• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation in allelic frequencies at loci associated with kernel weight and their effects on kernel weight-related traits in winter wheat

    2019-02-16 01:57:04TengLiHongweiLiuChunynMiGungjunYuHuiliLiLingzhiMengDweiJinLiYngYngZhouHongjunZhngHongjieLi
    The Crop Journal 2019年1期

    Teng Li,Hongwei Liu,Chunyn Mi,Gungjun Yu,Huili Li,Lingzhi Meng,Dwei Jin,Li Yng,Yng Zhou,Hongjun Zhng,*,Hongjie Li,*

    aNational Key Facility for Crop Gene Resources and Genetic Improvement,Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    bXinxiang Innovation Center for Breeding Technology of Dwarf-Male-Sterile Wheat,Xinxiang 453731,Henan,China

    cZhaoxian Experiment Station,Shijiazhuang Academy of Agricultural and Forestry Sciences,Zhaoxian 051530,Hebei,China

    dInstitute of Agricultural Science,The Fourth Division of the Xinjiang Production and Construction Corps,Yining 835000,Xinjiang,China

    ABSTRACT Article history:Received 12 March 2018 Received in revised form 8 August 2018 Accepted 11 August 2018 Available online 28 September 2018

    Keywords:Allelic frequency Allelic variation Functional markers Triticum aestivum Knowledge of allelic frequencies at loci associated with kernel weight and effects on kernel weight-related traits is crucial for yield improvement in wheat.Kernel weight-related traits were evaluated in 200 Chinese winter wheat cultivars(lines)grown at the Xinxiang Experimental Station,Chinese Academy of Agricultural Sciences,Xinxiang in Henan Province,for three consecutive years from 2014 to 2016.Alleles associated with kernel weight at nine loci,TaCKX6-D1,TaCwi-A1,TaCWI-4A,TaGS1a,TaGS5-A1,TaGS3-3A,TaGW2-6A,TaSus2-2B,and TaTGW6-A1,were determined for all cultivars(lines).ANOVA showed that genotypes,years and their interactions had significant effects on thousand-kernel weight(TKW),kernel length(KL)and kernel width(KW).The overall mean frequencies of alleles conferring high and low TKW at the nine loci were 65.9%and 33.4%,with the ranges of 37.0%-85.0%and 13.5%-63.0%for single loci.The frequencies of high-TKW alleles were over 50.0%at eight of the loci.Genotypes at each locus with the high-TKW allele had higher TKW than those with the low-TKW allele.The high-TKW allele Hap-H at the TaSus2-2B locus can be preferably used to increase grain yield due to its high TKW(49.32 g).A total of 18 main allelic combinations(ACs)at nine loci were detected.Three ACs(AC1-AC3)had significantly higher TKW than AC6 with high-TKW alleles at all nine loci even though they contained some low-TKW alleles.This indicated that other loci controlling kernel weight were present in the high-TKW cultivars.This work provides important information for parental selection and marker-assisted selection for breeding.

    1.Introduction

    World wheat(Triticum aestivum L.)production in 2017 was approximately735 million tonnes(FAOSTAT data,http://www.faolorg/).According to FAO estimates,an increase of 70%in production will be required by 2050 to protect food security for an increasing global population[1].Improvement in grain yield is the primary aim of most wheat breeding programs.Grain yield of wheat is determined by spike number,kernel number per spike and kernel weight[2].Kernel weight,as the component with highest heritability,contributes about 20%of the genetic variation in wheat yield[3].During the past six decades,increased thousand-kernel weight(TKW)has been a major objective of many Chinese wheat breeding programs.Zhou et al.[4]reported that TKW had been significantly increased with an annual genetic gain of 1.3%in the Northern China Plain over the four decades from 1960 to 2000,and 0.87%in the Southern China Winter Wheat Zone during the period of 1949-2000[5].Therefore,increasing kernel weight is an important way to improve wheat yield.

    Kernel weight is tightly associated with the kernel dimensions(i.e.,width,length and thickness)[6]and isconditioned by polygenes[7-15].Although a large number of QTL associated with kernel weight have been identified,most of them were not used for marker-assisted selection(MAS)in wheat breeding programs.Using comparative genomics approaches[16],the main genes conferring kernel weight in common wheat,including cytokinin oxidase/dehydrogenase(TaCKX6-D1),cell wall invertase(TaCwi-A1 and TaCWI-4A),glutamine synthetase(TaGS1a),grain size(TaGS5-A1 and TaGS5-3A),grain width(TaGW2-6A),sucrose synthase(TaSus2-2B),and IAA-glucose hydrolase(TaTGW6-A1),have been cloned and corresponding functional markers have been developed[7-15].These functional markers are useful in breeding for high yield by MAS.

