• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed adaptive Kalman filter based on variational Bayesian technique

    2019-01-24 06:12:44ChenHUXiaomingHUYiguangHONG
    Control Theory and Technology 2019年1期

    Chen HU ,Xiaoming HU ,Yiguang HONG

    1.Rocket Force University of Engineering,Xi’an Shannxi 710025,China;

    2.Department of Mathematics,Royal Institute of Sweden(KTH),Sweden;

    3.Institute of Systems Science and University of Chinese Academy of Sciences,Chinese Academy of Sciences,Beijing 100190,China

    Received 31 August 2018;revised 23 October 2018;accepted 23 October 2018

    Abstract In this paper,distributed Kalman filter design is studied for linear dynamics with unknown measurement noise variance,which modeled by Wishart distribution.To solve the problem in a multi-agent network,a distributed adaptive Kalman filter is proposed with the help of variational Bayesian,where the posterior distribution of joint state and noise variance is approximated by a free-form distribution.The convergence of the proposed algorithm is proved in two main steps:noise statistics is estimated,where each agent only use its local information in variational Bayesian expectation(VB-E)step,and state is estimated by a consensus algorithm in variational Bayesian maximum(VB-M)step.Finally,a distributed target tracking problem is investigated with simulations for illustration.

    Keywords:Distributed Kalman filter,adaptive filter,multi-agent system,variational Bayesian

    1 Introduction

    In recentyears,distributed estimation design ofmultiagent systems has received more and more attention,because of its broad range of applications in engineering systems such as communication networks,sensor networks,and smart grids.Distributed Kalman filter(DKF)is one of the important distributed estimation methods,which plays a key role due to its power of real-time estimation and non-stationary process tracking[1-7].For example,R.Olfati-Saber[1]constructed DKF by putting the consensus terms in each Kalman filter update step,while S.Stankovi’c et al.[2]considered the problem for missing observations and communication faults.Also,D.Casbeer et al.[3]and[4]applied consensus algorithms to an information filter,where the unbiasedness and convergence were shown,and W.Yang et al.[7]considered the problem of link acti-vation with power constraints.Moreover,G.Battistelli and L.Chisci[5]considered DKF with consensus on the inverse covariance matrix and the information vector,while Z.Zhou etal.[8]studied DKF for switching communication topologies.However,these works are based on a prior knowledge of measurement noise statistics.

    For several decades,various centralized designs of adaptive filters have been proposed to solve the problem with unknown noise statistics,mainly based on the maximum likelihood or covariance matching methods[9-11],which are computationally complex or analytically intractable[12,13].On the other hand,variational Bayesian(VB)methods have been proposed for approximating posterior distribution,which have benefits of low computational cost and analytic tractability[14].Therefore,S.Sarkka and A.Nummenmaa[13]used a VB method to approximate the joint posterior distribution of the dynamic state and measurement noise parameters in linear dynamics,where the variational distribution of noise is assumed as the product of the Inverse-Gamma distributions.Moreover,H.Zhu etal.[15]employed VB to estimate the joint distribution of state and non-Gaussian noises statistical,where the non-Gaussian noise was modeled by Gaussian mixture models.Additionally,P.Dong et al.[16]considered an adaptive VB filter based on the Wishart distribution,to estimate the full noise variance matrix with a fusion center.However,none of these algorithms is applicable to distributed design of multi-agent networks.To the best of our knowledge,the distributed adaptive VB Kalman filters have not yet been adequately investigated,and very few studies on adaptive design for distributed state estimation with unknown measurementnoise variance,though many effective distributed Kalman filters have been developed.

    In this paper,we investigate the distributed adaptive VB Kalman filter with unknown noise variance modeled by the Wishart distribution in a multi-agent network.With communication with neighbors,the posterior distribution of joint state and noise variance is approximated by a free-form distribution,where the approximation can be achieved by recursively performing VB-E and VB-Msteps[14].The main contribution ofthe paper can be summarized as follows.A distributed adaptive VB Kalman filter is proposed,which can be viewed as a distributed extension of the centralized one given in the linear case[16].The analysis shows that VB-E step can be achieved only with the local information and the VB-M step can be achieved with a consensus algorithm,where the VB-M structure is consistent with some distributed Kalman filters in[3,4],and then the convergence of the proposed algorithm is proved.

    The remainder of the paper is organized as follows.Section 2 presents problem formulation of this paper.Then Section 3 gives the design and analysis of the distributed adaptive VB Kalman filter,and Section 4 shows simulation examples.Finally,Section 5 provides concluding remarks.

    Notations N(x;x,P)denotes the Gaussian distribution with meanx and covariance P.diag{·}represent the diagonalizations of block or scalar elements.An undirected graph of N nodes is denoted as G={V,?}with V=1,...,N.The neighbors of node i can be represented by the set{j∈V|(i,j)∈?}? Ni,whose size is denoted as|Ni|.

    2 Problem formulation

    Consider the following stochastic dynamics:

    with xk∈Rnas the state observed by a N-agent network G,Ak∈ Rn×nas the system matrix,and wk∈ Rnas the zero-mean Gaussian noise,with E{wkwTk}=Qk.The measurement model is given as

    with yi,k∈Rmias the measurement of agent i,Ci,kas the observation matrix of agent i,and vi,k~N(vi,k;0,Ri,k)as the observation noise.Suppose thatand E{vi,kwTk}=0,?i∈ V at each k,and all yi,k,?i∈ V are conditionally independent of given xk.

