• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stabilization of discrete-time linear systems by delay independent truncated predictor feedback

    2019-01-24 06:13:00YushengWEIZongliLIN
    Control Theory and Technology 2019年1期

    Yusheng WEI,Zongli LIN

    Charles L.Brown Department of Electrical and Computer Engineering,University of Virginia,Charlottesville,VA 22904-4743,U.S.A.

    Received 10 September 2018;revised 9 October 2018;accepted 9 October 2018

    Abstract For a discrete-time linear system with input delay,the predictor feedback law is the product of a feedback gain matrix with the predicted state at a future time instant ahead of the current time instant by the amount of the delay,which is the sum of the zero input solution and the zero state solution of the system.The zero state solution is a finite summation that involves past input,requiring considerable memory in the digital implementation of the predictor feedback law.The truncated predictor feedback,which results from discarding the finite summation part of the predictor feedback law,reduces implementation complexity.The delay independent truncated predictor feedback law further discards the delay dependent transition matrix in the truncated predictor feedback law and is thus robust to unknown delays.It is known that such a delay independent truncated predictor feedback law stabilizes a discrete-time linear system with all its poles at z=1 or inside the unit circle no matter how large the delay is.In this paper,we first construct an example to show that the delay independent truncated predictor feedback law cannot compensate too large a delay if the open loop system has poles on the unit circle at z≠1.Then,a delay bound is provided for the stabilizability of a general linear system by the delay independent truncated predictor feedback.

    Keywords:Time delay,stabilization,delay independent truncated predictor feedback

    1 Introduction

    A fundamental problem in control of linear systems with time delay is asymptotic stabilization.Various control techniques have been developed(see[1-18]).In this paper,we consider asymptotic stabilization of a discrete-time linear system with time-varying delay in the input,

    where x∈Rnand u∈Rmare the state vector and the input vector,respectively.The time-varying delay r(k):N→N satisfies r(k)?R,where N denotes the set of nonnegative integers,and R∈N is a delay bound.The initial condition is given by ψ(k),k ∈ I[-R,0],where I[a,b]denotes the set of all integers in[a,b]and a,b∈R.It is assumed that(A,B)is stabilizable.

    One of the most commonly adopted feedback laws for stabilization of system(1)is the predictor feedback law.When the delay r isconstant,the predictorfeedback law takes the form of

    is the predicted state at time instant k+r,which consists of the zero input solution and the zero state solution of the system,and K is designed such that A+BK is Schur stable.Then,the closed-loop system is given by

    which is exponentially stable.Recall that the predictor feedback law forcontinuous-time linearsystemswith input delay is infinite-dimensional,containing an integral term that takes past input as part of its integrand.The feedback law(2)is finite-dimensional,leading to its easy implementation.However,the finite summation part of the predictor feedback law(2)is the product of the feedback gain matrix K with the zero state solution of the system at the future time instant k+r,requiring past input u(k),k∈I[k-r,k-1],in the digital implementation.To alleviate the implemetation burden,Reference[19]proposed the truncated predictor feedback law

    with the finite summation part of the predictor feedback law discarded.Furthermore,the delay independenttruncated predictor feedback law

    further discards the delay dependent transition matrix Arin the truncated predictor feedback law.This simplification results in the robustness of(3)to time-varying delays and even unknown delays.It was shown in[19]that the truncated predictor feedback law(2)stabilizes system(1)with allopen loop poleson orinside the unite circle no matter how large the delay r is.Furthermore,the delay independent truncated predictor feedback law(3)stabilizes system(1)with all open loop poles at z=1 or inside the unit circle,again,no matter how large the delay r is.The eigenstructural assignment low gain feedback design technique(see[20])was employed in[19]to construct the feedback gain matrix K,while in[21]and[22],a Lyapunov equation based low gain feedback design was employed,and the same conclusions with those of[19]were reached.

