• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Diversity and interaction of common bacterial blight disease-causing bacteria(Xanthomonas spp.)with Phaseolus vulgaris L.

    2019-02-16 01:56:56JoTugumeGeoffreyTusiimeAllnMleSekmteRoinBuruchrClreMugishMuknkusi
    The Crop Journal 2019年1期

    Jo K.Tugume*,Geoffrey Tusiime,Alln Mle Sekmte,Roin Buruchr,Clre Mugish Muknkusi

    aMakerere University,Department of Agricultural Production,Kampala,Uganda

    bInternational Centre for Tropical Agriculture(CIAT)/Pan African Bean Research Alliance(PABRA),Kampala,Uganda

    Keywords:Xanthomonas axonopodis Interaction Gene expression Diversity

    ABSTRACT Common bacterial blight(CBB)is associated with common bean(Phaseolus vulgaris L.),an important grain legume for human consumption worldwide.The disease,caused by Xanthomonas spp.is spread mainly through seed.This paper focuses on the diversity of X.axonopodis pv.phaseoli and X.fuscans subsp.fuscans and interactions between related bacteria and the bean host.Review has suggested that the diversity and taxonomic studies of these pathogens are not exhaustive,especially in areas where detailed molecular analysis has not been conducted and previous characterizations were based on phenotypic features and PCR-based techniques.Also,no study has confirmed differential pathogenicity on bean genotypes based on compatible versus incompatible reactions.However,isolates react differently to wild and domesticated bean sources of resistance in common bean genetic backgrounds.A systematic approach will be required to investigate global changes in gene expression among different sources of resistance in a common bean background.The bacterial isolates that cause CBB should be functionally characterized using genotypes containing major quantitative trait loci(QTL)for CBB resistance.These studies will increase understanding of resistance and how it is manipulated by pathogens.

    1.Introduction

    Common bean(Phaseolus vulgaris L.)is a major food legume grown worldwide.It is an important crop in the entire Great Lakes region of Africa for food as well as income security[1].Common bacterial blight disease(CBB)is a major constraint to bean production worldwide[2-4].Infection by bacteria occurs largely through stomata,colonizing mesophyll cells and causing leaf spots and sometimes chlorosis[5].Bacteria can be spread through seed and in the field by rainsplash[6].Boersma et al.[2]reported a yield reduction of up to 35%in susceptible varieties of beans;however,losses>40%have been observed under conditions favorable for the disease[3].Opio et al.[7]reported a reduction in yield of 11.5 kg ha-1at growth stage R7 corresponding to a 1%increase in the number of leaves infected with CBB.The disease is a principal constraint in mid-altitude production areas and is favored by warm temperatures and high relative humidity[4,8].This paper reviews the literature on common bacterial blight disease-causing pathogens and their interaction with P.vulgar is,in order to summarize the current knowledge of the mechanisms of pathogenicity and host resistance.The diversity of common bacterial pathogens,host responses,and associated genes for resistance is reviewed.This information will increase understanding of resistance in P.vulgar is and will assist breeding programs in developing beans with durable resistance against common bacterial blight.

    2.Diversity of CBB pathogens infecting P.vulgaris

    Common bacterial blight pathogens belong to the genus Xanthomonas,a Gram-negative group of γ-proteobacteria.Since the identification of Xanthomonas as a causal agent of CBB in1897,the taxonomy of infecting strains has been debated,owing to their changing genetic diversity even in a common bean host[9].Until 1995,fuscous and non-fuscous strains were grouped in a single taxon,X.campestris pv.phaseoli[10].Following taxonomical revision of the genus Xanthomonas,pathovar phaseoli was transferred to X.axonopodis,with fuscous strains forming a variant within this pathovar[10].The nomenclature of fuscous strains within X.axonopodis was again changed to X.fuscans subsp.fuscans(Xff)[8].Using a suppression subtractive hybridization approach,Alavietal.[11]grouped a world collection of CBB pathogens into X.fuscans subsp.fuscans and three genetic lineages,1,2,and 3,belonging to X.axonopodis pv.phaseoli(Xap).That study revealed further diversity within the Xap group.Although lineages 2 and 3 were closely related,lineage 1 was distinct and encoded a putative type III secretion system(T3SS)containing a salmonella pathogenicity island(SP-1)that could lead to its classification into a subspecies.In contrast,Zamani et al.[12]and Lopez et al.[13],using PCR-based methods,found limited diversity in the Iranian and Spanish isolates of Xap that are more predominant in those countries.Duncan et al.[14]later reported that brown pigmentation is not a phenotypic feature confined to the Xff strain,as some X apisolates were also found to produce brown pigment.This finding means that brown pigmentation cannot be relied on as a phenotypic feature for classifying CBB pathogens.Recently,Aritua et al.[15]suggested that CBB pathogens could be further divided into Xap, Xff and Lablab strains using multiple-locus sequence analysis.However,this grouping is likely to change as more data are generated by deep sequencing and other platforms. Constantin et al. [16] has already suggested revisions to classify fuscous strains as X.citripv.fuscans and X.phaseoli pv.phaseoli.In this review,the previous nomenclature of X.fuscans subsp.fuscans and X.axonopodis pv.phaseoli is maintained.