    A principal gene affecting grain yield in rice(Oryza sativa L.)produces cytokinin oxidase/dehydrogenase(CKX)[17].Wheat ortholog TaCKX6-D1 was isolated and an inDel marker was developed for identifying the TaCKX6-D1a allele for high TKW and the TaCKX6-D1b allele for low TKW[7].Cell wall invertase(CWI)plays a decisive role in sink development and carbon partitioning,and has a close association with kernel weight[8].Two orthologous genes,TaCwi-A1 on chromosome 2A and TaCWI-4A on chromosome 4A,were cloned from common wheat.Association analysis indicated that the alleles TaCwi-A1a at the TaCwi-A1 locus and Hap-4A-T at the TaCWI-4A locus had positive effects on TKW in Chinese wheat cultivars[8,9].At the TaGS1 alocus,haplotypehap 2 was significantly associated with higher TKW and wider kernels[10].Gene OsGS5,which codes a putative serine carboxy peptidase,affects cell division and can lead to larger grain size in rice[18].Two favorable alleles TaGS5-A1b and TaGS5-3A-T at the TaGS5 locus conferred higher TKW and wider KW than the alternative alleles TaGS5-A1a and TaGS5-3A-G in wheat[11,12].Haplotypes Hap-6A-A and Hap-6A-G at the TaGW2-6A locus were distinguished by a cleaved amplified polymorphic sequence(CAPS)marker.The Hap-6A-A allele was associated with higher TKW and wider kernels[13].Two alleles,Hap-H and Hap-L,were identified at the TaSus2-2B locus;Hap-H had a positive effect on TKW in Chinese wheat cultivars[14].TaTGW6-A1 was tightly associated with TKW in a set of 242 wheat cultivars,and the TaTGW6-A1a allele conferred an increased TKW[15].

    Although the genes conferring kernel weight have been cloned and functional markers have been developed,the frequencies of the alleles and their effects on kernel weight related traits in winter wheat cultivars and breeding lines have not been critically analyzed.The aims of the present study were to 1)determine the allelic frequencies at nine loci associated with kernel weight in a panel of widely grown past and present winter wheat cultivars and breeding lines,and 2)compare the mean phenotypic effects of alleles at each locus and of allelic combinations at the nine loci on kernel weight-related traits.

    2.Materials and methods

    2.1.Plant materials

    Two hundred winter wheat accessions,including current and past,widely grown cultivars and breeding lines were examined in this study;they included 11 cultivars(lines)from the Northern Winter Wheat Zone(Beijing,Shanxiand Ningxia),170 from the Yellow and Huai River Valley Winter Wheat Zone(Anhui,Hebei,Henan,Shaanxi,Shandong and Jiangsu provinces,and Italy),5 from the Middle and Low Yangtze River Valley Winter Wheat Zone(Jiangsu)and 14 from the Southwestern Winter Wheat Zone(Sichuan).Detailed information for each accession is provided in Table S1.

    2.2.Field trials

    The materials for phenotypic evaluation were grown at the Chinese Academy of Agricultural Sciences(CAAS),Xinxiang Experimental Station(35°31′N,113°85′E)in Henan province,representing the southern part of the Yellow and Huai River Valley Winter Wheat Zone.All genotypes were arranged usinga 20×10 lattice design with two replications for each year.Each plot consisted of two 2 m rows spaced 0.2 m apart,with 40 plants per row.Field trials were sown on Oct.10,2014,Oct.2,2015and Oct.4,2016.Prior to sowing in each year,191 kg ha-1of ammonium phosphate(N-P2O5,12%-42%),200 kg ha-1of urea(N,42%)and 41 kg ha-1of potassium chloride(K2O,60%)were applied.Additional urea was applied at 104 kg ha-1at the shooting stage(Zadoks growth stage(GS)31)[19].Irrigations were carried out at the tillering(GS 25),shooting(GS 31)and grain filling(GS 71)stages.Field management followed local agricultural practices.All plots were hand-harvested and kernels were naturally dried to a 13%moisture content.Kernel weight was obtained by averaging the values measured from three samples of 500 kernels and converted to TKW(g).Twenty randomly sampled kernels were used to measure kernel length(KL,mm)and kernel width(KW,mm)using a vernier gauge.

    2.3.Analysis of genotypes for loci associated with kernel weight

    DNA was extracted from each genotype by the CTAB method[20].The nine loci,TaCKX6-D1,TaCwi-A1,TaCWI-4A,TaGS1a,TaGS5-A1,TaGS3-3A,TaGW2-6A,TaSus2-2B,and TaTGW6-A1,associated with kernel weight were genotyped.Alleles at each locus were identified using gene-specific functional markers[7-15].Detailed information for each locus is provided in Table S2.All PCR primers were synthesized by the Shanghai Invitrogen Biological Technology&Services Co.Ltd.,Shanghai.The restriction endonucleases were obtained from New England Biolabs Ltd.,Beijing(www.net-china.com).

    DNA amplifications were performed in reaction volumes of 20 μL,and comprised 1 μL of 50-100 ng μL-1DNA,1 μL 10 μmol L-1of each primer,10 μL 2 × Taq PCR Master Mix(Sangon Biotech Col.Ltd.,Shanghai),and 7 μL of sterilized ddH2O.The thermo-cycling program was:initial denaturation at 94 °C for 5 min,followed by 35 cycles at 94 °C for 30 s,annealing at 56-60 °C for 30 s,extension at 72 °C for 1-3 min,and a final extension step at 72°C for 10 min.PCR products were separated by electrophoresis in 1%-2%agarose gels at 120 V for 40 min and stained with ethidium bromide,or in 10%polyacrylamide gels and stained with GeneFinder(Bio-V,Xiamen,Fujian).