    In this paper,we first construct an example to show that the delay independent truncated predictor feedback law cannot compensate an arbitrarily large delay if the open loop system has poles on the unit circle at z≠1.Then,an admissible delay bound under the delay independent truncated predictor feedback law is given for a general linear system that may be exponentially unstable.The results developed in this paper extend their continuous-time counterparts in[23].A preliminary version of the results in this paper was presented in a conference paper[24].

    The rest of the paper is organized as follows.Section 2 recalls the delay independent truncated predictor feedback law and its feedback gain matrix design by the Lyapunov equation based method.Section 3 contains the main result.Section 4 presents the numerical examples,and Section 5 concludes the paper.

    2 Preliminaries

    Consider the delay independent truncated predictor feedback law for system(1)with a controllable pair(A,B)(see[22]),

    where I stands for the identity matrix,P(γ)is the unique positive definite solution to the discrete-time parametric algebraic Riccati equation,

    Note that(7)is necessary and sufficient for the existence and uniqueness of P(γ).We now recall a lemma from[25].

    Lemma 1[25] For any positive definite matrix P,any integers n1and n2such that n2?n1,and any vector valued function x(k):I[n1,n2]→Rn,we have

    Next,we establish the following two lemmas.The proof of the first lemma is quite similar to those of Lemma 1,Corollary 1 and Corollary 2 in[21],and is thus omitted.

    Lemma 2[24]Let(A,B)be controllable with A nonsingular.For each γ ∈ (1-|λ(A)|2min,1),the unique positive definite solution P(γ)to the parametric algebraic Riccati equation(6)satisfies

    where F=(I+BTPB)-1BTPA,AC=A-BF,β=det2(A)and

    We next establish an inequality in terms of the determinate and the trace of a class of matrices.

    Lemma 3 If A ∈ Rn×nhas all its eigenvalues on or outside the unit circle,then,

    4det4(A)-6det2(A)+det-2(A)+1+2n-2tr(A)?0.

    Proof We use polarcoordinatesto denote the eigenvalues of A as λi=riejθi,where ri?1 and θi∈ (-π,π],for each integer i∈I[1,n].The determinant of A and the trace of A are respectively expressed as det(A)=

    where we have used the fact that eigenvalues appear in conjugate pairs.We then have

    Define a multivariate function

    where ri?1,i∈I[1,n].We observe that g(r1,r2,...,rn)remains unchanged under any permutation of r1,r2,...,rn.Then,we only consider the partial derivative of g(r1,r2,...,rn)with respect to rn,

    where the equality sign holds if and only if ri=1 for all i∈I[1,n-1].Therefore,

    and g(r1,r2,...,rn)is non-decreasing with respect to rn.Then,

    It follows from(11)that

    This completes the proof.

    Without loss of generality,we assume that the stabilizable pair(A,B)in system(1)has the following decomposed form:

    where AI∈ RnI×nIhas all its eigenvalues inside the unit circle and AO∈ RnO×n O has all its eigenvalues on or outside the unit circle.Then,system(1)can be written as

    where x(k)=(xTI(k)xTO(k))T.The stabilizability of(A,B)implies that(AO,BO)is controllable.Note that the asymptotic stabilizability of the second subsystem implies that of the whole system because all eigenvalues of AIare inside the unit circle.Thus,without loss of generality,we make the following assumption on system(1).

    Assumption 1 The pair(A,B)is controllable with all eigenvalues of A on or outside the unit circle.

    3 An admissible delay bound

    In this section,we first construct an example to show that if system(1)has open loop poles on the unit circle at z≠1,the delay independent truncated predictor feedback law(5)cannot stabilize the system when the delay is large enough.

    Consider system(1)with

    and a constant delay r(k)=2.It can be readily verified that(A,B)is controllable with eigenvalues of A at z=±j.By solving the parametric algebraic Riccati equation(6),we obtain the unique positive definite solution

    where γ∈(0,1)in view of(7).Hence,the delay independent truncated predictor feedback is given by

    under which the closed-loop system is given by

    The characteristic equation of the closed-loop system is

    whose four complex roots are

    Note that z3and z4both lie outside the unit circle for each γ∈(0,1).Thus,the delay independent truncated predictor feedback law(5)fails to stabilize the system.