    3.Virulence factors in CBB pathogens of beans

    Successful infection of a plant results from the actions of multiple virulence factors acting together to promote disease.Differences in virulence factors(effectors)among isolates are informative about the pathogenicity mechanisms that usually determine the host range and aggressiveness[17].Through genome sequencing of Xanthomonas strains isolated from P.vulgaris,six secretion systems and several effectors have been revealed,but they are not common to all infecting strains[11].These multiple virulence factors produced by different secretion system have been reported to be present in CBB-causing pathogens.Alavi et al.[11]found a unique T3SS in the genetic lineage GL1 of Xap composed of hrp2 and salmonella pathogenicity island that was not found in Xff and other lineages.Aritua et al.[15]found 10 effectors conserved in 26 sequenced isolates of Xap,Xff,and Lab-labstrains (XopR,XopV,XopE1,XopN,XopQ,XopAK,XopA,XopL,AvrBs2,and XopX).However,some unique effectors were also found specific to Xap(XopC2),Xff(XopF2),and Lab-lab(XopA1).The roles of these strain-specific effectors in determining virulence and host specificity remain to be identified.Bacterial pathogens normally use effectors to modify host responses to create favorable conditions for their own survival[18].In some pathosystems,some effectors have been found to affect photosynthesis[18]and translocation of photosynthates[19],while in others they have been found to affect the permeability of cell walls,thus allowing nutrient leakage to the pathogen[20].The role of unique virulence factors in the infection process can be examined by study of their expression patterns during the infection process.

    4.Differential response of common bean genotypes to CBB pathogens of beans

    Although variation in virulence has been observed among CBB isolates,differential pathogenicity on different common bean genotypes based on compatible versus incompatible reactions has not been confirmed[14,21-23].Interaction of P.vulgaris with CBB pathogens has been shown largely not to follow the gene-for-gene model[22,24].However,gene-for-gene interactions were observed in tepary bean(P.acutifolius A.Gray),a close relative of common bean[22].It was further observed that this gene for gene interaction is non-specific in the P.vulgaris background.In Ugandan and Ethiopian isolates,Opio et al.[22]observed eight distinct CBB responses on seven tepary bean genotypes(Table 1)and 90%of the tested isolates induced symptoms on each of the 20 bean genotypes tested.In South Africa,Fourie et al.[25]observed that the pathogenicity of all but one isolate was similar to that of race 2,implying limited CBB pathogen diversity.However,variation in the severity of symptoms among the tested genotypes implied broad resistance.Vandemark et al.[26]observed that introgressed resistance from the wild species using markers BC420 and SU91 followed a recessive epistasis model,in which the function of corresponding QTL are modified by actions of other genes in the bean genome.Whereas plants with the BC420//BC420/su91//su91 genotype were susceptible,those with SU91//SU91 and SU91//su91 showed an intermediate response when homozygous for bc420.Thus,the BC420 QTL on its own appears to have no effect on disease response in plants with su91//su91.

    Breeding programs over the years have introgressed CBB resistance in different market classes,including Andean accessions,which are generally more susceptible than Mesoamerican accessions.Mutlu et al.[27]developed an ABCP-8 genotype using resistance markers SAP6 and SU91 that showed greater resistance to common bacterial blight,with 6%infection in field and greenhouse tests,than the recurrent parent Chase(33%field and 46%greenhouse)and a susceptible check Othello(59%field and 100%greenhouse).Using the same markers,Miklas et al.[28-30]developed USDK-CBB-15,a dark red kidney,USWK-CBB-17(a white kidney),and USCRCBB-20(a cranberry)that had disease scores of 3.6(the most resistant),4.8,and 5.3.Variation in resistance in developed cultivars can be attributed to different backgrounds used in the crosses and differences in pathogen aggressiveness.