    2.4.Statistical analysis

    The META-R(Multi Environment Trail Analysis with R for Windows)software(version 6.03)was used for the best linear unbiased estimators(BLUE)for kernel weight-related traits[21].The BLUE values were used in subsequent analyses.Analysis of variance(ANOVA)for each trait was performed using PROC GLM in the Statistical Analysis System(SAS Institute,2000).Significant differences in phenotype between alleles at each locus for each trait were determined by t-tests.Broad-sense heritabilities(h2)of all traits were estimated by:where,,andare mean squares for genotype,genotype×year interaction and residual error,and y and r represent the numbers of years and replications,respectively[22].Linear regression was used to determine correlations between kernel weight-related traits and between years for the same trait based on the regression equation y=a+bx,where y is the dependent variable,a is the regression intercept,and b is the regression coefficient.

    3.Results

    3.1.Phenotypic analyses of kernel weight-related traits

    ANOVA showed that genotypes,years and their interactions had significant effects on TKW,KL,and KW(Table 1).The mean values of TKW,KL,and KW for the 200 genotypes over the 3 years were 48.60 g,6.93 mm,and 3.59 mm,respectively(Table 2).There was wide variation in all three traits,with a range of 37.24-57.40 g,6.01-7.68 mm,and 3.30-3.97 mm for TKW,KL and KM,respectively(Table 2).These traits exhibited high broad-sense heritabilities(h2),of 0.95 for TKW,0.96 for KL and 0.89 for KW(Table 2).In all 3 years,TKW was significantly correlated with KL and KW(Fig.1-B),whereas no significant correlation was observed between KL and KW(Fig.1-C).Positive correlations(P≤0.01)between years for the same trait were observed for TKW(Fig.1-D),KL(Fig.1-E),and KW(Fig.1-F).Based on the positive correlations between years,the mean values for each trait across the 3 years were used in all subsequent analyses.

    3.2.Frequency distributions of alleles in 200 winter wheat accessions

    The alleles at each locus were identified using genespecific functional markers;amplification profiles are shown in Fig.2.Detailed information on alleles(genotypes)for each accession is given in Table S3.Heterogeneous genotypes were treated as missing data and allelic frequencies of only homozygous genotypes were used in estimation of allelic frequencies.The mean frequencies of alleles conferring high and low TKW across all nine loci were 65.9%and 33.4%,with ranges of 37.0%(Hap-4A-T)-85.0%(TaTGW6-A1a)and 13.5%(TaTGW6-A1b)-63.0%(Hap-4A-C)at single loci,respectively(Table 3).The frequencies of alleles associated with high TKW were higher than those associated with low TKW,except for the TaCWI-4A locus(Table 3).Among them,the frequencies of alleles TaCKX6-D1a,TaCwi-A1a,Hap2,TaGS5-A1b,TaGS5-3A-T,Hap-6A-A,and TaTGW6-A1a were over 60%.

    3.3.Effects of contrasting alleles at each locus on kernel weight-related traits

    Genotypes with high-TKW alleles had higher TKW than those with low-TKW alleles at each of the nine loci(Table 4).Genotypes with the TaCKX6-D1a,TaCwi-A1a,TaGS5-A1b,TaGS5-3A-T,and Hap-H alleles had significantly higher TKW than those with corresponding low-TKW alleles at TaCKX6-D1,TaCwi-A1,TaGS5-A1,TaGS5-3A,and TaSus2-2B loci,respectively.Compared to the genotypes with low-TKW alleles,those with high-TKW alleles had longer KL at TaCwi-A1,TaCWI-4A,and TaSus2-2B loci,and wider KW at all nine loci except TaGS1a.Among them,genotypes with the TaCwi-A1a allele(6.96mm)had significantly longer KL than those with the TaCwi-A1b allele(6.87mm).Loci with alleles conferring higher TKW and significantly wider KW included TaCKX6-D1,TaCWI-4A,TaGS5-A1,TaGS5-3A,TaSus2-2B,and TaTGW6-A1.

    Table 2-Means,standard deviations(SD),ranges and broad-sense heritabilities(h2)for kernel weight-related traits in 200 winter wheat accessions.

    Fig.1-Correlation analyses of kernel weight-related traits in each year(A-C)and between years(D-E).TKW,thousand-kernel weight;KL,kernel length;KW,kernel width.*and**,significant at P≤0.05 and P≤0.01,respectively.

    Fig.2-Amplification profiles of alleles at the TaCKX6-D1,TaCwi-A1,TaCWI-4A,TaGS1a,TaGS5-A1,TaGS5-3A,TaGW2-6A,TaSus2-6B,and TaTGW6-A1 loci in selected accessions.M,marker;1,Jimai 19;2,Jimai 20;3,Jimai 21;4,Jimai 22;5,Jinan 17;6,Liangxing 99;7,Lumai 7.

    Table 3-Allelic frequencies at loci associated with thousand-kernel weight(TKW)among 200 winter wheat accessions.