    In the Bayesian filter framework,the dynamics(1)and measurement mapping(2)can be written as state transition probability p(xk+1|xk)and measurement likelihood function p(yi,k|xk),i=1,...,N.Hence,the joint likelihood function is the product of local likelihood functions,

    The following assumptions have been widely used in the DKF literature[1,3-6].

    Assumption 1 The undirected graph G is connected.

    Assumption 2(Collective observability) The pair(Ak,Ck)is observable,where

    Since yi,kneeds to be purely nondeterministic and Di,kRi,kDT>0 is a sufficient condition for this,we as

    i,ksume Di,k=I,?i without loss of generality.

    Most Kalman filter designs are based on the assumption that Ri,kis known.However,this assumption may not hold in practice,and here we consider the case when Ri,kis unknown.To be strict,we assume that the measurement information matrix Φi,k=follows the Wishart distribution W(Φi,k;νi,k,Vi,k)with parameters νi,kand Vi,k.Note that the Wishart distribution is a conjugate prior for the unknown information matrix of a Gaussian model with a known mean,which is suitable to model the unknown noises[17].

    Distributed Kalman filters[1-6]were proposed in(1)and(2)with known Ri,k.However,inaccurate Ri,kmay enlarge the estimation error or even causing divergence.Therefore,we aim at the design of a distributed Kalman filter with unknown measurement noise to estimate the joint posterior distribution p(xk,Φk|Yk)by a network of N agents,where Φk=diag{Φ1,k,...,ΦN,k}.

    Remark 1 For comparison,let us define a centralized estimate xckassociated with measurement Yk.Then the centralized estimation consists of the prediction xck=E{xk|Yk-1}and the update xck=E{xk|Yk}.For linear dynamics(1)and measurement equation(2)the well-known Kalman filter gives a recursive solution as follows[18]:

    Measurement update:

    where Rk=diag{R1,k,...,RN,k},and PckandPckare estimate errorcovariance matrices ofxckandxck,respectively.

    Suppose that the posterior distribution of xk-1and Φk-1conditional on Yk-1at time k-1 is approximated by

    The first equation holds since xk-1and Φk-1are conditionally independent given Yk-1.Note that the form of posterior distribution p(xk,Φk|Yk)remains the same if the predictive distribution p(xk,Φk|Yk-1)is Gaussian-Wishart[19].

    The predictive distribution of state xkand Φkare separable and independent,and can be given by the Chapman-Kolmogorov equation,

    Prediction(5)for(1)results in a Gaussian distribution for predicted xk,with parameters xk=Akxk-1and Pk=AkPk-1ATk+BkQkBTkgiven by the standard Kalman filter prediction equations.

    Similar to[13,16],we take the dynamics of Φi,kto ensure that the predictive distribution p(Φk|Yk-1)is Wishart,with ν= μνand V=Clearly,

    kk-1kthe value μ=1 indicates a stationary variance,while 0<μ<1 indicates that the variance is time-varying[13].

    Because xkand Φkare independent,the prediction for the joint of xkand Φkcan be written as

    Based on the standard VB method[14,20,21],the joint posterior distribution p(xk,Φk|Yk)can be approximated by a free-form distribution q(xk,Φk),

    where q(xk)and q(Φi,k)are the Gaussian and Wishart distributions,respectively.The VB approximation is achieved by minimizing the Kullback-Leibler(KL)divergence between the posterior distribution p(xk,Φk|Yk)and the variational distribution q(xk,Φk),

    wherec denotes the terms independentofthe variational distribution q(xk,Φk),and

    is called the evidence of lower bound(ELBO).

    Therefore,our problem becomes

    which is equivalent to the minimization of KL(q||p).

    The VB approach updates each local variational distribution q(Φi,k)(VB-E step)and the global variational distribution q(xk)(VB-M step)alternatively,with keeping the other distributions fixed:

    Note that the estimatexkin(12)can be obtained by each agent if each agent knows the global likelihood function p(yk|xk)[13,15,16].However,in our paper,each agent can only access to its local likelihood function p(yi,k|xk),and thus,we have to propose a distributed adaptive VB Kalman filter to optimize KL(q||p).

    3 Distributed adaptive VB Kalman filter

    In this section,we discuss the VB approximation of the posterior distribution p(xk,Φk|Yk)in a distributed way,and propose a distributed adaptive VB Kalman filter algorithm(DAVBKF).

    Define a set of variables{xi,k,i=1,...,N}for each agent,and let s be the number of VB iterations.Then the approximation distributionsandat the s th step can be given as follows:

    The proposed VB algorithm updates q(Φi,k),?i∈ V and q(xk)alternatively while keeping the other fixed,to be discussed in Lemmas 1 and 2.

    In(13)and(14),each agent only needs the local information in VB-E step.Nevertheless,in VB-M step,a global estimate is achieved by averaging local information of all agents.To computea distributed way,denote

    Based on the average consensus algorithm[22],each agent approximatesas follows:

    where ? is a consensus rate parameter within the range ofwith Δ =max|N|[22].Then we give ouriiDAVBKF in Table 1,with initial conditionand Pi,0=P0.