    We nextestablish a delay bound for generallinearsystems to be stabilizable by the delay independent truncated predictor feedback law(5).

    Theorem 1 Let Assumption 1 hold.If

    where β and Π are defined as in Lemma 2,then,the delay independent truncated predictor feedback law(5)asymptotically stabilizes system(1).

    Proof The closed-loop system under the delay independent truncated predictor feedback law(5)is given by

    where ACand F are defined as in Lemma 2 and Λ(k)=x(k)-x(k-r(k)).Considera Lyapunov function V(x(k))=xT(k)Px(k).In view of Assumption 1,we let γ∈(0,1)satisfy(7).By Young’s inequality,Lemma 2 and(12),we evaluate the forward difference of V(x(k))along the trajectory of the closed-loop system as follows:

    Under the assumption that V(x(k+κ))< ρV(x(k))for each κ ∈ I[-2R,0],where ρ > 1 is any positive constant,we obtain

    If(11)holds,then,it follows from(13)that ΔV(x(k))?-?V(x(k))for some ρ > 1 and some ?> 0.The asymptotic stability of the closed-loop system then follows from the Razumikhin Stability Theorem.It remains to show that the denominator inside the square root on the right hand-side of(11)is positive.This fact can be trivally verified by the use of Lemma 3 and the facts that β ?1 and γ ∈ (0,1).This completes the proof.

    Corollary 1 Let A in system(1)have all its eigenvalues at z=1.Given an arbitrarily large delay bound R,the delay independent truncated predictor feedback law(5)with each γ ∈ (0,γ*)asymptotically stabilizes system(1),where γ*is the smallest positive solution to the following nonlinear equation:

    Proof If A has all its eigenvalues at z=1,then tr(A)=n and β=1.Thus,(11)is equivalent to(14)with the equality sign replaced by<.Note that the lefthand side of(14)approaches zero as γ → 0 and goes to infinity as γ → 1,which implies that(14)has a smallest positive solution γ*.This completes the proof.

    Remark 1 The result of Corollary 1 is consistent with those of[19]or[21],where it is established that a discrete-time linear system with all its open loop poles at z=1 or inside the unit circle can be stabilized by the delay independent truncated predictor feedback law(5)no matter how large the delay is.

    4 Numerical examples

    4.1 Example 1:A system with all poles on the unit circle

    Consider system(1)with

    The open loop system has a pair of poles on the unit circle at z=0.987±j0.1607 and a pole at z=1.It can be easily verified that(A,B)is controllable with tr(A)=2.974.We pick a time-varying delay r(k)=(1+(-1)k)/2,which is 1 when k is even and is 0 otherwise,and we pick γ=0.0078.The initial condition is given by x(k)=[1-1 0]T,k∈I[-1,0].The state response and the input signal are illustrated in Fig.1,which demonstrates the convergence of the closed-loop signals.

    Fig.1 State response and control input under state feedback law(5)with γ=0.0078.

    4.2 Example 2:An exponentially unstable system

    Consider system(1)with

    The open loop system has a pair of exponentially unstable poles at z=1±j0.09 and a pole at z=1.It can be readily verified that(A,B)is controllable with det(A)=1.0163 and tr(A)=3.We pick r(k)=(1+(-1)k)/2.With the initial condition given by x(k)=[1-1 0]T,k∈I[-1,0],simulation is run with γ=0.016.The converging state response and the corresponding input signal are illustrated in Fig.2.

    Fig.2 State response and control input under state feedback law(5)with γ=0.016.

    5 Conclusions

    We considered the delay independent truncated predictor feedback law and its stabilization of discrete-time linear systems with time-varying input delay.A example was first constructed to show that such a feedback law cannot compensate a large delay if the open loop system has poles on the unit circle at z≠1.Then,a stability criterion of the closed-loop system in terms of the delay bound was developed for a general discrete-time linear system which may be exponentially unstable.