    3.4.Effects of allelic combinations at nine loci on kernel weight related traits

    Eighteen main allelic combinations(ACs)involving all nine loci were detected(Fig.3),and the detailed information for AC classes is shown in Table S3.There were significant phenotypic differences among ACs for three kernel weight-related traits.Allelic combination 6(AC6),including genotypes with high-TKW alleles at all nine loci,had higher TKW(50.42 g)than AC7-AC18(with TKW values ranging from 44.00 to49.93 g),and had significantly higher TKW than AC13-AC18(with the TKW values ranging from 44.00 to 48.34 g).On the other hand,the AC6 genotypes also had longer KL than other AC types except AC2 and AC3.AC1-AC5 had higher TKW than AC6,and AC1-AC3 had significantly higher TKW and KL or KW.Genotypes at the TaGS5-A1 and TaGS5-3A loci gave similar data for the TKW-related traits.

    Table 4-Comparison of thousand-kernel weights(TKW),kernel lengths(KL),and kernel weights(KW)between contrasting alleles at each locus in the 200 winter wheat accessions based on mean values for 3 years.

    Fig.3-Allelic combinations(ACs)at nine loci associated with kernel traits and mean values for thousand-kernel weight(TKW),kernel length(KL),and kernel width(KW)over 3 years.Black and white boxes represent the alleles associated with high and low TKW,respectively.Different letters after means indicate significant differences(P≤0.05)in the kernel weight-related traits among ACs.

    4.Discussion

    China is the largest wheat producing country in the world,and wheat yields have steadily increased with an annual genetic gain of 1.0%during the last 65 years[23].Among the three major yield components,kernel weight and spike weight have stably increased over the past several decades[24].Phenotypic evaluation of 1800 commercial cultivars demonstrated that TKW increased from a mean 31.5 g in the 1940s to 44.64 g in the 2000s,representing a 2.19 g genetic gain on a decade basis[25].Therefore,increasing TKW is an important strategy for the improvement of wheat yield.Correlation analysis showed that KW(P≤0.01)and KL(P≤0.05)were positively correlated with TKW,and correlation coefficients between KW and TKW were higher than those between KL and TKW,demonstrating that KW had a more important role in affecting TKW than KL.However,TKW is easier to measure than KL and KW especially when a breeding program involves large number of lines.

    Functional markers are derived from known functional alleles[26].They are ideal for MAS because they are fully diagnostic of the target allele[27].To date,more than 100 functional markers associated with genes for processing quality,agronomic traits and disease resistance have been developed in wheat[26],and many of them have been converted to Kompetitive Allele Specific PCR(KASP)markers[28].In this study,nine loci associated with kernel weight were detected using functional markers.Among them,variations at the TaGS5-A1 and TaGS5-3A loci present almost identical genotypic data and phenotypic effects(Tables 4 and S3,and Fig.3).Both loci are orthologs of rice gene GS5 and located on chromosome 3A[11,12].They represent the same differently named locus,identified by different diagnostic markers from different studies.

    In the genotypes examined,TKW ranged from 38.24 to 57.40 g(Table 2),and the highest TKW for genotypes with the high-TKW allele at a single locus and high-TKW allelic combination at nine loci was 49.32 and 50.42 g,respectively.Three ACs(AC1-AC3)had significantly higher TKW than AC6 with high-TKW alleles at all nine loci examined even though those ACs carried some low-TKW alleles(Fig.3).Thus the loci included in this study accounted for only part the genetic variation in TKW.Other loci associated with TKW must be present in high-TKW cultivars such as Zhumai 4(57.40 g),Zhengyumai 9987(57.29 g),and Zhongmai 875(56.33 g).New mapping populations need to be developed from these cultivars for identification of additional QTL associated with TKW.

    Alleles associated with high TKW had higher distribution frequencies than those with low TKW except for TaCWI-4A,indicating that artificial selection for those allele shad occurred in the past[29].The variable frequencies of high-TKW alleles among loci indicated that those loci had undergone different selection pressures.Furthermore,the high-TKW alleles at most loci had higher frequencies in wheat accessions from the southern wheat zones than the northern zones(data not shown).This was in agreement with Chinese wheat breeding strategies requiring higher TKW in cultivars grown in southern areas,in contrast to greater emphasis on spike numbers in northern production regions[23].

    Genotypes with high-TKW alleles had higher TKW than those with low-TKW alleles at each locus,in agreement with previous studies[7-15].However,the extent of actual phenotypic differences in TKW between two alleles at each locus varied in different genotypes.For example,the phenotypic difference in TKW between the Hap2 and Hap1 alleles at the TaGS1a locus was 4.10 g in a Chuan 35050×Shannong 483 recombinant inbred line(RIL)population[10],but in the present study the corresponding value was 0.11 g.Similarly,the phenotypic difference in TKW between Hap-4A-T and Hap-4A-C was 4.90 g in a previous study[28],but only 0.45 g in this study.This infers that the discrepancies in the phenotypic performances in different studies might be caused by differences in genetic backgrounds,especially when data from biparental cross populations and more unrelated germplasm sets are compared.

    In conclusion,the frequencies of high-TKW alleles were greater than 50%at eight of the nine loci examined as revealed by analysis of functional markers for target alleles for wheat kernel weight-associated traits.The high-TKW allele Hap-H at the TaSus2-2B locus can be used preferentially in increasing wheat yield due to its high TKW(49.32 g)and relatively low frequency(52.5%)in current Chinese wheat accessions.Three ACs(AC1-AC3)had significantly higher TKW than AC6 which carried high-TKW alleles at all nine loci even though those three ACs contained some low-TKW alleles.Thus further study should detect variation at additional loci affecting TKW among current high-TKW genotypes.