    In the DAKFVB,the initialization of all local estimates is exactly the same mean of the initial state,which is not easy to satisfy in practice.In fact,a practical initialization can be obtained by letting xi,0=0,?i∈V and Pi,0=0,?i∈ V,which means that no prior information available.

    Table 1 DAVBKF at node i at time k.

    Remark 2 Note that,in the DAVBKF,the distributed realization of VB approach for q(xi,k)with fixed q(Φi,k)is consistent with distributed Kalman filters in[3,4].Namely,equations(19)and(20)perform measurement updating step of distributed Kalman filters in[3,4]for given noise variance matrices.

    Next,we give two lemmas about q(xk)and q(Φi,k),i=1,...,N.The first lemma is for the solution of the variational distribution q(Φi,k).

    Lemma 1(VB-E) Given the global variational distribution q(xk;xk,Pk),q(Φi,k;νi,k,Vi,k)of each agent is obtained as follows:

    Its proof is in the appendix.

    Remark 3 S.Sarkka et al.[13,16]presented adaptive VB Kalman filters.Note that[13]assumed that the measurement noise variance Rkwas a diagonal matrix with a priori distribution of noise modeled as a product of Inverse-Gamma distribution,i.e.,Rk=diag{σk,1,...,σk,m}andwhere IG(σ;α,β)stands for the Inverse-Gamma distribution covered by the parameters α and β.P.Dong etal.[16]presented an adaptive VB Kalman filter for nonlineardynamics,with the noise variance matrix modeled as a Wishart distribution,which resulted in full noise variance matrix estimation.Clearly,VB-E step in Lemma 1 is different from the centralized one in[16],even though(21)and(22)can be obtained by each agent individually.With N=1 in Lemma 1,(21)and(22)will reduce to the VB-E step in[16].

    According to the VB approach,an optimal solution of q(xk;xk,Pk)can be achieved by giving q(Φi,k;νi,k,Vi,k),i=1,...,N.However,in a distributed structure,it cannot be solved straightforwardly because each agent cannot access the joint likelihood function p(yk|xk)=of non-neighboring agent.

    Since the agents are independent,the posterior can be written asDecomposition of L(q)can be obtained by substituting p(xk,Φk|Yk)into(9).Namely,

    Denote q*(xk;xk,Pk)as an optimal variational distribution for L(q),and,xˇi,k,Pˇi,k)as an optimal variational distribution for Li(q).The next lemma gives the solution for global variational distribution q*(xk),and the relationship with

    Lemma 2(VB-M)Suppose that each agent gets the global optimal solution q(xk-1;xk-1,Pk-1)at time k-1.Given q(Φi,k;νi,k,Vi,k),i=1,...,N,q(xk;xk,Pk)can be achieved as follows:

    whereˇxi,kandˇPi,kcan be obtained locally as follows:

    Its proof is in the appendix.

    Then it is time to give our result for the proposed algorithm for an N-agent network.

    Theorem 1 Under Assumptions 1 and 2 for the proposed DAVBKF,if each agent is initialized by letting=E{x0}and Pi,0=P0,?i∈V,then the estimatesconverge to an estimate of centralized solu-tion of(9)as l→∞for all k.

    Proof Suppose that,at time k-1,the estimates q(xi,k-1),?i∈ V of each agent achieve consensus,i.e.,and Pi,k-1=Pj,k-1=Pk-1,?i,j∈V.In the prediction of the proposed algorithm,we haveand.Therefore,and

    The VB approach for measurement update can be achieved by iteratively updating the VB-E and the VB-M steps in DAVBKF.Next,we show the optimality and stability of VB-M step in DAVBKF.At the s th iteration of VB,under Assumption 1,the consensus iterations(19)and(20)converge to the average of(Pˇi,k)-1and(Pˇi,k)-1xˇi,kas l→ ∞[22],respectively.Therefore,

    Note that(31)and(34)exactly are the measurement update equations of the standard Kalman filter with measurement noise variance.By Assumption 2,the optimality and stability ofw ith givenare guaranteed.Clearly,as l→ ∞after the VB procedure,which satisfies the conditions of Lemma 2.

    According to Theorem 2.1[14],Lemma 1 and Lemma 2,proposed DAVBKF converges to a local maximum of L(q)at time k.This convergence further guarantees that the local optimal centralized estimate will be reached at next step.Thus,DAVBKF withl→∞at each time step can converge to an estimate of centralized solution with initial conditions.

    Theorem 1 shows that the global variational distribution q(xk)can be achieved by averaging of a local optimal solution,and the updating of variational distributions q(Φi,k)only need local information of agent i.However,it is not easy to obtain the bound of estimate error,since the VB iteration can only converge to a local optimal solution,and it depend on the estimation at each instant.

    Remark 4 The VB approach guarantees the local convergence by iterations of the VB-E and VB-M steps[14].The measurement update in DAVBKF consists of VB-E and VB-M steps,which leads to a fixed point iteration[23],while the prediction in DAVBKF is the same as the prediction step of standard Kalman filter.Moreover,with the collective observability assumption,the dynamics(1)need not be observable by each agent in our analysis.

    Remark 5 In Theorem 1,for every k,q(xi,k)of each agent should reach a consensus,asl→∞.In practice,when 0<l<∞,it has been shown that Pi,k,?i∈ V,k=1,2,...is upper bounded by a positive definite matrixPi,kfor given noise statistics in[3].Recall Theorem 2.1 in[14],the iterations of VB-E(Lemma 1)and VB-M(Lemma 2)steps converge to a local maximum of L(q),which implies that both of Pi,kandΦi,kare bounded.However,in this case,Pi,kwill not represent the error covariance matrices.The simulation part illustrates that DAVBKF can converge fast even ifl=1.