    最近最新中文字幕免费大全7| 国产高清国产精品国产三级| 成人影院久久| 国产片特级美女逼逼视频| 亚洲人成网站在线播| a级一级毛片免费在线观看| 波野结衣二区三区在线| 一区在线观看完整版| 久久影院123| 亚洲综合精品二区| 亚洲精品中文字幕在线视频 | 日韩,欧美,国产一区二区三区| 在线看a的网站| 菩萨蛮人人尽说江南好唐韦庄| 午夜免费鲁丝| 日韩免费高清中文字幕av| 内地一区二区视频在线| 国产欧美亚洲国产| 亚洲美女黄色视频免费看| 久久热精品热| 狠狠精品人妻久久久久久综合| 国内揄拍国产精品人妻在线| 精品人妻偷拍中文字幕| 制服丝袜香蕉在线| 插逼视频在线观看| 永久免费av网站大全| 色网站视频免费| 久久久久久久久久成人| 人人妻人人爽人人添夜夜欢视频 | 日韩熟女老妇一区二区性免费视频| 日本黄色日本黄色录像| 国产精品一区二区在线观看99| 国产男女超爽视频在线观看| 91午夜精品亚洲一区二区三区| 午夜日本视频在线| 9色porny在线观看| 久久精品国产亚洲网站| 国产精品不卡视频一区二区| 欧美日韩视频精品一区| 噜噜噜噜噜久久久久久91| 亚洲人与动物交配视频| 伦精品一区二区三区| 亚洲精品久久久久久婷婷小说| 欧美国产精品一级二级三级 | 久久99精品国语久久久| 国产黄片视频在线免费观看| 亚洲不卡免费看| 九草在线视频观看| 亚洲综合色惰| 亚洲av免费高清在线观看| 观看免费一级毛片| 日韩欧美 国产精品| 免费不卡的大黄色大毛片视频在线观看| 午夜91福利影院| 国产精品蜜桃在线观看| 亚洲欧美中文字幕日韩二区| 少妇精品久久久久久久| 三级国产精品片| 国产69精品久久久久777片| 国产91av在线免费观看| 成人美女网站在线观看视频| 亚洲精华国产精华液的使用体验| 精品酒店卫生间| 男女啪啪激烈高潮av片| 搡女人真爽免费视频火全软件| 91久久精品国产一区二区三区| 午夜老司机福利剧场| 韩国高清视频一区二区三区| 丝袜喷水一区| 欧美人与善性xxx| 国产免费一级a男人的天堂| 久久国产乱子免费精品| 一边亲一边摸免费视频| 午夜老司机福利剧场| 亚洲国产欧美日韩在线播放 | 两个人的视频大全免费| 22中文网久久字幕| 天天操日日干夜夜撸| 两个人的视频大全免费| 免费高清在线观看视频在线观看| 日韩中字成人| 亚洲精品,欧美精品| 亚洲美女视频黄频| 国产男人的电影天堂91| 午夜免费鲁丝| av女优亚洲男人天堂| 国产无遮挡羞羞视频在线观看| 熟妇人妻不卡中文字幕| 免费观看性生交大片5| 人人澡人人妻人| 亚洲精品久久午夜乱码| 免费观看性生交大片5| 老司机亚洲免费影院| 亚洲高清免费不卡视频| 久久久久精品性色| 免费看av在线观看网站| 欧美精品高潮呻吟av久久| 国产一区二区三区综合在线观看 | 国产精品三级大全| 99热这里只有是精品在线观看| 亚洲av电影在线观看一区二区三区| av一本久久久久| 中文乱码字字幕精品一区二区三区| 麻豆乱淫一区二区| 亚洲图色成人| 晚上一个人看的免费电影| 在线观看一区二区三区激情| 一个人看视频在线观看www免费| 国产成人精品福利久久| 国产女主播在线喷水免费视频网站| 久久99一区二区三区| 欧美bdsm另类| √禁漫天堂资源中文www| 观看美女的网站| av国产精品久久久久影院| 我要看日韩黄色一级片| 亚洲欧美清纯卡通| 国产精品99久久99久久久不卡 | 亚洲国产av新网站| 免费观看性生交大片5| 搡老乐熟女国产| 2021少妇久久久久久久久久久| av播播在线观看一区| 婷婷色综合大香蕉| 欧美另类一区| 我要看日韩黄色一级片| 综合色丁香网| 