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2018.08.002.

    Acknowledgments

    This study was supported by the National Key Research and Development Program of China (2017YFD0101000,2016YFD0101004),the National Natural Science Foundation of China(31771881,31401468),and the CAAS Innovation Team and the National Engineering Laboratory of Crop Molecular Breeding.

    男女下面插进去视频免费观看| 91字幕亚洲| 成人影院久久| av网站在线播放免费| 久久精品久久精品一区二区三区| 久久毛片免费看一区二区三区| 777久久人妻少妇嫩草av网站| 欧美精品啪啪一区二区三区 | 在线天堂中文资源库| 国产av精品麻豆| 巨乳人妻的诱惑在线观看| 三上悠亚av全集在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品中文字幕在线视频| 免费在线观看视频国产中文字幕亚洲 | 欧美97在线视频| 亚洲国产精品国产精品| 美女高潮到喷水免费观看| 日韩大码丰满熟妇| 18禁裸乳无遮挡动漫免费视频| 久久久久久久精品精品| 中文字幕制服av| 国产一卡二卡三卡精品| 婷婷色麻豆天堂久久| 大片电影免费在线观看免费| 亚洲国产欧美网| 三上悠亚av全集在线观看| 人人妻人人爽人人添夜夜欢视频| 久久九九热精品免费| 国产精品 欧美亚洲| 欧美 亚洲 国产 日韩一| 亚洲 国产 在线| 99国产精品免费福利视频| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 下体分泌物呈黄色| 两个人免费观看高清视频| 成年美女黄网站色视频大全免费| 自拍欧美九色日韩亚洲蝌蚪91| 精品久久久精品久久久| 亚洲国产精品国产精品| 免费女性裸体啪啪无遮挡网站| 亚洲av成人精品一二三区| 免费在线观看日本一区| 午夜精品国产一区二区电影| 久久鲁丝午夜福利片| 亚洲精品久久久久久婷婷小说| 国产精品三级大全| 少妇 在线观看| 日韩电影二区| 亚洲精品久久久久久婷婷小说| av一本久久久久| 下体分泌物呈黄色| 赤兔流量卡办理| 天天操日日干夜夜撸| 91麻豆av在线| 九色亚洲精品在线播放| 久久亚洲国产成人精品v| 日韩一本色道免费dvd| 午夜久久久在线观看| 久久久久网色| 亚洲精品一二三| 色精品久久人妻99蜜桃| 黑人猛操日本美女一级片| 手机成人av网站| 日韩电影二区| 亚洲激情五月婷婷啪啪| 久久久久久久久免费视频了| 婷婷色av中文字幕| 亚洲av电影在线进入| 最黄视频免费看| 啦啦啦中文免费视频观看日本| 蜜桃国产av成人99| 国产高清不卡午夜福利| 日韩中文字幕视频在线看片| 欧美精品啪啪一区二区三区 | 亚洲精品一二三| 亚洲av国产av综合av卡| 看免费av毛片| 精品人妻一区二区三区麻豆| 欧美日韩综合久久久久久| 国产麻豆69| 天天躁日日躁夜夜躁夜夜| 久久精品国产a三级三级三级| 成人免费观看视频高清| 日本wwww免费看| 精品高清国产在线一区| 国产成人系列免费观看| 欧美精品一区二区大全| 青青草视频在线视频观看| 亚洲精品国产区一区二| 国产精品.久久久| 亚洲国产av影院在线观看| 亚洲中文日韩欧美视频| 亚洲欧美色中文字幕在线| 国产亚洲精品久久久久5区| 精品欧美一区二区三区在线| 亚洲一区中文字幕在线| 久久亚洲国产成人精品v| 十八禁人妻一区二区| 久久国产精品人妻蜜桃| 自线自在国产av| 国产精品一区二区在线观看99| 国产成人av教育| 亚洲成人手机| av在线老鸭窝| 欧美精品人与动牲交sv欧美| √禁漫天堂资源中文www| 欧美日韩视频高清一区二区三区二| 精品第一国产精品| 好男人电影高清在线观看| 亚洲精品国产av蜜桃| 亚洲图色成人| 精品一区二区三卡| 国产成人一区二区在线| 久久久欧美国产精品| 精品久久久久久久毛片微露脸 | av视频免费观看在线观看| 人人妻人人澡人人爽人人夜夜| 侵犯人妻中文字幕一二三四区| 国产精品免费视频内射| 亚洲三区欧美一区| 亚洲少妇的诱惑av| 久久天堂一区二区三区四区| 男女边摸边吃奶| 99精品久久久久人妻精品| 手机成人av网站| 50天的宝宝边吃奶边哭怎么回事| 成年人午夜在线观看视频| 亚洲精品中文字幕在线视频| 精品一品国产午夜福利视频| 国产真人三级小视频在线观看| 