analysis and diagnosis. In particular,precise ROI segmentation in reference to subtle neural structures and functions is still a popular direction.Deep learning has shown the capability of fast fullbrain parcellation, by labeling ROIs of different scales automatically. Based on the ROI parcellation, clinicians are able to quantify brain structures and functions in individual regions. The measures can be further handled through an AI system that enables multi-source data fusion, such that different modalities of images,as well as disease symptoms, lab test reports, could be combined together in clinical routines. From a disease perspective, much attention has been devoted to psychiatric diseases and progressive degeneration diseases. Studies around stroke, trauma, and brain tumor are also progressing rapidly.

    Mammography

    Breast cancer is a leading fatal cancer to females.10It is already verified that screening through mammography can significantly reduce the mortality of breast cancer. While ultrasound is still a dominant tool to breast cancer screening and diagnosis in China, mammography is developing fast as its role has been well recognized around the world already. Interpretation of mammography is highly dependent on the expertise of radiologists, who are suffering from heavy working loads. To this end, AI tools that can help to read mammography data are essentially important. Several methods have been developed for this sake, including detection of potential lesions through augmented feature representation, category determination of Breast Imaging Reporting and Data System (BI-RADS), etc.The AI system can improve the efficiency in radiology department significantly by reducing the time cost of mammography reading. It can also make it possible to deploy high-quality healthcare service to remote regions, where training for radiologists might be very costly.

    Bone and joint

    Bone diseases such as osteoarthritis,11are drawing more and more attention, since they post a lot burdens to the lives of the elderly. Current studies target disease diagnosis, which relies on many measures acquired from multi-modal images. To this end, sophisticated image segmentation and detection are often required. Moreover, concerning osteoarthritis, it is necessary to stage the disease while the clinically adopted criterion is often challenging to local hospitals.The AI-enabled solution, obviously, can help to screen the patients of early osteoarthritis, who can then benefit from proper treatment. On the other hand, the AI technique can also bridge a gap between medical image and surgery. Whereas surgery is a major therapeutic way to handle symptoms of bone and joint, with AI one can establish anatomical models from images conveniently. The resulted models can help surgeons to plan the treatment and guide the intervention.

    HUMAN-MACHINE INTERACTION

    The AI technology has penetrated multiple service scenarios, and healthcare is not a single exception.However, how to put “medical + AI” into real use is still a problem that the whole society is currently exploring. The goal of AI is not to replace human beings.Therefore, medical AI cannot replace doctors but to assist doctors in clinical treatment, help doctors to learn new knowledge, and provide tools for image handling and intervention. Meanwhile, although AI does not aim to replace doctors, those doctors who are not willing or unable to use AI effectively will most likely be replaced by those who are experts to leverage AI to improve their professional level.

    Regarding the changes brought about by AI, in addition to improving the accuracy of the doctor’s judgment, the most important thing is to improve the doctor’s confidence. Assuming the AI system can reach the professional level equivalent to a senior doctor,then human expert will be more confident to deliver a diagnosis report especially when the judgement can be supported by the AI system. On the contrary, when a person and a machine collide (for example, when the machine thinks it is a pulmanary nodule on chest CT and the doctor does not think so), the doctor will gather more clinical data of the patient to make a decision after careful deliberation.

    The interaction between human experts and machines needs to be tuned in a long period of time. The only and ultimate goal here is to deliver high-quality healthcare service to patients. Therefore, the introduction of AI should not alter or affect the ongoing effectiveness of clinical pipeline. Meanwhile, doctors act as teachers to the AI system by supervising the intelligent agent to work and correcting errors in any case needed. The AI system, which owns fabulous energy to learn non-stop, can improve its capability, accuracy,and robustness during this human-machine interaction.

    CONCLUSIONS

    Medical imaging is now being reshaped by AI and progressing rapidly toward future. On one hand,AI is changing the traditional way of imaging, making it more accurate and convenient to acquire image big data with reduced cost upon the healthcare system. On the other hand, AI is improving the clinical routines,while physicians are expected to work with assistance from AI and deliver better healthcare service. In the future, AI will enable and reshape many aspects of the medical society including radiology. Whereas patients will be able to receive higher-quality healthcare service from doctors, who are also benefiting from AI in their professional careers.