国产免费视频播放在线视频| 一本久久精品| 在线免费观看不下载黄p国产| 欧美 日韩 精品 国产| 两个人免费观看高清视频 | 亚洲情色 制服丝袜| 久久影院123| 春色校园在线视频观看| 免费看av在线观看网站| 99热这里只有是精品50| 亚洲精品,欧美精品| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 日产精品乱码卡一卡2卡三| 久久97久久精品| av线在线观看网站| 纵有疾风起免费观看全集完整版| 久久国产乱子免费精品| 久久ye,这里只有精品| 97在线视频观看| 一区二区三区四区激情视频| 99九九在线精品视频 | 18+在线观看网站| 性高湖久久久久久久久免费观看| 午夜福利在线观看免费完整高清在| 久久免费观看电影| 亚洲av男天堂| 国产精品国产三级国产av玫瑰| 久久97久久精品| 久久精品国产亚洲网站| 极品少妇高潮喷水抽搐| 在线精品无人区一区二区三| 中文字幕人妻丝袜制服| 蜜臀久久99精品久久宅男| 自拍欧美九色日韩亚洲蝌蚪91 | 日本-黄色视频高清免费观看| 美女主播在线视频| av卡一久久| 国产91av在线免费观看| 亚洲精品日韩在线中文字幕| 午夜免费鲁丝| 精品人妻一区二区三区麻豆| 日本与韩国留学比较| 大片免费播放器 马上看| 国产淫语在线视频| 国产极品粉嫩免费观看在线 | 午夜激情福利司机影院| 免费大片黄手机在线观看| 99久久中文字幕三级久久日本| 国产 精品1| 国产探花极品一区二区| 欧美精品国产亚洲| 91精品国产九色| 夜夜看夜夜爽夜夜摸| 欧美精品国产亚洲| 自线自在国产av| 国产有黄有色有爽视频| 日本爱情动作片www.在线观看| 亚洲精品一区蜜桃| 自拍偷自拍亚洲精品老妇| 精品少妇内射三级| 精品一区二区三卡| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 久久久国产精品麻豆| 国产精品人妻久久久影院| 国产精品国产三级国产专区5o| 波野结衣二区三区在线| 久久久精品94久久精品| 91成人精品电影| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 日韩一区二区视频免费看| 69精品国产乱码久久久| 国产精品熟女久久久久浪| 欧美+日韩+精品| 亚洲自偷自拍三级| 丝袜在线中文字幕| 精品人妻偷拍中文字幕| 一本久久精品| 国产精品一区二区三区四区免费观看| 免费av中文字幕在线| 国产91av在线免费观看| 蜜臀久久99精品久久宅男| 午夜老司机福利剧场| 97超碰精品成人国产| 久久久久精品久久久久真实原创| 国产淫片久久久久久久久| 免费看光身美女| 777米奇影视久久| 国产精品久久久久久精品古装| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 久久精品熟女亚洲av麻豆精品| 久久精品国产自在天天线| 国产淫片久久久久久久久| 欧美日本中文国产一区发布| 国产高清国产精品国产三级| 中文字幕久久专区| 精品久久久久久久久亚洲| 在现免费观看毛片| 国产在线免费精品| 国产精品一区二区在线不卡| 国产淫语在线视频| av免费在线看不卡| 成年av动漫网址| a级毛片在线看网站| 成人影院久久| 亚洲精品国产av蜜桃| 国内精品宾馆在线| 久久97久久精品| 欧美精品亚洲一区二区| 日韩欧美一区视频在线观看 | 麻豆成人午夜福利视频| 国产亚洲av片在线观看秒播厂| 九草在线视频观看| 国内揄拍国产精品人妻在线| 啦啦啦中文免费视频观看日本| 午夜精品国产一区二区电影| 免费大片黄手机在线观看| 