    The centralized solution of VB procedure for measurement updating step can be easily obtained by letting N=1 in Theorem 1,which is mentioned in the following result.

    Corollary 1 Let s be the iterative number of VB.Assume there exists a center who can access Ckand yk,then VB procedure for optimizing L(q)in(9)can be achieved by the following updates:

    Remark 6 Corollary 1 is consistent with the result in[16].Also,the VB-M step in Corollary 1 is exactly the measurement updating step of the information form of the Kalman filter[18]with a given measurement noise variance.

    4 Simulation

    Theorem 1 considered the DAVBKF,withxi,0=E[x0],?i∈V andPi,0=P0,?i∈V.The VB algorithm alternatively updates each local variational distribution q(Φi,k)and the global variational distribution q(xk).In many simulation examples,the algorithm converges very fast,and only 2 or 3 iterations are good enough in practice.

    Consider a target tracking problem,where the target moves with a constant velocity,whose dynamics[24]is

    where xk=[dx,dy,˙dx,˙dy],dxand dydescribe the target position,and˙dxand˙dydescribe the target velocity.wk~N(0,Qk),Qk=diag{[w21w22]}with w21=w22=0.1.T=1s is the sampling period,and

    Suppose that the target position can be measured by a network of sensors,whose measurement equations are

    The measurement matrices Ci,i=1,...,N satisfy Assumption 2,of the following form

    The topology of communication network is shown in Fig.1.

    Fig.1 Topology of the network.

    The target trajectory is generated by(39)with the initial state x0= [0 0 2 2]T.The initial state of each agent isxi,0=x0+[10 10 5 5]T,?i∈V andPi,0=diag{[1021025252]},?i∈V.The true measurement noise variance generated by Ri,k=0.2+0.4(1+tanh(0.1T(k-Tf/4))),k=1,2,...,where Tf=500 is total simulation time.The fading parameter is μ=0.9 for all agents.The initial parameters for q(Φi,0)are νi,0=1 and Vi,0=7.5,i∈V.The number of recursive VB steps is S=3.

    Compare the performance of the DAVBKF with a centralized adaptive VBKalman filter(CAVBKF),which isthe linearcounterpartthe one given in[16](see Corollary 1),by conducting numerical simulations,where 200 Monte Carlo trials for the CAVBKF and the DAVBKF are performed,respectively.In the CAVBKF,the measurement matrix is C=Tand Rk=diag{R1,k,...,R6,k}.

    Consider the mean square estimation errors(MSE),which has been widely used for the estimator performance,

    In order to compare the estimation errors of the noise variances,we define the total estimate errors of noise variance as

    Figs.2 and 3 show the MSEs of position and velocity,respectively.DAVBKF-1 and DAVBKF-100 represent the numbers about consensus arel=1 andl=100 for the DAVBKF,respectively.It can be seen that the MSE of DAVBKF-1 is little larger than that of the MSE of DAVBKF-100.However,the DAVBKF performs better than the CAVBKF even whenl=1.Fig.4 shows the estimates ofnoise variance fordifferentagent,and Fig.5 shows the estimation errors of measurement noise variance between DAVBKF-100 and the CAVBKF,which demonstrates that the DAVBKF can outperform the CAVBKF.

    Fig.2 MSE of position.

    Fig.5 Estimate errors of noise variance.

    A reason why the DAVBKF performs better than the CAVBKF is that the global ELBO L(q)over the whole network may less than the summation of the local ELBO Li(q)over each agent[25],i.e.,,which shows that the DAVBKF may perform better than the CAVBKF.

    5 Conclusions

    In this paper,a distributed adaptive VB Kalman filter was investigated with unknown measurement noise variance modeled by the Wishart distribution.The posterior distribution of the joint state and noise variance were approximated by a free-form variational distribution.Itwasshown thatthe estimate ofthe noise variance only depended on the localinformation and the estimate could be achieved by a consensus algorithm based on VB.In the numerical simulations,the distributed tracking problem was studied,which verified and showed the effectiveness of the proposed algorithm.

    Appendix

    Proof of Lemma 1 Clearly,with qi? q(xk)q(Φi),

    wherec denotes a constant independent of Φi,k,and Li(q)is defined in(24).For fixed q(xk),the variational distribution q(Φi,k)only related to the local measurement yi,k,and thus,it can be solved individually by each agent.

    Then the conditional distribution p(yi,k|Φi,k,xk)is

    Rewrite the following probability densities in the exponential family form[26].Denote the natural parameter of q(Φi,k)is ηi,k,and corresponding sufficient statistical and log-normalizer are u(Φi,k)and Al(η),respectively.Rewrite Li(q(Φi,k))in the exponential family distribution form:

    wherec1is a constant independent of Φi,k,andηi,kand Al(ηi,k)are natural parameter and log-normalizer of W(Φi|νi,k,Vi,k),respectively.and u(Φi,k)are given by1Notice that we use tr(MN)=vec(M)·vec(N),and then vectorizing the matrix parameter when inserted into the exponential family form.