    Conflict of interests statement

    The authors declared no conflict of interests.

    REFERENCE

    1. Wang L, Nie D, Li GN, et al. Benchmark on automatic 6-month-old infant brain segmentation algorithms: the iSeg-2017 challenge. IEEE Trans Med Imaging 2019; epub: 2019 Feb 27. doi: 10.1109/TMI.2019.2901712.

    2. Dolz J, Gopinath K, Yuan J, et al. HyperDense-net:a hyper-densely connected CNN for multi-modal image segmentation. IEEE Trans Med Imaging 2018;38(5):1116-26. doi: 10.1109/tmi.2018.2878669.

    3. Cao XH, Yang JH, Zhang J, et al. Deformable image registration using cue-aware deep regression network.IEEE Trans Biomed Eng 2018; 65(9):1900-11. doi:10.1109/TBME.2018.2822826.

    4. Wang Q, Lu L,Wu DJ, et al. Automatic segmentation of spinal canals in CT images via iterative topology refinement. IEEE Trans Med Imaging 2015; 34(8):1694-704. doi: 10.1109/tmi.2015.2436693.

    5. Shi YH, Suk HI, Gao Y, et al. Leveraging coupled interaction for multi-modal Alzheimer’s disease diagnosis. IEEE Trans Neural Networks Learning Syst 2019; Epub:2019 Mar 20. doi: 10.1109/TNNLS.2019.2900077.

    6. Lian CF, Liu MX, Zhang J, et al. Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI.IEEE Trans Pattern Anal Machine Intell 2018; Epub:2018 Dec 21. doi: 10.1109/TPAMI.2018.2889096.

    7. Xie YT, Xia Y, Zhang JP, et al. Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT. IEEE Trans Med Imaging 2018; 38(4):991-1004. doi: 10.1109/TMI.2018.2876510.

    8. Farag AA, Munim HEAE, Graham JH. A novel approach for lung nodules segmentation in chest CT using level sets. IEEE Trans Image Processing 2013; 22(12):5202-13. doi: 10.1109/TIP.2013.2282899.

    9. Torre LA, Islami F, Siegel RL, et al. Global cancer in women: burden and trends. Cancer Epidemiol Biomarkers Prev 2017; 26(4):444-57. doi:10.1158/1055-9965.

    10. Larobina M, Murino L. Medical image file formats.J Digit Imaging 2014; 27(2):200-6. doi: 10.1007/s10278-013-9657-9.

    11. Moskowitz RW. The burden of osteoarthritis: clinical and quality-of-life issues. Am J Manag Care 2009;15(8 Suppl): S223-9.