男女无遮挡免费网站观看| 自线自在国产av| 国产xxxxx性猛交| 久久亚洲精品不卡| 国产在线视频一区二区| 国产福利在线免费观看视频| 亚洲欧美成人综合另类久久久| 多毛熟女@视频| 精品久久久精品久久久| av电影中文网址| 麻豆乱淫一区二区| 国产精品久久久av美女十八| 亚洲成av片中文字幕在线观看| 日韩人妻精品一区2区三区| 少妇的丰满在线观看| 老司机亚洲免费影院| 亚洲精品久久成人aⅴ小说| 欧美亚洲 丝袜 人妻 在线| av在线播放精品| av在线app专区| 永久免费av网站大全| 欧美少妇被猛烈插入视频| 少妇 在线观看| 日韩,欧美,国产一区二区三区| 久久久精品国产亚洲av高清涩受| 97人妻天天添夜夜摸| 国产91精品成人一区二区三区 | 视频区欧美日本亚洲| 首页视频小说图片口味搜索 | 免费观看a级毛片全部| 亚洲成人手机| 国产一卡二卡三卡精品| 国产97色在线日韩免费| 久久久精品区二区三区| 19禁男女啪啪无遮挡网站| 欧美黄色淫秽网站| 亚洲中文字幕日韩| 51午夜福利影视在线观看| 欧美国产精品一级二级三级| 日本av免费视频播放| 成人手机av| 啦啦啦视频在线资源免费观看| 精品亚洲乱码少妇综合久久| 日韩人妻精品一区2区三区| 50天的宝宝边吃奶边哭怎么回事| 精品亚洲乱码少妇综合久久| 久久免费观看电影| av电影中文网址| 赤兔流量卡办理| 欧美人与性动交α欧美精品济南到| 午夜91福利影院| 国产真人三级小视频在线观看| 免费高清在线观看视频在线观看| 欧美精品啪啪一区二区三区 | 色94色欧美一区二区| 国产精品人妻久久久影院| 一二三四在线观看免费中文在| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 下体分泌物呈黄色| 女人久久www免费人成看片| 精品欧美一区二区三区在线| 久久久久久久国产电影| 亚洲国产欧美一区二区综合| 久久人人爽av亚洲精品天堂| 午夜免费成人在线视频| 男女边摸边吃奶| 免费一级毛片在线播放高清视频 | 丝瓜视频免费看黄片| 久久人妻熟女aⅴ| 亚洲精品国产色婷婷电影| 三上悠亚av全集在线观看| 在线看a的网站| 国产精品一区二区免费欧美 | 久久人妻熟女aⅴ| 丰满迷人的少妇在线观看| 亚洲 国产 在线| 精品福利永久在线观看| 久久 成人 亚洲| 国产精品久久久av美女十八| 亚洲欧美成人综合另类久久久| 午夜激情av网站| 国产三级黄色录像| 国产精品欧美亚洲77777| 国产亚洲av高清不卡| 久久精品国产亚洲av涩爱| 别揉我奶头~嗯~啊~动态视频 | 欧美日韩视频高清一区二区三区二| 亚洲一区二区三区欧美精品| av一本久久久久| 国产高清视频在线播放一区 | 天堂中文最新版在线下载| 成年女人毛片免费观看观看9 | 每晚都被弄得嗷嗷叫到高潮| 免费高清在线观看日韩| 欧美日韩福利视频一区二区| xxxhd国产人妻xxx| 精品亚洲成a人片在线观看| cao死你这个sao货| 高清黄色对白视频在线免费看| 女人精品久久久久毛片| 男人爽女人下面视频在线观看| 国产不卡av网站在线观看| 大香蕉久久成人网| 日日夜夜操网爽| 亚洲欧美色中文字幕在线| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 婷婷成人精品国产| 18禁国产床啪视频网站| 精品国产一区二区久久| 婷婷色综合www| 少妇精品久久久久久久| 亚洲九九香蕉| av片东京热男人的天堂| 久久久久网色| 18禁国产床啪视频网站| 最黄视频免费看| 亚洲国产欧美网| 巨乳人妻的诱惑在线观看| 麻豆av在线久日| av片东京热男人的天堂| 老司机影院成人| 国产淫语在线视频| 交换朋友夫妻互换小说| 大片电影免费在线观看免费| 午夜91福利影院| 日韩制服丝袜自拍偷拍| www.av在线官网国产| 青草久久国产| 免费av中文字幕在线| 一本综合久久免费| 国产精品麻豆人妻色哟哟久久| 成在线人永久免费视频| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 久久久久久久国产电影| 岛国毛片在线播放| 后天国语完整版免费观看| 在线观看国产h片| 亚洲精品第二区| 80岁老熟妇乱子伦牲交| 人成视频在线观看免费观看| 男女边吃奶边做爰视频| www日本在线高清视频| 免费在线观看完整版高清| 国产精品亚洲av一区麻豆| 亚洲精品中文字幕在线视频| 十八禁人妻一区二区| 99国产精品一区二区三区| 国产精品.