    By taking the derivative of Li(q(Φi,k))with respect toηi,k,we have

    due towe have the solution of natural parameters of q(Φi,k),

    Note that

    Thenare given by

    Proof of Lemma 2 Clearly,

    and then

    wherec0denotes the terms independent of xk.

    Rewrite

    where the natural parameter of a Gaussian distribution

    Substitute equations(a3),(a4)and(a5)into Li(q),

    due to the exponential family propertyAg(θk),wherec1andc2are the terms independent of xk.

    Taking the derivative of Li(q(xk))with respect to θkgives

    Then the global optimal solution can be found by lettingwhich yields

    With a similar procedure,the local optimal solution can be given as

    Combining(a6)and(a7)yields

    Since p(xi,k|yi,k,Φi,k)and p(xi,k|yi,k-1)are Gaussian distributions,be given as

    whereΦi,k=Eq(Φi,k)[Φi,k]=νi,kVi,k.With(a8),(a9),and(a10),the conclusions follow.

    熟女人妻精品中文字幕| 国产 精品1| 久久97久久精品| 黑人猛操日本美女一级片| 大陆偷拍与自拍| 国产91av在线免费观看| 亚洲欧美中文字幕日韩二区| 免费久久久久久久精品成人欧美视频 | 午夜日本视频在线| 精品少妇黑人巨大在线播放| 黄色日韩在线| 午夜影院在线不卡| 久久精品国产亚洲av天美| 欧美成人精品欧美一级黄| 中文字幕精品免费在线观看视频 | 国产深夜福利视频在线观看| 成人综合一区亚洲| 十八禁高潮呻吟视频 | 日本wwww免费看| 插逼视频在线观看| 另类亚洲欧美激情| 亚洲精品乱码久久久v下载方式| 亚洲人与动物交配视频| 最近中文字幕高清免费大全6| 午夜激情久久久久久久| 欧美精品人与动牲交sv欧美| 五月开心婷婷网| 国产在线男女| 高清毛片免费看| 熟女人妻精品中文字幕| 最后的刺客免费高清国语| 天美传媒精品一区二区| 亚洲av男天堂| 91午夜精品亚洲一区二区三区| 中文字幕人妻丝袜制服| 十八禁网站网址无遮挡 | 日本午夜av视频| 成人无遮挡网站| 成人特级av手机在线观看| 亚洲国产精品一区三区| 亚洲一级一片aⅴ在线观看| 欧美精品一区二区免费开放| 22中文网久久字幕| 日本-黄色视频高清免费观看| 麻豆成人av视频| 久久久久久人妻| 精品一区二区三区视频在线| 免费观看性生交大片5| 久久人人爽人人爽人人片va| 国产成人91sexporn| 成人国产av品久久久| 亚洲精华国产精华液的使用体验| 亚洲精品乱码久久久v下载方式| 青春草国产在线视频| 男人和女人高潮做爰伦理| 午夜免费鲁丝| 黑人猛操日本美女一级片| 最黄视频免费看| 久久久久久久久久久久大奶| 成年人免费黄色播放视频 | 久久这里有精品视频免费| 伊人久久国产一区二区| 午夜福利影视在线免费观看| 精品卡一卡二卡四卡免费| 欧美日韩国产mv在线观看视频| 美女福利国产在线| 国产精品秋霞免费鲁丝片| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区黑人 | 国产av精品麻豆| 欧美激情极品国产一区二区三区 | 黑人猛操日本美女一级片| 欧美精品国产亚洲| 啦啦啦在线观看免费高清www| 国产成人免费观看mmmm| 99热国产这里只有精品6| 男女啪啪激烈高潮av片| 亚洲电影在线观看av| 成人免费观看视频高清| 亚洲精品一二三| 青春草视频在线免费观看| 美女中出高潮动态图| 久久狼人影院| 中文在线观看免费www的网站| 国产日韩欧美亚洲二区| 成人二区视频| 亚洲av综合色区一区| 麻豆精品久久久久久蜜桃| 亚洲精品国产av成人精品| 免费观看性生交大片5| 18禁在线播放成人免费| xxx大片免费视频| 大码成人一级视频| 亚洲欧美成人综合另类久久久| 久久久午夜欧美精品| 美女脱内裤让男人舔精品视频| 国产探花极品一区二区| 国产日韩欧美在线精品| 国产成人精品一,二区| 欧美精品高潮呻吟av久久| 