自拍偷自拍亚洲精品老妇| 伦理电影免费视频| 日韩亚洲欧美综合| 乱码一卡2卡4卡精品| 女性生殖器流出的白浆| 亚洲av男天堂| 嫩草影院入口| 纯流量卡能插随身wifi吗| 国产精品不卡视频一区二区| 日韩欧美 国产精品| 99久久中文字幕三级久久日本| 亚洲va在线va天堂va国产| 国产在线一区二区三区精| 人体艺术视频欧美日本| 少妇人妻 视频| 好男人视频免费观看在线| 内地一区二区视频在线| 久久久久久久久久久免费av| 九九久久精品国产亚洲av麻豆| 免费观看的影片在线观看| 又黄又爽又刺激的免费视频.| 精品人妻偷拍中文字幕| 国产片特级美女逼逼视频| 久久女婷五月综合色啪小说| 久久99热这里只频精品6学生| 精品久久久噜噜| 久久久久精品久久久久真实原创| 嘟嘟电影网在线观看| 日韩av不卡免费在线播放| 一本久久精品| 国产高清不卡午夜福利| 久久99热这里只频精品6学生| 两个人免费观看高清视频 | 国产伦精品一区二区三区四那| 日日撸夜夜添| 高清在线视频一区二区三区| 少妇人妻 视频| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| av不卡在线播放| 久久鲁丝午夜福利片| 精品久久久久久久久av| 久久国产精品男人的天堂亚洲 | 中文欧美无线码| 男人爽女人下面视频在线观看| 看十八女毛片水多多多| 国产av国产精品国产| 欧美高清成人免费视频www| 欧美精品国产亚洲| 免费少妇av软件| 极品人妻少妇av视频| 欧美3d第一页| 亚洲欧美精品专区久久| 丰满饥渴人妻一区二区三| 成人毛片60女人毛片免费| 精品久久久精品久久久| 黑丝袜美女国产一区| 国精品久久久久久国模美| 国产伦理片在线播放av一区| 日韩av免费高清视频| 亚洲国产精品国产精品| 人人妻人人澡人人看| 一级av片app| 最新的欧美精品一区二区| 亚洲国产精品成人久久小说| 纵有疾风起免费观看全集完整版| 久久久久网色| 纵有疾风起免费观看全集完整版| 中文乱码字字幕精品一区二区三区| 国产毛片在线视频| 国产极品天堂在线| 久久久精品免费免费高清| 天天操日日干夜夜撸| 亚洲精品国产成人久久av| a级毛色黄片| 亚洲无线观看免费| 汤姆久久久久久久影院中文字幕| 亚洲情色 制服丝袜| 国产精品国产三级国产专区5o| 人人妻人人看人人澡| 日韩中字成人| 91久久精品国产一区二区成人| 免费人成在线观看视频色| 久久久午夜欧美精品| 午夜免费鲁丝| 中文字幕亚洲精品专区| 寂寞人妻少妇视频99o| 免费久久久久久久精品成人欧美视频 | 亚洲美女搞黄在线观看| 日韩精品有码人妻一区| 久久久久久人妻| 精华霜和精华液先用哪个| 欧美3d第一页| 精华霜和精华液先用哪个| 国产无遮挡羞羞视频在线观看| 黄色一级大片看看| 久久青草综合色| 日日摸夜夜添夜夜添av毛片| 18禁在线播放成人免费| 久久亚洲国产成人精品v| 夫妻午夜视频| 国产成人午夜福利电影在线观看| 久久午夜综合久久蜜桃| 国产毛片在线视频| 亚洲精品久久午夜乱码| 欧美+日韩+精品| 欧美性感艳星| 久久久久久久久久成人| av国产精品久久久久影院| 一个人看视频在线观看www免费| 国产精品女同一区二区软件| 国产毛片在线视频| 亚洲精品久久午夜乱码| 伦理电影大哥的女人| 中文字幕av电影在线播放| 免费看光身美女| 校园人妻丝袜中文字幕| 国产在线视频一区二区| 91精品国产国语对白视频| 亚洲无线观看免费| 日本av手机在线免费观看| 欧美激情国产日韩精品一区| 91在线精品国自产拍蜜月| 精品少妇黑人巨大在线播放| 国产国拍精品亚洲av在线观看| 