    Functional characterization of CBB isolates from different regions of the world has shown no single source of resistance that is effective in a common bean background against all isolates[14,21].The effectiveness of CBB resistance varies widely with the aggressiveness of the pathogen[25,31].The high resistance observed in VAX 3 and VAX 6 inoculated with the less aggressive isolate-ARX8A became intermediate on exposure to the more aggressive isolate Xcp25[31].Resistant sources containing the marker SAP6 are thus effective against less aggressive isolates[14,21,31].VAX 4,in comparison,contains SAP6-and SU91-linked QTL and is the most resistant bean line against a range of CBB isolates except for isolate 96-05 from Honduras,which can overcome all known major sources of resistance to CBB[21](Table 2).Duncan et al.[14]also reported that VAX lines 3-6 were effective against a wide range of CBB isolates.Whereas some isolates can overcome resistance that originates from common bean(SAP6-linked resistance),other isolates tend to overcome resistance originating in the wild(SU91+BC420)[14,21].Whereas some studies have reported New World isolates to be more virulent[14],other studies have shown Old World and African isolates to be more virulent[19,21,22].The specificity of different sources of resistance to CBB isolates suggests that someisolates co-evolved with wild beans and others with domesticated beans.Vandemark et al.[32]suggested that there was specificity of SAP6-linked resistance to isolates of CBB.Although SAP6 and Xa.114-linked resistance provide some level of pod resistance,other identified resistance linked markers are ineffective[23].It is important to note that genes involved in CBB resistance in pods are different from those for foliar resistance[33].Wild sources of resistance like SU91 and BC420 had previously been reported to carry a yield penalty,though a recent study by Miklas et al.[3]suggests otherwise(Table 3).In that study,plants homozygous for BC420//SU91 yielded better than plants homozygous for bc420//su91 in a non-disease environment.This finding suggests that BC420 could be linked to genes that enhance yield.Thus,durable resistance can best be achieved by careful combination of wild and domesticated gene sources[14,21].

    Table 1-Interaction of isolates of Xanthomonas spp.with seven genotypes of tepary bean,P.acutifolius.(Adapted from Opio et al.[22].)

    Table 2-Differential response of CBB pathogens to selected resistance QTL in different genetic backgrounds.

    5.Identifying individual genes for resistance to CBB

    Identifying or mining individual CBB resistance genes among quantitative trait loci(QTL)is in progress,and accordingly limited information is available for annotation of defense associated genes.Using Medicago truncatula Gaertn.as a model species,21 genes in the BAC clone AK7 were predicted for BC420-linked QTL[34].However,of these only six genes were found in common bean expressed sequence tags(ESTs)and only three in P.coccineus ESTs.Shi et al.[34]annotated QTL linked to SU91 from the BAC clone 32H6 using Medicago spp.as the reference genome and predicted 16 genes.None of thesegenes was present in the EST database for P.vulgaris and P.coccineus.One of the 16 genes associated with SU91 belongs to the UDP-glycosyltransferase(UGT)family,which plays a role in ascorbic acid homeostasis,ABA metabolism,and resistance to hemi biotrophic pathogens such as Xanthomonas spp.of beans[35].However,these 16 genes are conserved in the G19833 susceptible and OAC Rex resistant genotypes,suggesting a reduced role in resistance[36].Sequencing of genomic library clones derived from Chr.04 of the bean genotype OAC Rex revealed10genes with similarity to Chr.06 and Chr.08 of common beans[37],but the linkage between the genes and the CBB resistance markers BC420 and SU91 was weak.The only four genes that were defense-related lacked the key functional motifs(CC,NBS,TIR,kinase,and transmembrane domain.Most genes identified by Cooper[37]were associated with transposable elements,suggesting that they are not stable in the bean genome.Other genes not associated with transposable elements included those encoding L-ascorbate oxidase,callose synthase,and a hypothetical protein.Similarly,Zhu et al.[38]annotated a 271.9-kb region of common bean containing the SAP6 marker and found25putative genes. Functional annotation revealed 10 genes encoding proteins associated with plant defense response.However,none of these genes encoded known defense genes.Notable among them were nucleoside diphosphate kinases(housekeeping genes),phosphokinases(associated with signaling),cytochromes P450(associated with photosynthesis),RelA/SPoT(environmental stress genes),and genes encoding proteins belonging to the GRAS family and germin-like proteins(GLPs).These genes could play a role in defense via complementation with other genes.This mechanism might explain why SAP6-linked resistance is effective in some bean backgrounds but not in others.

    Table 3-Effect of SU91-and BC420-linked QTL on 100-seed weight of beans in two disease environments.(Extracted from Miklas et al.[3].)

    Recently,Perry et al.[36],using whole-genome sequencing of the resistant genotype OAC-Rex,identified18genes surrounding SU91 QTL that were not present in a previously sequenced susceptible genotype,G19833.No function could be assigned to seven genes,whereas 11 showed similarity with known genes and might provide selective advantage.It is puzzling to find unique genes interspersed throughout the sequences conserved between OAC-Rex and G19833 without clear hallmarks of interspecific hybridization.The unique genes with putative homology included four resistance genes,two Neimann Pick-like genes,one gene encoding chalcone reductase,one pentatricopeptide,and 1 RIN U-box domain controlled protein.The Niemann Pick-like gene is a cholesterol transporter in humans.Unlike in G19833 where the Neimann Pick-like gene is intact and has>12 transmembrane domains,in OAC-Rex the same gene is interrupted by a 3000 bp fragment,resulting in two genes one containing five transmembrane domains and another eight(Fig.1).The gene may be functional in susceptible genotypes such as G19833 but disrupted in function in resistant genotypes such as OAC-Rex.This disruption may be a mechanism for increasing resistance by interfering with transport of materials required for pathogen growth.It has been reported by Wang et al.[20]that bacteria increase nutrient efflux into the apoplast using their effectors to enhance their pathogenicity.The Neimann Picklike gene may be one of the effector targets for manipulating host resistance.Whether this gene has a mutation in all known resistant genotypes remains to be determined.The SU91 marker from the wild bean P.acutifolius is present in several CBB-resistant genotypes sequenced to date[39]which will be helpful in future studies investigating the Neimann Pick-like gene.