亚洲美女搞黄在线观看| 伊人久久国产一区二区| 欧美成人午夜免费资源| 三上悠亚av全集在线观看 | 岛国毛片在线播放| 欧美最新免费一区二区三区| 亚洲成色77777| 久久久久国产网址| 国产成人freesex在线| 成人午夜精彩视频在线观看| 内射极品少妇av片p| 欧美激情极品国产一区二区三区 | 国产在视频线精品| 热99国产精品久久久久久7| 日日爽夜夜爽网站| 热99国产精品久久久久久7| 国产精品久久久久久精品电影小说| 久久国内精品自在自线图片| 亚洲人与动物交配视频| 亚洲人成网站在线播| 99热这里只有精品一区| 欧美日韩亚洲高清精品| 成人二区视频| 亚洲国产色片| 国产成人aa在线观看| 久热久热在线精品观看| 99热这里只有精品一区| av在线老鸭窝| 国产精品久久久久久久电影| 久久精品久久久久久噜噜老黄| 有码 亚洲区| av女优亚洲男人天堂| 人妻少妇偷人精品九色| 秋霞在线观看毛片| 少妇人妻精品综合一区二区| 国产乱来视频区| 51国产日韩欧美| 久久久久久久国产电影| 久久久久久久久久久丰满| 国产伦理片在线播放av一区| 中文字幕人妻熟人妻熟丝袜美| videossex国产| 精品少妇内射三级| 又粗又硬又长又爽又黄的视频| av又黄又爽大尺度在线免费看| www.色视频.com| 国产成人精品无人区| av.在线天堂| 国产成人一区二区在线| 亚洲丝袜综合中文字幕| 免费黄频网站在线观看国产| 纯流量卡能插随身wifi吗| 水蜜桃什么品种好| 日韩欧美精品免费久久| 在线观看免费高清a一片| 国产高清国产精品国产三级| 九色成人免费人妻av| 亚洲自偷自拍三级| 国产极品粉嫩免费观看在线 | 国产黄色视频一区二区在线观看| 卡戴珊不雅视频在线播放| 久久午夜综合久久蜜桃| 国产欧美另类精品又又久久亚洲欧美| 亚洲一级一片aⅴ在线观看| 成人国产麻豆网| 哪个播放器可以免费观看大片| 欧美精品一区二区免费开放| 91午夜精品亚洲一区二区三区| 亚洲第一区二区三区不卡| 久久久久久久久久人人人人人人| 国产一区二区三区综合在线观看 | 亚洲经典国产精华液单| 在线精品无人区一区二区三| 亚洲人成网站在线观看播放| 日韩视频在线欧美| 丁香六月天网| 观看免费一级毛片| 国产乱来视频区| 欧美xxxx性猛交bbbb| 亚洲国产精品成人久久小说| 午夜激情福利司机影院| 下体分泌物呈黄色| 国模一区二区三区四区视频| 好男人视频免费观看在线| 高清不卡的av网站| 啦啦啦视频在线资源免费观看| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久影院| 午夜激情久久久久久久| 亚洲一级一片aⅴ在线观看| 99久久中文字幕三级久久日本| 亚洲av.av天堂| 免费播放大片免费观看视频在线观看| av福利片在线| 亚洲天堂av无毛| 欧美日韩精品成人综合77777| 中文欧美无线码| 国产精品成人在线| 午夜av观看不卡| 免费观看在线日韩| 中文字幕人妻丝袜制服| 你懂的网址亚洲精品在线观看| 国产一区二区在线观看日韩| 久久影院123| 黄色视频在线播放观看不卡| 在线观看www视频免费| 亚洲精品456在线播放app| 免费看av在线观看网站| a级片在线免费高清观看视频| 美女大奶头黄色视频| 国产精品国产三级国产av玫瑰| 卡戴珊不雅视频在线播放| 国产精品蜜桃在线观看| 色94色欧美一区二区| 亚洲欧洲国产日韩| 欧美日韩视频精品一区| 人人妻人人添人人爽欧美一区卜| 欧美日韩视频高清一区二区三区二| 简卡轻食公司| 夜夜爽夜夜爽视频| 国产精品久久久久久久电影| 免费不卡的大黄色大毛片视频在线观看| 国模一区二区三区四区视频| av线在线观看网站| 国产精品不卡视频一区二区| 久久99精品国语久久久| 一边亲一边摸免费视频| 熟女人妻精品中文字幕| 久久精品国产亚洲av涩爱| 美女主播在线视频| 少妇人妻久久综合中文| 亚洲精品久久午夜乱码| av线在线观看网站| 寂寞人妻少妇视频99o| 搡老乐熟女国产| 午夜精品国产一区二区电影| 黄色一级大片看看| 91aial.com中文字幕在线观看| 在线观看美女被高潮喷水网站| 内地一区二区视频在线| 日韩精品免费视频一区二区三区 | 国产成人精品福利久久| 久久久久久久久大av| 亚洲精品国产色婷婷电影| 亚洲国产精品成人久久小说| 又爽又黄a免费视频| 国产黄色免费在线视频| 一区二区三区四区激情视频| 欧美3d第一页| 久久久国产精品麻豆| 欧美bdsm另类| 亚洲综合精品二区| av视频免费观看在线观看| 国产精品国产三级专区第一集| 少妇的逼好多水| 久久国内精品自在自线图片| 狠狠精品人妻久久久久久综合| 赤兔流量卡办理| 三级国产精品欧美在线观看| 日本wwww免费看| 免费观看性生交大片5| 久久人人爽人人片av| 夜夜爽夜夜爽视频| 欧美区成人在线视频| 亚洲av国产av综合av卡| 国产成人精品一,二区| 国产伦精品一区二区三区四那| 色94色欧美一区二区| 国产真实伦视频高清在线观看| 高清av免费在线| 久久久久网色| 欧美成人精品欧美一级黄| 熟女av电影| 天天操日日干夜夜撸| 亚洲国产欧美在线一区| 2021少妇久久久久久久久久久| 亚洲图色成人| 日韩,欧美,国产一区二区三区| 亚洲一区二区三区欧美精品| 日本猛色少妇xxxxx猛交久久| 男人和女人高潮做爰伦理| 久久久久久人妻| 伊人久久精品亚洲午夜| 男人舔奶头视频| 免费av中文字幕在线| 男人和女人高潮做爰伦理| 久久久久久久亚洲中文字幕| .