欧美丝袜亚洲另类| 国产伦在线观看视频一区| av视频免费观看在线观看| 在线观看免费日韩欧美大片 | av又黄又爽大尺度在线免费看| 国产精品久久久久久久久免| 日韩欧美 国产精品| av国产久精品久网站免费入址| 欧美老熟妇乱子伦牲交| 精品久久久久久电影网| 久久精品国产亚洲网站| av福利片在线观看| 中文精品一卡2卡3卡4更新| 亚洲精品成人av观看孕妇| 国产伦精品一区二区三区四那| 看非洲黑人一级黄片| 亚洲四区av| 亚洲欧美日韩东京热| 免费不卡的大黄色大毛片视频在线观看| 在线观看www视频免费| 欧美日韩一区二区视频在线观看视频在线| 亚洲天堂av无毛| 精品卡一卡二卡四卡免费| 亚洲国产精品999| 菩萨蛮人人尽说江南好唐韦庄| 久久6这里有精品| av线在线观看网站| 伦理电影大哥的女人| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 欧美激情国产日韩精品一区| 午夜激情久久久久久久| 久久久久久久大尺度免费视频| 夫妻性生交免费视频一级片| 国产成人精品婷婷| 国产69精品久久久久777片| 九九在线视频观看精品| 九色成人免费人妻av| 超碰97精品在线观看| 免费观看在线日韩| 国产av国产精品国产| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 天堂俺去俺来也www色官网| 黄色配什么色好看| 2018国产大陆天天弄谢| 极品教师在线视频| 午夜福利网站1000一区二区三区| 亚洲成人手机| 五月开心婷婷网| 精品久久久久久久久av| 中文字幕亚洲精品专区| 最近中文字幕2019免费版| 97在线视频观看| 老熟女久久久| 男人舔奶头视频| 人妻人人澡人人爽人人| 国产毛片在线视频| 一区二区av电影网| 国产精品国产三级国产专区5o| 国产免费一级a男人的天堂| 国产精品久久久久久av不卡| 80岁老熟妇乱子伦牲交| 九九久久精品国产亚洲av麻豆| 人妻系列 视频| 久久久欧美国产精品| 最黄视频免费看| 秋霞在线观看毛片| 人妻夜夜爽99麻豆av| 午夜福利视频精品| 黄色配什么色好看| 亚洲精品国产色婷婷电影| 丝瓜视频免费看黄片| 国产黄色免费在线视频| 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看| 一本色道久久久久久精品综合| 99热网站在线观看| 国产免费一区二区三区四区乱码| 欧美老熟妇乱子伦牲交| 一级片'在线观看视频| 久久精品国产鲁丝片午夜精品| 国产精品福利在线免费观看| 国产片特级美女逼逼视频| 国产精品一区二区性色av| 一二三四中文在线观看免费高清| 国产av一区二区精品久久| 精品一区二区免费观看| 国产中年淑女户外野战色| 最近中文字幕2019免费版| 久久99热这里只频精品6学生| 国产精品麻豆人妻色哟哟久久| 3wmmmm亚洲av在线观看| 国产精品久久久久成人av| 人人妻人人爽人人添夜夜欢视频 | 久久久久视频综合| 国产亚洲一区二区精品| 日韩熟女老妇一区二区性免费视频| 大码成人一级视频| 晚上一个人看的免费电影| 久久久久久久久久久久大奶| 午夜福利视频精品| 亚洲欧美日韩东京热| 国产精品免费大片| av线在线观看网站| 国产亚洲5aaaaa淫片| 18禁在线无遮挡免费观看视频| 男人添女人高潮全过程视频| 成人国产麻豆网| 国产 精品1| 99精国产麻豆久久婷婷| 国产高清有码在线观看视频| 久久久精品免费免费高清| 草草在线视频免费看| 99热这里只有是精品在线观看| 在线天堂最新版资源| 啦啦啦中文免费视频观看日本| 