    Fig.1-Comparison of the regions surrounding the SU91 marker in OAC-Rex contig 232,701 with the corresponding sequence from G19833 Chr.08.Unique genes are marked in yellow,and two genes(232701-8-007 and 232701-8-008)that show sequence similarity to the G19833 Niemann Pick transporter gene are highlighted for comparison.232701-8-007 is a putative homolog of two P.acutifolius ESTs(HO787932 and HO791620),while 232701-8-008 is a putative homolog of a single P.acutifolius EST HO801643).Highly conserved genes bordering this region in G19833 and OAC Rex are labeled.The locations of molecular markers are indicated with triangles above and below the sequence.(This figure was adapted from Perry et al.[36]under a Creative Commons Attribution 4.0 International License.)

    6.Expression of genes associated with CBB resistance

    Studies of the expression of genes in resistance QTL during infection and disease development are limited.Cooper[37]examined genes associated with QTL linked to Pv-cttt001,but results were not conclusive.Shi et al.[34]also identified differentially expressed genes(DEGs)in leaves of the bean genotype HR45 following inoculation with CBB.DEGs comprised only 10%of transcript-derived fragments.However,50.6%of DEGs did not match any ESTs in the NCBI database.The DEGs matching ESTs in the database were associated with defense response,metabolism,photosynthesis,cellular transport,and transcription regulation.Only six DEGs could be mapped to QTL linked to BC420 which shows limited association of DEGs and this resistance marker.The few genes matching the database may be as a result of resistance genes in P.vulgaris that have been introgressed from unsequenced wild relatives.Further functional annotation and gene expression studies are needed using the available bean reference genome[40]to identify and characterize genes for CBB resistance.Transcriptome analysis using new approaches such as RNA sequencing will accelerate this process[40].There is also a need to sequence the wild bean relatives from which major resistance genes have been obtained.

    7.Conclusions

    The diversity of common bacterial blight disease-causing bacteria has not been exhaustively studied especially in areas where detailed molecular diversity has not been done.Molecular diversity studies could reveal further hidden secrets of these pathogens and could lead to identification of new pathogen species.Functional diversity studies of CBB-causing agents performed to date show that some isolates have coevolved with wild and others with domesticated beans.CBB isolates with capacity to overcome all known major sources of resistance to CBB are known,but their frequency in different regions of the world is unknown.It is thus important that future functional studies using bean genotypes carrying major resistance QTL be performed to guide the deployment of resistant varieties.The identified genes in the major QTLs linked to SAP6 and SU91 do not play a direct role in plant defense,given that some lack functional motifs found in conventional plant defense genes and others are conserved in both resistant and susceptible genotypes.Disrupting transport of materials required for pathogen growth may be a mechanism of resistance in genotypes carrying SU91-linked-QTL.Gene disruption as a mechanism of resistance associated with SU91-linked QTL merits further study.

    Acknowledgments

    The authors are grateful for research funds from the Higher Education,Science and Technology(HEST)Project of CIAT(Uganda).