    国产日韩欧美在线精品| 不卡一级毛片| 久久人人97超碰香蕉20202| 天堂动漫精品| 久久天躁狠狠躁夜夜2o2o| 中文字幕色久视频| 黄色怎么调成土黄色| 欧美日韩av久久| 精品人妻1区二区| 亚洲精品国产精品久久久不卡| 久久中文字幕人妻熟女| 亚洲性夜色夜夜综合| 成人免费观看视频高清| 日韩欧美免费精品| 纵有疾风起免费观看全集完整版| 丝袜人妻中文字幕| 99热国产这里只有精品6| 老司机午夜福利在线观看视频 | 国产一区有黄有色的免费视频| 亚洲成人国产一区在线观看| 叶爱在线成人免费视频播放| 母亲3免费完整高清在线观看| cao死你这个sao货| 一区二区三区精品91| 免费观看人在逋| 啪啪无遮挡十八禁网站| 国产一区二区三区在线臀色熟女 | 午夜91福利影院| 亚洲午夜精品一区,二区,三区| 天堂俺去俺来也www色官网| 亚洲精品国产区一区二| 精品一区二区三卡| 99国产精品免费福利视频| 香蕉丝袜av| 18禁美女被吸乳视频| 激情视频va一区二区三区| a级毛片黄视频| 亚洲av成人不卡在线观看播放网| 妹子高潮喷水视频| 欧美在线黄色| 一本一本久久a久久精品综合妖精| 狠狠婷婷综合久久久久久88av| 国产免费福利视频在线观看| 国产精品偷伦视频观看了| 中文字幕人妻熟女乱码| 亚洲人成电影免费在线| 黄色片一级片一级黄色片| 十分钟在线观看高清视频www| 国产高清videossex| 亚洲国产欧美网| 变态另类成人亚洲欧美熟女 | 欧美午夜高清在线| 亚洲免费av在线视频| 国产精品秋霞免费鲁丝片| av网站免费在线观看视频| 久9热在线精品视频| 精品欧美一区二区三区在线| 黑人欧美特级aaaaaa片| 一本大道久久a久久精品| 久久久精品区二区三区| 日韩成人在线观看一区二区三区| 啦啦啦免费观看视频1| 搡老熟女国产l中国老女人| 热99国产精品久久久久久7| 国产亚洲av高清不卡| 人人妻,人人澡人人爽秒播| 在线观看一区二区三区激情| 亚洲,欧美精品.| 久久中文字幕人妻熟女| 日韩大码丰满熟妇| 亚洲国产av影院在线观看| 91精品国产国语对白视频| 午夜视频精品福利| av有码第一页| 婷婷丁香在线五月| a级毛片黄视频| 80岁老熟妇乱子伦牲交| 别揉我奶头~嗯~啊~动态视频| 中文字幕av电影在线播放| 999久久久国产精品视频| 岛国毛片在线播放| 狂野欧美激情性xxxx| 欧美精品啪啪一区二区三区| 91麻豆精品激情在线观看国产 | 蜜桃在线观看..| 桃红色精品国产亚洲av| 中文字幕高清在线视频| 免费少妇av软件| 国产精品久久久久久人妻精品电影 | 精品第一国产精品| www.自偷自拍.com| 交换朋友夫妻互换小说| 黄片播放在线免费| 一级a爱视频在线免费观看| 欧美 日韩 精品 国产| 国产无遮挡羞羞视频在线观看| 国产成人免费观看mmmm| 少妇的丰满在线观看| 最新美女视频免费是黄的| 免费一级毛片在线播放高清视频 | 日本黄色视频三级网站网址 | 老汉色av国产亚洲站长工具| 夜夜爽天天搞| 精品午夜福利视频在线观看一区 | 天天操日日干夜夜撸| 国产麻豆69| 丰满迷人的少妇在线观看| 国产成+人综合+亚洲专区| 亚洲精品在线美女| 国产日韩欧美亚洲二区| 国产欧美日韩精品亚洲av| 一级,二级,三级黄色视频| 国产极品粉嫩免费观看在线| 欧美日韩亚洲国产一区二区在线观看 | 99精品欧美一区二区三区四区| 免费观看人在逋| 别揉我奶头~嗯~啊~动态视频| 成人18禁高潮啪啪吃奶动态图| 黄色成人免费大全| 国产淫语在线视频| 免费女性裸体啪啪无遮挡网站| 国产午夜精品久久久久久| 亚洲欧美一区二区三区久久| 亚洲成人手机| 国产日韩一区二区三区精品不卡| 