在线观看免费视频网站a站| av国产久精品久网站免费入址| 精品一区二区三卡| av福利片在线| 一本一本综合久久| 国产高清不卡午夜福利| 一级毛片电影观看| 在线观看人妻少妇| 日本wwww免费看| 婷婷色av中文字幕| 日韩一本色道免费dvd| 国产精品久久久久成人av| 看免费成人av毛片| 丰满乱子伦码专区| 大又大粗又爽又黄少妇毛片口| 五月伊人婷婷丁香| 精品一区二区三区视频在线| 内射极品少妇av片p| 我要看日韩黄色一级片| tube8黄色片| 成人国产麻豆网| 欧美3d第一页| 成人毛片60女人毛片免费| 精品卡一卡二卡四卡免费| 久久久久久久久久成人| 国产男女内射视频| 国产亚洲av片在线观看秒播厂| 久久久久久伊人网av| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 伊人久久国产一区二区| 视频区图区小说| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 日韩欧美精品免费久久| 国产在线免费精品| 亚州av有码| 一个人免费看片子| 亚洲怡红院男人天堂| 在线亚洲精品国产二区图片欧美 | 久久久亚洲精品成人影院| 五月天丁香电影| 精品熟女少妇av免费看| 成人无遮挡网站| 黄色配什么色好看| 综合色丁香网| 久久久久久久久久成人| 欧美性感艳星| 中文资源天堂在线| 偷拍熟女少妇极品色| 亚洲国产精品999| 噜噜噜噜噜久久久久久91| 高清视频免费观看一区二区| 青春草亚洲视频在线观看| 97超碰精品成人国产| 少妇裸体淫交视频免费看高清| 99re6热这里在线精品视频| 丰满迷人的少妇在线观看| a级片在线免费高清观看视频| 日韩成人av中文字幕在线观看| 三级经典国产精品| 99九九在线精品视频 | 国产高清有码在线观看视频| 久久久久国产网址| 在线观看免费高清a一片| 国产av码专区亚洲av| 我要看黄色一级片免费的| 欧美xxⅹ黑人| 国产精品嫩草影院av在线观看| 男女免费视频国产| 国产 精品1| 亚洲精品,欧美精品| 如何舔出高潮| 日韩精品有码人妻一区| 97在线人人人人妻| 大码成人一级视频| 精品一品国产午夜福利视频| 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 丝瓜视频免费看黄片| 久久久久人妻精品一区果冻| 久久久久久久久久久免费av| 一级黄片播放器| 日韩大片免费观看网站| 精品人妻熟女毛片av久久网站| av女优亚洲男人天堂| 一区二区av电影网| 熟女av电影| 99久国产av精品国产电影| 欧美日韩精品成人综合77777| 国产欧美日韩精品一区二区| 王馨瑶露胸无遮挡在线观看| 免费人妻精品一区二区三区视频| 一级爰片在线观看| 国产av国产精品国产| 亚洲激情五月婷婷啪啪| 中文字幕人妻熟人妻熟丝袜美| 观看美女的网站| 日韩欧美 国产精品| 乱人伦中国视频| 亚洲情色 制服丝袜| 我的老师免费观看完整版| 精品99又大又爽又粗少妇毛片| 国产亚洲最大av| 精品国产一区二区三区久久久樱花| 欧美丝袜亚洲另类| 九色成人免费人妻av| 久久久久久久久久人人人人人人| 妹子高潮喷水视频| 777米奇影视久久| 国产白丝娇喘喷水9色精品| a级毛色黄片| 一级片'在线观看视频| 国产精品一区二区在线观看99| 青春草国产在线视频| 大码成人一级视频| 色94色欧美一区二区| 老司机影院成人| 国产伦精品一区二区三区视频9| 人妻一区二区av| 下体分泌物呈黄色| 亚洲av男天堂| 看免费成人av毛片| 久久人人爽人人片av| 亚洲精品色激情综合| 女人久久www免费人成看片|