国产精品久久| 亚洲欧洲国产日韩| 国精品久久久久久国模美| 婷婷色av中文字幕| 久久毛片免费看一区二区三区| 高清黄色对白视频在线免费看 | 男人爽女人下面视频在线观看| 午夜精品国产一区二区电影| 成年人免费黄色播放视频 | 日韩强制内射视频| 韩国高清视频一区二区三区| 蜜桃在线观看..| 国产午夜精品久久久久久一区二区三区| 国产亚洲欧美精品永久| 亚洲精品成人av观看孕妇| kizo精华| 日韩伦理黄色片| 99久久综合免费| 在线观看人妻少妇| 人妻夜夜爽99麻豆av| 各种免费的搞黄视频| 五月天丁香电影| 久久毛片免费看一区二区三区| 国产精品国产三级专区第一集| 久久久精品94久久精品| 少妇熟女欧美另类| 黄色一级大片看看| 亚洲av成人精品一二三区| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 国产成人精品久久久久久| 一级片'在线观看视频| 乱系列少妇在线播放| kizo精华| 亚洲欧美精品专区久久| 国产综合精华液| 特大巨黑吊av在线直播| 黄色日韩在线| 国产成人免费观看mmmm| 99久久精品国产国产毛片| 中文字幕久久专区| 国产黄色免费在线视频| 成人漫画全彩无遮挡| 男人狂女人下面高潮的视频| 免费大片黄手机在线观看| 免费播放大片免费观看视频在线观看| 18禁在线无遮挡免费观看视频| 国产中年淑女户外野战色| 中文资源天堂在线| 最黄视频免费看| 亚洲婷婷狠狠爱综合网| 国产欧美日韩精品一区二区| 国产黄色免费在线视频| 在线观看免费高清a一片| 老熟女久久久| 精品国产一区二区三区久久久樱花| 亚洲自偷自拍三级| 久久久久精品性色| kizo精华| 最新中文字幕久久久久| 精品卡一卡二卡四卡免费| 一级爰片在线观看| 久久久午夜欧美精品| 天美传媒精品一区二区| 国产高清三级在线| 这个男人来自地球电影免费观看 | 麻豆成人av视频| 日韩不卡一区二区三区视频在线| 卡戴珊不雅视频在线播放| 晚上一个人看的免费电影| 国产在线视频一区二区| 国产一区亚洲一区在线观看| 丰满迷人的少妇在线观看| 老熟女久久久| 伊人亚洲综合成人网| 久久青草综合色| 亚洲国产精品国产精品| 久久99一区二区三区| 在线观看三级黄色| 少妇 在线观看| 国产探花极品一区二区| 深夜a级毛片| 一本大道久久a久久精品| 国产精品人妻久久久久久| 成人黄色视频免费在线看| 一本大道久久a久久精品| 亚洲,欧美,日韩| 最近最新中文字幕免费大全7| 狂野欧美激情性bbbbbb| .国产精品久久| 多毛熟女@视频| 亚洲国产色片| 亚洲国产精品999| 七月丁香在线播放| 一级黄片播放器| h日本视频在线播放| 精品午夜福利在线看| 99热6这里只有精品| 久久久久久久久久久免费av| 日韩制服骚丝袜av| 国产中年淑女户外野战色| 夫妻性生交免费视频一级片| 午夜久久久在线观看| 亚洲精品中文字幕在线视频 | 制服丝袜香蕉在线| av天堂久久9| 妹子高潮喷水视频| 高清午夜精品一区二区三区| 99九九线精品视频在线观看视频| 精品亚洲乱码少妇综合久久| 免费看不卡的av| 观看av在线不卡| 男人和女人高潮做爰伦理| a级一级毛片免费在线观看| 哪个播放器可以免费观看大片| 国内精品宾馆在线| 欧美老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| 精品一区二区三区视频在线| 欧美+日韩+精品| 成人国产av品久久久| 嫩草影院新地址| 日日啪夜夜爽| 天天操日日干夜夜撸| 免费观看性生交大片5| 欧美一级a爱片免费观看看| 精华霜和精华液先用哪个| 国语对白做爰xxxⅹ性视频网站| av专区在线播放| 精品国产乱码久久久久久小说| 亚洲人与动物交配视频| 亚洲av二区三区四区| 激情五月婷婷亚洲| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看 | 精品视频人人做人人爽| 这个男人来自地球电影免费观看 | 国产一区二区三区综合在线观看 | 国产精品麻豆人妻色哟哟久久| 亚洲精品久久久久久婷婷小说| 久久久久久久精品精品| 涩涩av久久男人的天堂| 天天躁夜夜躁狠狠久久av| 黄色怎么调成土黄色| 成年av动漫网址| 欧美日韩一区二区视频在线观看视频在线| 有码 亚洲区| 午夜精品国产一区二区电影| 免费观看在线日韩| 亚洲精品国产成人久久av| 成年av动漫网址| av网站免费在线观看视频| 18禁在线播放成人免费| 在线观看人妻少妇| 国产亚洲5aaaaa淫片| 