欧美乱码精品一区二区三区| 飞空精品影院首页| 国产主播在线观看一区二区| 日韩视频一区二区在线观看| 一区在线观看完整版| 成人18禁在线播放| 超碰成人久久| 大型黄色视频在线免费观看| 丁香欧美五月| 一本久久精品| 手机成人av网站| 在线观看一区二区三区激情| 黄色视频,在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久影院123| 亚洲va日本ⅴa欧美va伊人久久| 亚洲 国产 在线| 国产不卡av网站在线观看| 最近最新中文字幕大全免费视频| 操美女的视频在线观看| 国产精品电影一区二区三区 | 淫妇啪啪啪对白视频| 又紧又爽又黄一区二区| 久久国产精品男人的天堂亚洲| 欧美日韩亚洲综合一区二区三区_| 免费在线观看黄色视频的| 成人影院久久| 欧美精品啪啪一区二区三区| 国产在线一区二区三区精| 十八禁网站网址无遮挡| 日韩大码丰满熟妇| 熟女少妇亚洲综合色aaa.| 一本大道久久a久久精品| 天天躁夜夜躁狠狠躁躁| 亚洲av美国av| 男女边摸边吃奶| 亚洲精品乱久久久久久| 亚洲欧美日韩高清在线视频 | 免费女性裸体啪啪无遮挡网站| 99久久国产精品久久久| 日日爽夜夜爽网站| 亚洲精品在线美女| 另类亚洲欧美激情| 欧美精品人与动牲交sv欧美| 老司机午夜福利在线观看视频 | 涩涩av久久男人的天堂| 日本黄色日本黄色录像| 成年人黄色毛片网站| 91大片在线观看| 一边摸一边抽搐一进一出视频| 亚洲国产毛片av蜜桃av| 亚洲av日韩在线播放| 亚洲成a人片在线一区二区| 国产精品电影一区二区三区 | 人人妻,人人澡人人爽秒播| 亚洲成人国产一区在线观看| 男女下面插进去视频免费观看| 精品久久久久久电影网| 99国产精品99久久久久| 日韩免费av在线播放| 久久精品aⅴ一区二区三区四区| 久久精品国产亚洲av高清一级| 国产黄频视频在线观看| 欧美国产精品一级二级三级| 高清欧美精品videossex| 变态另类成人亚洲欧美熟女 | 欧美精品人与动牲交sv欧美| 18禁裸乳无遮挡动漫免费视频| 国产亚洲精品一区二区www | 精品人妻在线不人妻| 日本a在线网址| 久久久久国产一级毛片高清牌| 午夜福利影视在线免费观看| 十八禁高潮呻吟视频| 久久中文字幕一级| 狂野欧美激情性xxxx| 激情在线观看视频在线高清 | 一本一本久久a久久精品综合妖精| 丝袜人妻中文字幕| 欧美另类亚洲清纯唯美| 成人永久免费在线观看视频 | 日本一区二区免费在线视频| 国产成人免费无遮挡视频| 少妇粗大呻吟视频| videosex国产| 一进一出抽搐动态| 日日爽夜夜爽网站| 黄网站色视频无遮挡免费观看| 亚洲少妇的诱惑av| 久久久久精品人妻al黑| 成人亚洲精品一区在线观看| 99久久国产精品久久久| 亚洲色图综合在线观看| 亚洲精品中文字幕在线视频| 一进一出好大好爽视频| 久久精品91无色码中文字幕| 正在播放国产对白刺激| 亚洲一区中文字幕在线| 国产又色又爽无遮挡免费看| 亚洲黑人精品在线| 伦理电影免费视频| 亚洲欧美激情在线| 高清视频免费观看一区二区| 18禁黄网站禁片午夜丰满| 亚洲国产欧美网| 国产欧美日韩一区二区三区在线| 免费高清在线观看日韩| e午夜精品久久久久久久| 欧美乱码精品一区二区三区| 午夜免费成人在线视频| 国产精品自产拍在线观看55亚洲 | 色婷婷av一区二区三区视频| 一本大道久久a久久精品| 亚洲精品美女久久久久99蜜臀| 久久久久视频综合| 亚洲少妇的诱惑av| 亚洲三区欧美一区| www.