    少妇人妻精品综合一区二区| 欧美 亚洲 国产 日韩一| 麻豆精品久久久久久蜜桃| 亚洲国产欧美在线一区| 欧美人与性动交α欧美精品济南到| 久久免费观看电影| 亚洲人成电影观看| 免费人妻精品一区二区三区视频| 又大又爽又粗| 两性夫妻黄色片| 日韩伦理黄色片| 国产一区二区在线观看av| 亚洲欧洲国产日韩| 可以免费在线观看a视频的电影网站 | 久久精品人人爽人人爽视色| 精品国产一区二区三区久久久樱花| 男女下面插进去视频免费观看| 国产一区二区在线观看av| 国产99久久九九免费精品| 丝袜脚勾引网站| 性色av一级| 国产精品久久久久久久久免| 亚洲成人免费av在线播放| 精品视频人人做人人爽| 免费在线观看完整版高清| 国产在线视频一区二区| 日韩,欧美,国产一区二区三区| 亚洲,欧美,日韩| 久久久国产精品麻豆| 久久99一区二区三区| 这个男人来自地球电影免费观看 | 久久久精品区二区三区| 久久久久久久大尺度免费视频| 国产乱人偷精品视频| 美女午夜性视频免费| 欧美人与善性xxx| 亚洲人成77777在线视频| 欧美在线一区亚洲| 如日韩欧美国产精品一区二区三区| 国产精品偷伦视频观看了| 日本一区二区免费在线视频| 国产精品人妻久久久影院| 夫妻午夜视频| 久久精品久久精品一区二区三区| 99久国产av精品国产电影| 久久精品亚洲熟妇少妇任你| 国产精品一区二区精品视频观看| 亚洲精品中文字幕在线视频| 亚洲国产成人一精品久久久| 一区二区三区激情视频| 亚洲美女搞黄在线观看| 精品视频人人做人人爽| 99re6热这里在线精品视频| 国产精品.久久久| 亚洲欧美一区二区三区黑人| 91国产中文字幕| 亚洲av男天堂| 制服人妻中文乱码| 色播在线永久视频| 精品少妇一区二区三区视频日本电影 | 建设人人有责人人尽责人人享有的| 18禁观看日本| 99国产综合亚洲精品| 久久这里只有精品19| 丁香六月欧美| 高清在线视频一区二区三区| 人人妻人人澡人人爽人人夜夜| 亚洲欧美成人综合另类久久久| 高清不卡的av网站| 国产野战对白在线观看| 久久免费观看电影| 日本爱情动作片www.在线观看| 日韩中文字幕欧美一区二区 | 免费高清在线观看视频在线观看| 久久97久久精品| 如何舔出高潮| 大香蕉久久网| av免费观看日本| 欧美中文综合在线视频| 日本爱情动作片www.在线观看| 91精品伊人久久大香线蕉| 日韩免费高清中文字幕av| 久久久久网色| 国产精品蜜桃在线观看| 欧美在线黄色| 亚洲久久久国产精品| 精品国产乱码久久久久久男人| 国产精品偷伦视频观看了| e午夜精品久久久久久久| 久久久久久久久免费视频了| 99久国产av精品国产电影| 午夜精品国产一区二区电影| 精品人妻在线不人妻| 国产精品 国内视频| 国产片内射在线| 韩国高清视频一区二区三区| 国产成人精品在线电影| √禁漫天堂资源中文www| 97人妻天天添夜夜摸| 亚洲视频免费观看视频| 欧美日韩一级在线毛片| 精品国产国语对白av| 女人高潮潮喷娇喘18禁视频| 老鸭窝网址在线观看| 搡老乐熟女国产| 老汉色∧v一级毛片| 亚洲中文av在线| 精品国产一区二区久久| 五月天丁香电影| 人妻 亚洲 视频| 亚洲av国产av综合av卡| 国产成人av激情在线播放| 午夜精品国产一区二区电影| 欧美日韩综合久久久久久| 中国三级夫妇交换| 建设人人有责人人尽责人人享有的| 晚上一个人看的免费电影| 自线自在国产av| 亚洲国产看品久久| 国产午夜精品一二区理论片| 久久久久久人妻| 高清在线视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 成人免费观看视频高清| 汤姆久久久久久久影院中文字幕| 色吧在线观看| 免费观看性生交大片5| 欧美精品亚洲一区二区| 精品亚洲成国产av| 不卡视频在线观看欧美| 男女边摸边吃奶| 爱豆传媒免费全集在线观看| 久久韩国三级中文字幕| 一级黄片播放器| 欧美av亚洲av综合av国产av | 欧美另类一区| 五月天丁香电影| 激情视频va一区二区三区| 久久 成人 亚洲| 狂野欧美激情性bbbbbb| 在线观看一区二区三区激情| 欧美日本中文国产一区发布| 国产黄色免费在线视频| 国产欧美日韩综合在线一区二区| 又粗又硬又长又爽又黄的视频| 青青草视频在线视频观看| 亚洲国产最新在线播放| 亚洲欧美激情在线| 免费黄频网站在线观看国产| 黄色视频不卡| 日韩大码丰满熟妇| 亚洲国产欧美在线一区| 国产免费一区二区三区四区乱码| 国产无遮挡羞羞视频在线观看| 日韩一区二区视频免费看| 