久久久| 伦理电影免费视频| 考比视频在线观看| 国产男人的电影天堂91| 无遮挡黄片免费观看| 波多野结衣一区麻豆| 国产黄色视频一区二区在线观看| 亚洲九九香蕉| 9191精品国产免费久久| 午夜福利在线免费观看网站| 久久99热这里只频精品6学生| 成年动漫av网址| 七月丁香在线播放| 国产深夜福利视频在线观看| 亚洲人成电影免费在线| 国产精品久久久久久精品古装| 一级片免费观看大全| 超碰成人久久| 国产一区二区激情短视频 | 在线 av 中文字幕| 看十八女毛片水多多多| 脱女人内裤的视频| 国产欧美日韩精品亚洲av| 中文字幕最新亚洲高清| 考比视频在线观看| 男女国产视频网站| 欧美变态另类bdsm刘玥| 国产亚洲午夜精品一区二区久久| 日韩 欧美 亚洲 中文字幕| 久久这里只有精品19| 老汉色∧v一级毛片| 亚洲国产欧美一区二区综合| 国产精品99久久99久久久不卡| 国产熟女欧美一区二区| 一级毛片我不卡| 国产欧美亚洲国产| 精品少妇久久久久久888优播| 国产91精品成人一区二区三区 | 在线av久久热| 91成人精品电影| 18禁黄网站禁片午夜丰满| 建设人人有责人人尽责人人享有的| 国产成人精品无人区| 老司机深夜福利视频在线观看 | e午夜精品久久久久久久| 狠狠精品人妻久久久久久综合| 久久精品亚洲av国产电影网| 一级黄片播放器| 日韩av不卡免费在线播放| 欧美国产精品va在线观看不卡| videosex国产| 99久久综合免费| 19禁男女啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 18禁国产床啪视频网站| 国产精品一区二区免费欧美 | 欧美日韩成人在线一区二区| 国产日韩欧美视频二区| 国产成人影院久久av| 欧美精品亚洲一区二区| 老鸭窝网址在线观看| 亚洲国产精品成人久久小说| 欧美精品一区二区大全| 午夜激情av网站| 亚洲黑人精品在线| 一边摸一边抽搐一进一出视频| 国产伦人伦偷精品视频| 热99国产精品久久久久久7| 国产免费现黄频在线看| 好男人视频免费观看在线| 国产三级黄色录像| 中文字幕高清在线视频| 99精国产麻豆久久婷婷| netflix在线观看网站| 国产亚洲欧美在线一区二区| 精品国产国语对白av| 黄色视频不卡| 国产免费视频播放在线视频| 国产免费现黄频在线看| 美国免费a级毛片| 国产成人精品在线电影| 9191精品国产免费久久| 国产伦人伦偷精品视频| 女性被躁到高潮视频| 51午夜福利影视在线观看| 欧美 亚洲 国产 日韩一| 叶爱在线成人免费视频播放| 亚洲av片天天在线观看| 国产精品av久久久久免费| 美女福利国产在线| 99国产综合亚洲精品| 9191精品国产免费久久| 久久人妻熟女aⅴ| 亚洲国产欧美日韩在线播放| 国产高清不卡午夜福利| 日韩免费高清中文字幕av| 99国产综合亚洲精品| 亚洲国产最新在线播放| 亚洲欧美精品自产自拍| 9热在线视频观看99| 永久免费av网站大全| 9热在线视频观看99| 纵有疾风起免费观看全集完整版| a级毛片黄视频| 天天操日日干夜夜撸| 精品福利观看| 国产成人影院久久av| 一区二区三区激情视频| 欧美人与性动交α欧美精品济南到| 午夜视频精品福利| 精品国产一区二区久久| 在线观看人妻少妇| xxx大片免费视频| 极品少妇高潮喷水抽搐| 少妇的丰满在线观看| 在线观看一区二区三区激情| 自拍欧美九色日韩亚洲蝌蚪91| 日本欧美视频一区| 精品一区在线观看国产| 人妻一区二区av| 久久精品久久精品一区二区三区| 久久久国产精品麻豆| 好男人视频免费观看在线| 黑丝袜美女国产一区| 高清欧美精品videossex| 国产熟女欧美一区二区| 老司机在亚洲福利影院| 91国产中文字幕| 一区二区三区激情视频| 18禁黄网站禁片午夜丰满| 国产深夜福利视频在线观看| 各种免费的搞黄视频| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 另类亚洲欧美激情| 午夜免费鲁丝| 国产一区二区激情短视频 | 久久精品国产a三级三级三级| 99久久精品国产亚洲精品| 一个人免费看片子| 国产成人啪精品午夜网站| 赤兔流量卡办理| 黑人欧美特级aaaaaa片| 美女高潮到喷水免费观看| 99久久综合免费| 国产伦人伦偷精品视频| 国产精品一区二区精品视频观看| 日本av免费视频播放| 亚洲 国产 在线| e午夜精品久久久久久久| 国产免费又黄又爽又色| 亚洲欧洲精品一区二区精品久久久| 国产成人一区二区在线| 亚洲成人手机| 亚洲七黄色美女视频| 国产精品免费视频内射| 成年人黄色毛片网站| 好男人电影高清在线观看| 日韩大片免费观看网站| 国产av一区二区精品久久| 久久国产精品人妻蜜桃| 午夜福利免费观看在线| 在现免费观看毛片| 18在线观看网站| 少妇粗大呻吟视频| 女人精品久久久久毛片| 欧美黑人精品巨大| 制服人妻中文乱码| 欧美日本中文国产一区发布| 最近手机中文字幕大全| 亚洲国产欧美一区二区综合| 狠狠婷婷综合久久久久久88av| 