自偷自拍.com| 日韩三级视频一区二区三区| 久9热在线精品视频| 在线观看免费高清a一片| 99久久人妻综合| 中文字幕人妻丝袜制服| 国产高清videossex| 伊人久久大香线蕉亚洲五| 国产亚洲精品久久久久5区| 淫妇啪啪啪对白视频| 男女无遮挡免费网站观看| 国产极品粉嫩免费观看在线| 国产成人欧美| 在线观看免费日韩欧美大片| 麻豆成人av在线观看| 90打野战视频偷拍视频| 精品国产一区二区久久| 国产精品久久久久成人av| 午夜福利视频在线观看免费| 国内毛片毛片毛片毛片毛片| 一本—道久久a久久精品蜜桃钙片| www日本在线高清视频| 人妻 亚洲 视频| 波多野结衣一区麻豆| 99国产精品99久久久久| 一个人免费看片子| 亚洲av日韩在线播放| 亚洲欧洲精品一区二区精品久久久| 国产亚洲一区二区精品| 女性生殖器流出的白浆| 日本vs欧美在线观看视频| 亚洲一区中文字幕在线| 久久av网站| 热99re8久久精品国产| 国产成+人综合+亚洲专区| 亚洲欧美色中文字幕在线| 亚洲色图 男人天堂 中文字幕| 黄色视频在线播放观看不卡| cao死你这个sao货| 亚洲va日本ⅴa欧美va伊人久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品国产色婷婷电影| 欧美精品高潮呻吟av久久| 美女主播在线视频| 欧美成人午夜精品| 久久免费观看电影| 欧美精品亚洲一区二区| 欧美在线一区亚洲| 757午夜福利合集在线观看| 国产男女超爽视频在线观看| 亚洲av片天天在线观看| 五月开心婷婷网| 国产在线精品亚洲第一网站| 日韩欧美三级三区| 91大片在线观看| 亚洲精品久久成人aⅴ小说| 成人国语在线视频| videos熟女内射| 人人妻人人澡人人看| 久久久久久免费高清国产稀缺| 欧美精品一区二区大全| 五月天丁香电影| 国产男女超爽视频在线观看| 亚洲成人手机| 亚洲av电影在线进入| 一级毛片女人18水好多| 99精品欧美一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 亚洲国产毛片av蜜桃av| 老司机午夜福利在线观看视频 | 美女主播在线视频| 国产高清视频在线播放一区| 最黄视频免费看| 亚洲一区中文字幕在线| 大香蕉久久网| 人人妻人人爽人人添夜夜欢视频| 日韩大码丰满熟妇| 黄片播放在线免费| 亚洲伊人色综图| 久久久久久久久久久久大奶| 青青草视频在线视频观看| 极品少妇高潮喷水抽搐| 久久精品成人免费网站| 成人精品一区二区免费| 国产高清激情床上av| 免费在线观看黄色视频的| 欧美精品亚洲一区二区| 国产欧美日韩一区二区三| 亚洲色图 男人天堂 中文字幕| 亚洲av成人一区二区三| 久久亚洲精品不卡| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| 另类亚洲欧美激情| 国产精品美女特级片免费视频播放器 | 免费黄频网站在线观看国产| 成人国产av品久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 女警被强在线播放| 12—13女人毛片做爰片一| tocl精华| 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| 黄网站色视频无遮挡免费观看| 满18在线观看网站| 大片电影免费在线观看免费| 中文字幕高清在线视频| 热99re8久久精品国产| 色视频在线一区二区三区| 国产成人系列免费观看| 国产精品偷伦视频观看了| 女性被躁到高潮视频| 51午夜福利影视在线观看| 精品久久久精品久久久| 性色av乱码一区二区三区2| 亚洲欧美一区二区三区久久| 中文字幕另类日韩欧美亚洲嫩草| 免费日韩欧美在线观看| 国产成人精品无人区| 国产老妇伦熟女老妇高清| 亚洲精品中文字幕一二三四区 | 欧美日韩成人在线一区二区| 欧美亚洲日本最大视频资源| 一进一出抽搐动态| 女人高潮潮喷娇喘18禁视频| 久久久久视频综合| 一区福利在线观看| 欧美大码av| 宅男免费午夜| 亚洲欧美日韩高清在线视频 | 老司机深夜福利视频在线观看| 久久中文字幕一级| 欧美精品啪啪一区二区三区| 电影成人av| 欧美日韩精品网址| 黄片大片在线免费观看| 免费在线观看影片大全网站| 久久久精品国产亚洲av高清涩受| 国产野战对白在线观看| 人妻久久中文字幕网| 国产又色又爽无遮挡免费看| 国产激情久久老熟女| 国产精品香港三级国产av潘金莲| svipshipincom国产片| 人妻 亚洲 视频| 国产人伦9x9x在线观看| 精品人妻熟女毛片av久久网站| 在线播放国产精品三级| 精品一区二区三卡| 日本wwww免费看| 窝窝影院91人妻| av又黄又爽大尺度在线免费看| 女人高潮潮喷娇喘18禁视频| 男人操女人黄网站| 我要看黄色一级片免费的| 成人亚洲精品一区在线观看| 脱女人内裤的视频| 深夜精品福利| 男女高潮啪啪啪动态图| 久久国产精品男人的天堂亚洲| 久久久久久亚洲精品国产蜜桃av| av线在线观看网站| 国产成人av教育| 另类精品久久| 日韩视频一区二区在线观看| 黑人猛操日本美女一级片| 少妇精品久久久久久久| 一进一出抽搐动态| 热re99久久精品国产66热6| 亚洲av日韩在线播放| 啦啦啦在线免费观看视频4| 亚洲视频免费观看视频| 熟女少妇亚洲综合色aaa.| 精品亚洲成国产av| 国产精品秋霞免费鲁丝片| 成人av一区二区三区在线看| 国产成人影院久久av| 欧美激情久久久久久爽电影 | 亚洲av日韩精品久久久久久密| 成人三级做爰电影| 99久久人妻综合| 麻豆国产av国片精品| 日韩一区二区三区影片| 麻豆av在线久日| 亚洲午夜理论影院| kizo精华| 免费久久久久久久精品成人欧美视频| tube8黄色片| 国产极品粉嫩免费观看在线| 国产精品亚洲一级av第二区| 亚洲性夜色夜夜综合| 黑人欧美特级aaaaaa片| 国产精品久久久av美女十八| 操出白浆在线播放| 美女国产高潮福利片在线看| 老司机影院毛片| 国产成人av激情在线播放| 免费少妇av软件| 操出白浆在线播放| 久久久精品区二区三区| 国产成人影院久久av| 国产精品亚洲一级av第二区| 男女边摸边吃奶| 午夜日韩欧美国产| 99在线人妻在线中文字幕 | 久久 成人 亚洲| 亚洲国产看品久久| 男女无遮挡免费网站观看| 日韩大码丰满熟妇| 黄色成人免费大全| 狠狠狠狠99中文字幕| 国产精品熟女久久久久浪| 亚洲av日韩在线播放| 欧美国产精品va在线观看不卡| 欧美黄色片欧美黄色片| 久久人人爽av亚洲精品天堂| 午夜福利欧美成人| 国产一区二区在线观看av| 女同久久另类99精品国产91| 久久99一区二区三区| 午夜福利影视在线免费观看| 国产一卡二卡三卡精品| 少妇的丰满在线观看| 国产在线一区二区三区精| 麻豆国产av国片精品| 亚洲三区欧美一区| 中国美女看黄片| 下体分泌物呈黄色| 男女免费视频国产| 国产成+人综合+亚洲专区| 老司机影院毛片| 午夜免费鲁丝| 人人妻人人爽人人添夜夜欢视频| 亚洲情色 制服丝袜| 1024香蕉在线观看| av一本久久久久| 精品亚洲成国产av| 99香蕉大伊视频| 精品一区二区三区视频在线观看免费 | 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 国产精品麻豆人妻色哟哟久久| 精品一区二区三区四区五区乱码| 老司机靠b影院| 后天国语完整版免费观看| 国产无遮挡羞羞视频在线观看| 18在线观看网站| 在线观看免费视频日本深夜| 