成年美女黄网站色视频大全免费| 亚洲美女视频黄频| 日日爽夜夜爽网站| 一边摸一边做爽爽视频免费| 巨乳人妻的诱惑在线观看| 久久久国产精品麻豆| 亚洲国产欧美在线一区| 韩国高清视频一区二区三区| 亚洲第一区二区三区不卡| 丰满乱子伦码专区| 欧美 日韩 精品 国产| 在线天堂最新版资源| 国产亚洲午夜精品一区二区久久| 狠狠精品人妻久久久久久综合| 香蕉丝袜av| av一本久久久久| 亚洲国产欧美日韩在线播放| 中文天堂在线官网| 91精品国产国语对白视频| 国产亚洲av片在线观看秒播厂| av网站免费在线观看视频| 国产精品女同一区二区软件| 免费黄频网站在线观看国产| 哪个播放器可以免费观看大片| 一本久久精品| 男女床上黄色一级片免费看| 久久久国产一区二区| 国产精品国产三级国产专区5o| 美女高潮到喷水免费观看| 18禁裸乳无遮挡动漫免费视频| 精品少妇一区二区三区视频日本电影 | 蜜桃在线观看..| 亚洲美女视频黄频| 韩国高清视频一区二区三区| 亚洲国产精品一区二区三区在线| 久久韩国三级中文字幕| 国产一卡二卡三卡精品 | 另类精品久久| 亚洲精品aⅴ在线观看| 最近中文字幕高清免费大全6| 免费黄频网站在线观看国产| 中文字幕人妻熟女乱码| 一级黄片播放器| 亚洲av电影在线进入| svipshipincom国产片| 午夜精品国产一区二区电影| 麻豆av在线久日| 国产成人a∨麻豆精品| 国产色婷婷99| 99热国产这里只有精品6| 免费日韩欧美在线观看| 国产精品.久久久| www.精华液| 成年av动漫网址| 午夜福利网站1000一区二区三区| 亚洲国产欧美网| 久久毛片免费看一区二区三区| 国产极品粉嫩免费观看在线| 国产精品一二三区在线看| 国产男女超爽视频在线观看| 两个人看的免费小视频| 在线观看免费视频网站a站| 精品国产乱码久久久久久小说| 在线 av 中文字幕| 久久女婷五月综合色啪小说| 国产欧美日韩综合在线一区二区| 亚洲 欧美一区二区三区| 亚洲成人一二三区av| 亚洲国产毛片av蜜桃av| 久久人人爽人人片av| 不卡视频在线观看欧美| 性少妇av在线| 曰老女人黄片| 黄片小视频在线播放| 中文字幕人妻熟女乱码| 亚洲国产欧美网| 国产精品久久久av美女十八| 午夜福利网站1000一区二区三区| 国产成人欧美在线观看 | 久久性视频一级片| 精品一区在线观看国产| 久久精品久久久久久久性| 国产欧美亚洲国产| 少妇人妻 视频| 久久精品久久精品一区二区三区| 曰老女人黄片| 80岁老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 日韩中文字幕视频在线看片| av不卡在线播放| 精品国产一区二区三区四区第35| 美女国产高潮福利片在线看| 新久久久久国产一级毛片| 久久国产精品大桥未久av| 桃花免费在线播放| 亚洲四区av| 久久婷婷青草| 视频在线观看一区二区三区| 中国国产av一级| 国产精品国产三级国产专区5o| 少妇精品久久久久久久| 狂野欧美激情性bbbbbb| 亚洲精品一区蜜桃| avwww免费| 午夜日本视频在线| 欧美精品av麻豆av| 韩国高清视频一区二区三区| 在线精品无人区一区二区三| av福利片在线| 午夜91福利影院| 亚洲国产毛片av蜜桃av| 永久免费av网站大全| 久久久精品94久久精品| 性色av一级| 成人免费观看视频高清| 99热网站在线观看| 久久久久网色| 亚洲第一青青草原| 日本一区二区免费在线视频| 国产一区二区 视频在线| 菩萨蛮人人尽说江南好唐韦庄| 青春草亚洲视频在线观看| 欧美 亚洲 国产 日韩一| 秋霞伦理黄片| 国产黄频视频在线观看| 亚洲 欧美一区二区三区| 十八禁高潮呻吟视频| 黄频高清免费视频| 午夜久久久在线观看| 亚洲三区欧美一区| 五月开心婷婷网| 操美女的视频在线观看| 中文乱码字字幕精品一区二区三区| av视频免费观看在线观看| 亚洲天堂av无毛| av国产久精品久网站免费入址| 免费在线观看完整版高清| 日本猛色少妇xxxxx猛交久久| 国产日韩欧美亚洲二区| 午夜老司机福利片| 欧美成人精品欧美一级黄| 一级,二级,三级黄色视频| 亚洲欧美清纯卡通| 亚洲av日韩精品久久久久久密 | 国产人伦9x9x在线观看| 男人添女人高潮全过程视频| 国产一区亚洲一区在线观看| 少妇精品久久久久久久| 亚洲成国产人片在线观看| 亚洲美女搞黄在线观看| 国产极品粉嫩免费观看在线| 三上悠亚av全集在线观看| 成人手机av| 国产精品久久久久久精品电影小说| 国产熟女欧美一区二区| 亚洲欧美一区二区三区久久| 