91精品国产国语对白视频| 国产色婷婷99| 成人黄色视频免费在线看| 国产在视频线精品| 亚洲人成网站在线观看播放| 日本午夜av视频| 大香蕉97超碰在线| 国产成人一区二区在线| 女人精品久久久久毛片| 久久久久国产精品人妻一区二区| 国产一区二区三区综合在线观看 | 成人无遮挡网站| 精品卡一卡二卡四卡免费| 中文字幕久久专区| 99热国产这里只有精品6| a 毛片基地| 欧美+日韩+精品| 18禁裸乳无遮挡动漫免费视频| 精品人妻熟女av久视频| 国产成人freesex在线| 亚洲内射少妇av| 久久99热6这里只有精品| 色网站视频免费| 青春草亚洲视频在线观看| 中文字幕久久专区| 精品久久久久久久久亚洲| 国产老妇伦熟女老妇高清| 国产成人精品福利久久| √禁漫天堂资源中文www| 久久精品国产亚洲av天美| 久久久午夜欧美精品| 午夜老司机福利剧场| 日韩电影二区| 26uuu在线亚洲综合色| 精品人妻熟女av久视频| 亚洲经典国产精华液单| 色哟哟·www| 中文字幕人妻熟人妻熟丝袜美| 婷婷色麻豆天堂久久| 日韩免费高清中文字幕av| 国产精品.久久久| 激情五月婷婷亚洲| 97在线人人人人妻| 一区二区av电影网| 高清毛片免费看| 亚洲av国产av综合av卡| 午夜老司机福利剧场| 尾随美女入室| 18禁裸乳无遮挡动漫免费视频| 亚洲国产欧美日韩在线播放 | 黑人猛操日本美女一级片| videos熟女内射| 亚洲美女黄色视频免费看| 在线观看免费高清a一片| kizo精华| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 久久久午夜欧美精品| 日本欧美国产在线视频| 欧美最新免费一区二区三区| 国产日韩一区二区三区精品不卡 | 国模一区二区三区四区视频| 亚洲,欧美,日韩| 男女边吃奶边做爰视频| 又爽又黄a免费视频| 成人黄色视频免费在线看| 免费黄色在线免费观看| 女人久久www免费人成看片| 青春草亚洲视频在线观看| 青春草视频在线免费观看| 亚洲综合色惰| 欧美 日韩 精品 国产| 男女边摸边吃奶| 老司机影院成人| 老司机影院毛片| 日日摸夜夜添夜夜爱| 亚洲国产精品999| 国产av国产精品国产| 国产日韩欧美亚洲二区| 3wmmmm亚洲av在线观看| 久久人人爽人人片av| 国产成人精品无人区| 一本大道久久a久久精品| 女人久久www免费人成看片| 日韩成人av中文字幕在线观看| 国产午夜精品一二区理论片| 一级片'在线观看视频| 国产色爽女视频免费观看| 日韩精品有码人妻一区| 亚洲成人一二三区av| 亚洲精品久久久久久婷婷小说| 国产淫片久久久久久久久| 插逼视频在线观看| 嫩草影院入口| 免费大片黄手机在线观看| 一级二级三级毛片免费看| 两个人免费观看高清视频 | 国产爽快片一区二区三区| av免费观看日本| 久久精品久久久久久久性| 日产精品乱码卡一卡2卡三| 国产美女午夜福利| 寂寞人妻少妇视频99o| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 日日摸夜夜添夜夜爱| 大香蕉久久网| 观看美女的网站| 亚洲精华国产精华液的使用体验| 国产精品三级大全| 99热这里只有是精品50| 我的女老师完整版在线观看| 老熟女久久久| 69精品国产乱码久久久| 国产精品伦人一区二区| 亚洲精品日韩在线中文字幕| 亚洲人与动物交配视频| 22中文网久久字幕| 精品人妻熟女av久视频| 男的添女的下面高潮视频| 五月天丁香电影| 国产精品一区二区性色av| 我要看黄色一级片免费的| 国产熟女欧美一区二区| 我要看黄色一级片免费的| 在线天堂最新版资源| 精品久久久精品久久久| 99精国产麻豆久久婷婷| 一级毛片我不卡| 大陆偷拍与自拍| 人妻人人澡人人爽人人| 波野结衣二区三区在线| 嫩草影院入口| 黑丝袜美女国产一区| 欧美日韩国产mv在线观看视频| 老司机影院毛片| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线| 一级毛片我不卡| 欧美三级亚洲精品| 99久国产av精品国产电影| 中文天堂在线官网| 久久久久国产精品人妻一区二区| 婷婷色麻豆天堂久久| 99热6这里只有精品| 国产极品天堂在线| 如何舔出高潮| 91aial.com中文字幕在线观看| 91在线精品国自产拍蜜月| 久久久久久久亚洲中文字幕| 免费播放大片免费观看视频在线观看| 黑人巨大精品欧美一区二区蜜桃 | 久久狼人影院| 多毛熟女@视频| 国产伦精品一区二区三区四那| 久久午夜综合久久蜜桃| 亚洲在久久综合| 大片免费播放器 马上看| 肉色欧美久久久久久久蜜桃| 下体分泌物呈黄色| 边亲边吃奶的免费视频| 国产亚洲一区二区精品| 日韩不卡一区二区三区视频在线| 十八禁高潮呻吟视频 | 成年av动漫网址| 日日撸夜夜添| 久久精品熟女亚洲av麻豆精品| 久久久精品94久久精品| 日日摸夜夜添夜夜添av毛片| 黄色怎么调成土黄色| h日本视频在线播放| videossex国产| 永久网站在线|