日韩人妻精品一区2区三区| 国产精品久久久久久精品电影小说| 欧美日韩成人在线一区二区| 曰老女人黄片| 一级片免费观看大全| a级毛片黄视频| 欧美日韩中文字幕国产精品一区二区三区 | videosex国产| 啦啦啦中文免费视频观看日本| 一二三四社区在线视频社区8| 国产高清videossex| 国产精品国产av在线观看| 美女扒开内裤让男人捅视频| 无遮挡黄片免费观看| 午夜精品久久久久久毛片777| 超碰97精品在线观看| 美女主播在线视频| 久久婷婷成人综合色麻豆| 一进一出抽搐动态| 亚洲少妇的诱惑av| 可以免费在线观看a视频的电影网站| 美女午夜性视频免费| 亚洲色图 男人天堂 中文字幕| 777久久人妻少妇嫩草av网站| 高清黄色对白视频在线免费看| 国产老妇伦熟女老妇高清| 1024视频免费在线观看| 欧美日韩黄片免| 国产麻豆69| 欧美+亚洲+日韩+国产| 日本av免费视频播放| 黑人巨大精品欧美一区二区mp4| 一级,二级,三级黄色视频| 午夜激情av网站| 国产成人精品无人区| 侵犯人妻中文字幕一二三四区| 国产成人av教育| 日韩欧美一区视频在线观看| 精品高清国产在线一区| 麻豆av在线久日| 乱人伦中国视频| 欧美精品av麻豆av| 俄罗斯特黄特色一大片| 精品国产亚洲在线| 日韩中文字幕视频在线看片| 久久久久精品人妻al黑| 国产精品国产高清国产av | 50天的宝宝边吃奶边哭怎么回事| 欧美激情高清一区二区三区| 又紧又爽又黄一区二区| 久久午夜亚洲精品久久| 午夜视频精品福利| 亚洲色图 男人天堂 中文字幕| 建设人人有责人人尽责人人享有的| 亚洲精品自拍成人| 一区二区三区激情视频| 麻豆国产av国片精品| 国产在线一区二区三区精| 成人三级做爰电影| 久久毛片免费看一区二区三区| 制服人妻中文乱码| 性高湖久久久久久久久免费观看| 一区二区三区乱码不卡18| 18禁美女被吸乳视频| 国产精品一区二区精品视频观看| 黄片大片在线免费观看| 亚洲精品在线美女| 这个男人来自地球电影免费观看| 久久国产精品影院| 两性夫妻黄色片| 中文字幕制服av| 日本撒尿小便嘘嘘汇集6| 久久狼人影院| 91大片在线观看| 亚洲av日韩精品久久久久久密| 又黄又粗又硬又大视频| 精品福利永久在线观看| 久久久精品区二区三区| 一进一出抽搐动态| 国产精品久久久av美女十八| av又黄又爽大尺度在线免费看| 国产野战对白在线观看| 国产亚洲欧美精品永久| 欧美午夜高清在线| 淫妇啪啪啪对白视频| 美女高潮到喷水免费观看| 免费一级毛片在线播放高清视频 | 久久香蕉激情| 一区二区日韩欧美中文字幕| 99九九在线精品视频| 欧美乱妇无乱码| 日韩 欧美 亚洲 中文字幕| 午夜福利视频精品| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久av美女十八| 黄色毛片三级朝国网站| 99riav亚洲国产免费| 在线观看一区二区三区激情| av国产精品久久久久影院| 老鸭窝网址在线观看| 国产日韩欧美亚洲二区| 精品少妇久久久久久888优播| 精品国产乱码久久久久久男人| 美女视频免费永久观看网站| 亚洲欧洲日产国产| 欧美日韩亚洲综合一区二区三区_| 美女视频免费永久观看网站| svipshipincom国产片| 欧美日韩亚洲综合一区二区三区_| 国产成人欧美| 在线播放国产精品三级| 国产伦人伦偷精品视频| 亚洲全国av大片| 搡老乐熟女国产| 久久99一区二区三区| 99国产极品粉嫩在线观看| 天堂8中文在线网| 久久久久久久精品吃奶| 十八禁高潮呻吟视频| 看免费av毛片| 丝袜人妻中文字幕| 日韩 欧美 亚洲 中文字幕| 9191精品国产免费久久| 后天国语完整版免费观看|