亚洲成色77777| 亚洲色图综合在线观看| 19禁男女啪啪无遮挡网站| 中国国产av一级| 精品人妻在线不人妻| 日韩中文字幕视频在线看片| 天天影视国产精品| xxx大片免费视频| 新久久久久国产一级毛片| 成人国产麻豆网| 亚洲精品国产区一区二| 午夜av观看不卡| 久热爱精品视频在线9| 男女下面插进去视频免费观看| 日韩免费高清中文字幕av| www.av在线官网国产| 黄片播放在线免费| 精品少妇黑人巨大在线播放| 精品一区二区三区av网在线观看 | xxx大片免费视频| 精品人妻一区二区三区麻豆| 桃花免费在线播放| tube8黄色片| 操美女的视频在线观看| 亚洲av在线观看美女高潮| 别揉我奶头~嗯~啊~动态视频 | 一二三四在线观看免费中文在| 久久人妻熟女aⅴ| 人妻人人澡人人爽人人| 国产男女超爽视频在线观看| 一区二区三区乱码不卡18| 国产精品一区二区在线观看99| 一二三四中文在线观看免费高清| 国产成人精品福利久久| 在线观看免费高清a一片| 日韩,欧美,国产一区二区三区| 国产一区二区 视频在线| 蜜桃在线观看..| 国产视频首页在线观看| 尾随美女入室| 我的亚洲天堂| 国产成人精品福利久久| 精品少妇内射三级| 人体艺术视频欧美日本| 热re99久久国产66热| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看av| 97人妻天天添夜夜摸| 久久久久精品人妻al黑| 日韩中文字幕视频在线看片| 亚洲av综合色区一区| 欧美老熟妇乱子伦牲交| 亚洲av在线观看美女高潮| 1024视频免费在线观看| av天堂久久9| 狠狠精品人妻久久久久久综合| 欧美激情极品国产一区二区三区| 亚洲一级一片aⅴ在线观看| 国产精品蜜桃在线观看| 满18在线观看网站| 王馨瑶露胸无遮挡在线观看| 国产野战对白在线观看| 伦理电影大哥的女人| 欧美精品av麻豆av| 国产精品蜜桃在线观看| 国产黄频视频在线观看| 国产免费视频播放在线视频| 国产精品香港三级国产av潘金莲 | 久久鲁丝午夜福利片| 各种免费的搞黄视频| 国产日韩欧美视频二区| 亚洲国产精品一区二区三区在线| 人人妻人人添人人爽欧美一区卜| 一个人免费看片子| 亚洲熟女精品中文字幕| 91aial.com中文字幕在线观看| 9热在线视频观看99| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 在线观看人妻少妇| 国产国语露脸激情在线看| 亚洲熟女毛片儿| 亚洲第一区二区三区不卡| 久久久久久久久免费视频了| 秋霞伦理黄片| 日本午夜av视频| 久久婷婷青草| 中文天堂在线官网| 日本欧美国产在线视频| 成年人免费黄色播放视频| 成人国产av品久久久| 老司机影院成人| videosex国产| 日本猛色少妇xxxxx猛交久久| 久久久久久久国产电影| 精品国产乱码久久久久久男人| 青春草亚洲视频在线观看| 日本91视频免费播放| 久久免费观看电影| 无限看片的www在线观看| 亚洲精品一二三| 欧美日韩亚洲国产一区二区在线观看 | 蜜桃国产av成人99| 黄色一级大片看看| 欧美日韩一级在线毛片| www日本在线高清视频| 亚洲第一青青草原| 成人三级做爰电影| 丝瓜视频免费看黄片| 香蕉国产在线看| 男人爽女人下面视频在线观看| 老司机影院毛片| 精品少妇久久久久久888优播| 日韩欧美一区视频在线观看| 色婷婷av一区二区三区视频| 老汉色∧v一级毛片| 亚洲精品自拍成人| 热99国产精品久久久久久7| av有码第一页| 亚洲av电影在线观看一区二区三区| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 青春草国产在线视频| 母亲3免费完整高清在线观看| 国产1区2区3区精品| 熟女av电影| 色94色欧美一区二区| 别揉我奶头~嗯~啊~动态视频 | 高清在线视频一区二区三区| 成人亚洲欧美一区二区av| 看免费av毛片| 秋霞伦理黄片| 亚洲精品乱久久久久久| 国产爽快片一区二区三区| 一区在线观看完整版| 亚洲欧美激情在线| 永久免费av网站大全| 亚洲欧美清纯卡通| 国产高清不卡午夜福利| 国产av国产精品国产| 亚洲精品美女久久久久99蜜臀 | 王馨瑶露胸无遮挡在线观看| 亚洲成色77777| 国产成人免费无遮挡视频| 五月开心婷婷网| 毛片一级片免费看久久久久| av有码第一页| 亚洲成人手机| 美女脱内裤让男人舔精品视频| 嫩草影院入口| 夫妻性生交免费视频一级片| 丝袜美足系列| 国产av精品麻豆| 欧美乱码精品一区二区三区| 