国语对白做爰xxxⅹ性视频网站| 日本a在线网址| a 毛片基地| 久久99精品国语久久久| 成年av动漫网址| 可以免费在线观看a视频的电影网站| 日韩欧美一区视频在线观看| 久久热在线av| 久久久国产精品麻豆| 中文字幕精品免费在线观看视频| 电影成人av| 久久久久久免费高清国产稀缺| 午夜老司机福利片| 巨乳人妻的诱惑在线观看| 久久久精品94久久精品| 啦啦啦 在线观看视频| 亚洲中文日韩欧美视频| 欧美精品一区二区大全| 久久久久久免费高清国产稀缺| 一区二区av电影网| 午夜影院在线不卡| 久久影院123| 国产亚洲欧美在线一区二区| 热99国产精品久久久久久7| 婷婷色麻豆天堂久久| 黄色 视频免费看| 老司机午夜十八禁免费视频| 欧美在线黄色| 日本av手机在线免费观看| 亚洲成色77777| 曰老女人黄片| 欧美日韩视频精品一区| 丁香六月天网| 欧美大码av| 亚洲精品美女久久av网站| 夜夜骑夜夜射夜夜干| 男的添女的下面高潮视频| 性色av一级| 国产一区二区在线观看av| 美女中出高潮动态图| 国产精品一区二区免费欧美 | 成在线人永久免费视频| 成人18禁高潮啪啪吃奶动态图| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 国产av国产精品国产| 五月开心婷婷网| 99九九在线精品视频| 国产精品av久久久久免费| 老司机影院成人| 99国产精品一区二区蜜桃av | 热re99久久精品国产66热6| 制服诱惑二区| www.自偷自拍.com| 亚洲国产av影院在线观看| 一个人免费看片子| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 十八禁人妻一区二区| 国产黄色视频一区二区在线观看| 国产精品av久久久久免费| 亚洲,一卡二卡三卡| 国产不卡av网站在线观看| 国产男女内射视频| 国产精品香港三级国产av潘金莲 | 国产在线一区二区三区精| 人人妻人人澡人人看| 天天影视国产精品| 久久青草综合色| 久久人妻熟女aⅴ| 免费看av在线观看网站| 首页视频小说图片口味搜索 | av电影中文网址| 18在线观看网站| 新久久久久国产一级毛片| 欧美中文综合在线视频| videosex国产| 亚洲五月色婷婷综合| 国产精品秋霞免费鲁丝片| 少妇被粗大的猛进出69影院| 黄色毛片三级朝国网站| 男的添女的下面高潮视频| 在线亚洲精品国产二区图片欧美| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 最新在线观看一区二区三区 | 天天躁日日躁夜夜躁夜夜| 久久精品人人爽人人爽视色| 最近手机中文字幕大全| av网站免费在线观看视频| 国产亚洲av高清不卡| 久久99精品国语久久久| 午夜视频精品福利| 精品久久久久久电影网| 亚洲欧美色中文字幕在线| 国产男女内射视频| 赤兔流量卡办理| 青青草视频在线视频观看| 91精品三级在线观看| 欧美精品人与动牲交sv欧美| 亚洲精品日本国产第一区| 一区二区三区精品91| 中文字幕制服av| 性少妇av在线| 男女午夜视频在线观看| 国产亚洲欧美精品永久| 久久久精品免费免费高清| 久久综合国产亚洲精品| 成年人免费黄色播放视频| 亚洲av片天天在线观看| 国产熟女欧美一区二区| 日本欧美国产在线视频| 亚洲av欧美aⅴ国产| 国产日韩欧美视频二区| 两性夫妻黄色片| 亚洲国产欧美日韩在线播放| 亚洲国产av新网站| tube8黄色片| 亚洲综合色网址| 亚洲国产精品999| 亚洲自偷自拍图片 自拍| 午夜av观看不卡| 国产淫语在线视频| 99久久综合免费| 亚洲精品久久久久久婷婷小说| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久久精品精品| 天天操日日干夜夜撸| 亚洲精品一区蜜桃| 丰满迷人的少妇在线观看| 亚洲七黄色美女视频| 中文字幕亚洲精品专区| 欧美国产精品一级二级三级| 久久国产精品大桥未久av| 国产无遮挡羞羞视频在线观看| 精品久久蜜臀av无| 啦啦啦 在线观看视频| 97人妻天天添夜夜摸| av片东京热男人的天堂| 男女床上黄色一级片免费看| 中文乱码字字幕精品一区二区三区| 99热国产这里只有精品6| 日韩欧美一区视频在线观看| 国语对白做爰xxxⅹ性视频网站| 亚洲美女黄色视频免费看| 欧美97在线视频| 男男h啪啪无遮挡| 免费高清在线观看视频在线观看| 国产又爽黄色视频| 啦啦啦中文免费视频观看日本| 亚洲精品自拍成人| 久久久国产欧美日韩av| 亚洲精品久久午夜乱码| 一级片免费观看大全| 日本91视频免费播放| 啦啦啦中文免费视频观看日本| 亚洲精品自拍成人| 天天躁狠狠躁夜夜躁狠狠躁| 日日爽夜夜爽网站|