国产高清不卡午夜福利| 午夜福利视频精品| 亚洲中文av在线| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 好男人视频免费观看在线| 国产成人精品在线电影| av国产精品久久久久影院| 高清视频免费观看一区二区| 91老司机精品| 黄片小视频在线播放| 久久影院123| 免费在线观看完整版高清| 成人影院久久| 宅男免费午夜| 精品一区在线观看国产| 秋霞伦理黄片| 亚洲综合色网址| 国产成人系列免费观看| 各种免费的搞黄视频| 亚洲国产毛片av蜜桃av| 成人国语在线视频| 欧美av亚洲av综合av国产av | 丝瓜视频免费看黄片| 男人操女人黄网站| 超碰97精品在线观看| 免费人妻精品一区二区三区视频| 国产老妇伦熟女老妇高清| 你懂的网址亚洲精品在线观看| 亚洲国产最新在线播放| 久久久久久久久久久免费av| 日日爽夜夜爽网站| 岛国毛片在线播放| 久久97久久精品| 欧美激情极品国产一区二区三区| 久久青草综合色| 91精品三级在线观看| 日韩成人av中文字幕在线观看| 高清视频免费观看一区二区| 黄片播放在线免费| 欧美黑人欧美精品刺激| 人人澡人人妻人| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 男女床上黄色一级片免费看| 精品一区二区三区av网在线观看 | 性高湖久久久久久久久免费观看| 久久99热这里只频精品6学生| 美女高潮到喷水免费观看| 高清不卡的av网站| www.av在线官网国产| 亚洲精品av麻豆狂野| 高清视频免费观看一区二区| 欧美国产精品一级二级三级| 国产男女内射视频| 亚洲欧美色中文字幕在线| 菩萨蛮人人尽说江南好唐韦庄| 国产欧美日韩一区二区三区在线| 在线观看免费日韩欧美大片| 丝袜脚勾引网站| 美女大奶头黄色视频| 一边摸一边抽搐一进一出视频| 夫妻性生交免费视频一级片| 欧美乱码精品一区二区三区| 国产有黄有色有爽视频| 亚洲四区av| 美女大奶头黄色视频| 亚洲欧美日韩另类电影网站| 免费人妻精品一区二区三区视频| 在线观看www视频免费| 日本av免费视频播放| 欧美日韩亚洲高清精品| av免费观看日本| 男人舔女人的私密视频| 少妇人妻久久综合中文| 新久久久久国产一级毛片| 操美女的视频在线观看| 午夜影院在线不卡| 咕卡用的链子| 欧美日韩亚洲综合一区二区三区_| 国产精品国产三级国产专区5o| 国产成人免费观看mmmm| a级片在线免费高清观看视频| 精品卡一卡二卡四卡免费| 男女边摸边吃奶| 亚洲av成人不卡在线观看播放网 | 亚洲国产av影院在线观看| 午夜免费观看性视频| 久久97久久精品| 伊人亚洲综合成人网| 狠狠精品人妻久久久久久综合| 国产精品三级大全| 欧美最新免费一区二区三区| 亚洲欧美激情在线| 爱豆传媒免费全集在线观看| 精品人妻熟女毛片av久久网站| 国产精品嫩草影院av在线观看| 美女主播在线视频| 人妻 亚洲 视频| 午夜91福利影院| 91国产中文字幕| 少妇精品久久久久久久| 久久精品久久精品一区二区三区| 欧美精品一区二区大全| www.自偷自拍.com| 青春草亚洲视频在线观看| 国产伦人伦偷精品视频| 亚洲国产成人一精品久久久| 黑人猛操日本美女一级片| 亚洲成人av在线免费| 精品国产超薄肉色丝袜足j| av又黄又爽大尺度在线免费看| 精品少妇黑人巨大在线播放| 国产精品久久久久久精品电影小说| 人人妻人人澡人人看| 国产精品久久久人人做人人爽| 亚洲国产欧美网| 久久99精品国语久久久| 亚洲第一av免费看| 黄色毛片三级朝国网站| 老鸭窝网址在线观看| 黄网站色视频无遮挡免费观看| 哪个播放器可以免费观看大片| 国产深夜福利视频在线观看| 18禁裸乳无遮挡动漫免费视频| 免费少妇av软件| 午夜激情久久久久久久| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| 成年人免费黄色播放视频| 好男人视频免费观看在线| 大话2 男鬼变身卡| 狂野欧美激情性bbbbbb| 日本色播在线视频| 女人高潮潮喷娇喘18禁视频| 2018国产大陆天天弄谢| 亚洲成av片中文字幕在线观看| 热re99久久国产66热| 亚洲精品aⅴ在线观看| 另类精品久久| 日韩制服骚丝袜av| 久久国产精品男人的天堂亚洲| 一级毛片电影观看| 成年人免费黄色播放视频| 午夜福利影视在线免费观看| 精品福利永久在线观看| 亚洲成人一二三区av| 免费不卡黄色视频| 久久精品aⅴ一区二区三区四区| 日韩成人av中文字幕在线观看|